Discussion on

NVIDIA's Compute Unified Device Architecture (CUDA)

Stan Tomov

04/05/2017

specifications and graphs taken from CUDA Programming Guide
(references on: http://docs.nvidia.com/cuda/cuda-c-programming-guide/)
CUDA

CUBLAS, CUFFT, ...
we can easily use
LAPACK with CUBLAS

C like API

CPU

Application

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU
Programming model

A highly multithreaded coprocessor
* **thread block**
 (a batch of threads with fast shared memory executes a kernel)
* **Grid of thread blocks**
 (blocks of the same dimension, grouped together to execute the same kernel; reduces thread cooperation)

```c
__global__ void MatVec( . . . ) {
  // Block index
  int bx = blockIdx.x;
  int by = blockIdx.y;
  // Thread index
  int tx = threadIdx.x;
  int ty = threadIdx.y;
  . . .
}
```

```c
// set the grid and thread configuration
Dim3 dimBlock(3,5);
Dim3 dimGrid(2,3);
// Launch the device computation
MatVec<<<dimGrid, dimBlock>>>( . . . );
```
GPUs & Challenges

- Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

Quadro FX 5600

Installed (at ICL) on a 4 x Dual Core AMD Opteron Processor 265 (1800 MHz, 1024 KB cache)

Some numbers:
- processors: 128 (total)
 max performance: 346 GFlop/s
- registers: 8192 / block
 memory bandwidth: 76.8 GB/s
- warp size: 32
 bandwidth to CPU: 8 GB/s
- max threads / block: 512
 shared memory: 16 KB
- among 8 processors on a multiproc.
GPUs & Challenges

- Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

1. Get data into shared memory
2. Compute

For DLA the CI is about 32 (on IBM Cell about 64)
* not enough to get close to peak (346 GFlop/s)
* CUBLAS sgemm is about 120 Gflop/s
GPUs & Challenges

- Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

http://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf

Small red rectangles (to overlap communication & computation) are of size 32 x 4 and are red by 32 x 2 threads
Discussion

- Dense Linear Algebra
 - Matrix-matrix product
 - LAPACK with CUDA
- Sparse Linear Algebra
 - Sparse matrix-vector product
- Projects using CUDA