Accelerators

Jakub Kurzak
kurzak@icl.utk.edu
http://www.icl.utk.edu/~kurzak/

Innovative Computing Laboratory
Electrical Engineering and Computer Science
University of Tennessee
In the twilight of Moore’s Law, the transitions to multicore processors, GPU computing, and HaaS cloud computing are not separate trends, but aspects of a single trend – mainstream computers from desktops to ‘smartphones’ are being permanently transformed into heterogeneous supercomputer clusters. Henceforth, a single compute-intensive application will need to harness different kinds of cores, in immense numbers, to get its job done.

The free lunch is over. Now welcome to the hardware jungle.
In June 2008 The Roadrunner supercomputer at Los Alamos National Laboratory crossed the performance of **1 PetaFLOPS** (10^{15} floating point operations per second) using **6,480 AMD Opteron** dual-core processors and **12,960 IBM PowerXCell 8i** processors.
In November 2010 the Tianhe supercomputer at National Supercomputer Center in Tianjin crossed the performance of **2.5 PetaFLOPS** \(10^{15}\) floating point operations per second) using **14,336 Intel Xeon** 6-core processors and **7,168 Nvidia Fermi** GPU accelerators.
In November 2011 the K computer at RIKEN Advanced Institute for Computational Science in Kobe crossed the performance of 10 PetaFLOPS (10^{15} floating point operations per second) using 88,128 SPARC64 VIIIfx 8-core processors.
In June 2012 the Sequoia supercomputer at Lawrence Livermore National Laboratory crossed the performance of 16 PetaFLOPS (10^{15} floating point operations per second) using 98,304 IBM BQC 16-core* processors.
In November 2012 the Titan supercomputer at Oak Ridge National Laboratory crossed the performance of 17 PetaFLOPS (10^{15} floating point operations per second) using 18,688 AMD Opteron 16-core processors and 18,688 Nvidia Kepler GPU accelerators.
In June 2013 the Tianhe-2 supercomputer at National Supercomputing Center in Guangzhou crossed the performance of \textbf{33 PetaFLOPS} (10^{15} floating point operations per second) using \textbf{32,000 Intel Ivy Bridge} 12-core processors and \textbf{48,000 Intel Xeon Phi} accelerators.
In June 2016 the Sunway Taihulight supercomputer at National Supercomputing Center in Wuxi crossed the performance of 93 PetaFLOPS \((10^{15} \text{ floating point operations per second})\) using 40,960 260-core processors (10,649,600 cores total).
CORAL
Collaboration of ORNL, ANL and LLNL

- Summit (ORNL) and Sierra (LLNL)
 - IBM Power 9 CPU
 - NVIDIA Volta GPU
 - 4 GPUs per node
 - up to 10 TFLOPS each
 - NVIDIA NVLink interconnect between CPU/GPUs
 - Mellanox Dual-Rail EDR Infiniband between nodes
 - \(~3,400\) nodes
 - expecting \(150\) PFLOPS
Aurora (ANL)
- self-hosted Intel Knights Hill Xeon Phi
 - one self-hosted per node
 - up 3.6 to 9 GFLOPS each
- integrated Omni-Path interconnect (silicon photonics)
- expecting 180 PFLOPS
- \(\sim 50,000 \) nodes
New Technologies
3D memories, NVLink, Omni-Path

- 3D Stacked Memory
 - High Bandwidth Memory (HBM)
 - NVIDIA and AMD GPUs
 - already available in AMD FuryX (512 GBPS)
 - projected to reach **1 TBPS** in Volta
 - Hybrid Memory Cube (HMC)
 - IBM and Intel (Xeon Phi)
 - **200 – 300 GBPS**

- NVLink
 - CPU-to-GPU, GPU-to-GPU
 - **100 – 200 GBPS**

- Omni-Path
 - on-chip silicon photonics
 - up to **50 GBPS** per node
New Technologies

3D stacked memories

HBM vs GDDR5:
HBM shortens your information commute
What is wrong with CPUs?

- **Power Wall – Power Dissipation**
 - The chip will melt if running any faster (higher clock rate)

- **Frequency Wall – Pipeline Depth**
 - To crank up the clock shorter pipeline stages are required
 - To have shorter pipeline stages, more stages are required
 - When code branches, pipelines are flushed
 (there is not enough Instruction Level Parallelism in serial code)

- **Memory Wall – DRAM Latency**
 - DRAM can provide plenty of bandwidth, but very high latency
 - If data does not reside in cache, it can cost 1000 cycles to access it
 - Prefetching reached the point of diminishing returns
What is an accelerator?
British for gas pedal
What is an accelerator?

What is the tradeoff

- A device that runs very fast
 - What if it is very expensive?
 - What if it is very power hungry?

- A device that is very cost/power efficient?
 - What if it is very slow (the ARM in your cellphone)?
 - To have shorter pipeline stages, more stages are required

- A device that is fast and cost/power efficient?
 - Can it run the OS?
 - Can it run serial code?
 - Can it run legacy software (numerical libraries, e.g. LAPACK)?
Cell Broadbane Engine
Sony / Toshiba / IBM

Mercury PCI accelerator cards

IBM blade servers

Sony Playstation 3

Embedded systems

UTK PS3 Cluster
Cell Broadbane Engine
architecture overview

- PPE – Power Processing Element
- SPE – Synergistic Processing Element
 - SPU – Synergistic Processing Unit
 - LS – Local Store
 - MFC – Memory Flow Controller
- EIB – Element Interconnect Bus
Cell Broadbane Engine
architecture overview

- 4-way SIMD vector architecture
- 128 vector registers (128B)
- 256 KB of scratchpad memory (local store)
- dedicated DMA engine for data transfers to main memory and other local stores
Cell Broadbane Engine
programming challenges

- SIMD vectorization – exploiting data parallelism
 - completely SIMD architecture
 - no scalar registers
 - no scalar instructions
 - no SIMD vectorization = 1% performance

- Parallelization – exploiting thread-level parallelism
 - octa-core architecture
 - no parallelization = 12.5% performance

- Explicit communication
 - no coherent caches
 - core-private scratchpad memories
 - out-of-core / out-of-memory programming
Cell Broadbane Engine
demise

Cell Technology Roadmap:
Compatible code and security base across entire line

Performance Enhancements/Scaling

Cost Reduction

Low Power

2006 2007 2008 2009 2010 2011

Cell/B.E. (4+8) 65nm SOI 3.2 GHz

Cell/B.E. (4+8) 65nm SOI 3.2 GHz

IBM PowerXCell™ 8i (1+8 cDP SPE) 65nm SOI 3.2 GHz

IBM PowerXcell 32v (4PPE<52 eSPE) ~3.8 GHz 1 TFlop (est.)

Toshiba SPIRIT Engine (N=4 SPE) 65nm 1.5 GHz

All future dates and specifications are estimations only and subject to change without notice. Dashed outlines indicate concept designs.

© 2009 IBM Corporation
Intel Xeon Phi
a.k.a. Intel MIC

PCI accelerator card

multi-accelerator server blade

multi-accelerator server blade
Intel Xeon Phi architecture

- ca. 60 cores
- x86 architecture
- 4 hardware threads each
- shot in-order pipelines
- 512-bit SIMD
- 16 single precision instruction/cycle
- 8 double precision instructions/cycle
- support for FMA
- coherent caches
- ring interconnect
GPU systems

- **high-end gaming**
- **computing**
- **low-end gaming**
- **embedded**
Main Sources
CUDA documentation

CUDA Programming Guide

CUDA C PROGRAMMING GUIDE
PG-0834-001, v5.3 (July 2013)
Design Guide

docs.nvidia.com/cuda/
GPUs vs CPUs
computing power

Theoretical GFLOP/s

- NVIDIA GPU Single Precision
- NVIDIA GPU Double Precision
- Intel CPU Double Precision
- Intel CPU Single Precision

Devices:
- GeForce GTX TITAN
- GeForce GTX 680
- GeForce GTX 580
- GeForce GTX 480
- GeForce GTX 280
- GeForce 8800 GTX
- GeForce 7800 GTX
- GeForce 6800 Ultra
- Tesla C1060
- Harpertown
- Sandy Bridge
- Tesla M2090
- Tesla K20X
GPUs vs CPUs

architecture

CPU

GPU
Nvidia Fermi architecture

- 16 multiprocessors
- 32 cores each
- 512 total cores
Nvidia Kepler
architecture

- 15 multiprocessors
- 192 cores each
- 2,880 total cores
Nvidia Pascal architecture

- 60 multiprocessors
- 64 cores each
- 3,840 total cores
Nvidia Kepler

gaming Kepler vs HPC Kepler

Adding double precision units
SM / SMX / SMM

Fermi / Kepler / Maxwell

32 cores

192 cores

128 cores

64 cores
GPU Computing
Nvidia software stack

GPU Computing Applications

<table>
<thead>
<tr>
<th>Libraries and Middleware</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUFFT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

CUDA-Enabled NVIDIA GPUs

<table>
<thead>
<tr>
<th>Architecture</th>
<th>GeForce 600 Series</th>
<th>Quadro Kepler Series</th>
<th>Tesla K20 Tesla K10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kepler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermi</td>
<td>GeForce 500 Series</td>
<td>Quadro Fermi Series</td>
<td>Tesla 20 Series</td>
</tr>
<tr>
<td>Tesla</td>
<td>GeForce 200 Series</td>
<td>Quadro FX Series</td>
<td>Tesla 10 Series</td>
</tr>
</tbody>
</table>

- Entertainment
- Professional Graphics
- High Performance Computing
Think of image processing.
Every block is a tile.
Every thread is a pixel.

Say you want to dim the image.
Every thread computes new brightness for one pixel.
Add two vectors A and B of size N, and store the result in C.

```c
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C) {
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

int main() {
    ...
    // Kernel invocation with $N$ threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}
```

Every thread gets a unique thread ID accessible within the kernel through the built-in variable `threadIdx`.
CUDA Example
add matrices

Add two matrices A and B of size N×N, and store the result in C.

```c
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
                        float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation with one block of N × N × 1 threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}
```

Every thread gets unique coordinates `threadIdx.x` and `threadIdx.y`
CUDA Example
add matrices

the same with multiple blocks

```c
// Kernel definition
global void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}
```

block coordinates (blockIdx.x, blockIdx.y) and thread coordinates (threadIdx.x, threadIdx.y) available within the kernel
CUDA
heterogeneous programming

C Program
Sequential
Execution

Serial code

Parallel kernel
Kernel0<<>>(){}

Host

send data to the GPU

Device

Grid 0

Block (0, 0)
Block (1, 0)
Block (2, 0)

Block (0, 1)
Block (1, 1)
Block (2, 1)

receive results from the GPU

Serial code

Parallel kernel
Kernel1<<>>(){}

Host

receive results from the GPU

Device

Grid 1

Block (0, 0)
Block (1, 0)

Block (0, 1)
Block (1, 1)

Block (0, 2)
Block (1, 2)

send data to the GPU

GPU memory (GDDR5)

PCI bus

CPU memory (DDG3)
Optimization

communication overlapping

Serial Computation and Transfer

First Iteration

Second Iteration

Parallel Computation and Transfer

B0

B0

B0

B0

B1

B1

B1

TIME

DMA Input

Compute

Hide communication between the host and the device.
Overlap DMA data transfers with kernel launches.
Optimization
communication overlapping

Basic Loop

for \(i = 0 \) to \(n \)

- Load \(i \)
- Compute \(i \)
- Store \(i \)

Pipeline 0 (even)
Pipeline 1 (odd)

Software-Pipelined Loop

- Load 0
- Compute 0
- Load 1
- Compute 1
- Load \(i + 1 \)
- Compute \(i \)
- Store \(i - 1 \)
- Compute \(n \)
- Store \(n - 1 \)

Pipeline 0 (even)
Pipeline 1 (odd)

- pipelining
- double buffering
- multi-buffering
Unless...

system on a chip

ADM Fusion
Accelerated Processing Unit (APU)
GPU + x86

Nvidia Tegra
GPU + ARM
CUDA memory hierarchy

- Thread
 - Shared Memory
 - L1 Cache
 - Read-Only Data Cache
 - L2 Cache
 - DRAM

- Thread Block
 - Per-thread local memory
 - Per-block shared memory

- Grid 0
 - Blocks

- Grid 1
 - Blocks
 - Global memory
Barrier is the main mechanism for synchronizing threads
- registers are thread-private
- local memory is thread-private
- shared memory exchanges require barriers

Barrier is the main mechanism for synchronizing blocks
- shared memory is private to thread block

There are other ways of synchronization, such as atomic memory operations.
Performance Optimization

Minimize Thread Divergence
- all threads to the same

Avoid Warp Serialization
- all threads access different shared memory banks

Optimize Global Memory Access
- access is sequential and aligned

Maximize Occupancy
- there is a massive number of threads

Hide Host to Device Communication
- overlap communication with kernel execution
Optimization

thread divergence

All threads in a warp have to follow the same execution path.

I.e., all thread in a warp have to branch in tandem.

If threads take different execution paths the execution is serialized, i.e., different path are executed in sequence.

This is like the Japanese 31-legged race. If one kid is out of step, everyone falls on the face.
Optimization

DRAM access

The best access to DRAM is sequential and aligned.
Sequential means that consecutive threads read consecutive memory locations.
Aligned means that the first address is 128B-aligned (divisible by 128).
Caches were introduced with compute capability 2.x and 3.x.
Caches relieve the penalty of no-sequential access.
There is still penalty for mis-aligned access.
DRAM Access
aligned and sequential

Aligned and sequential

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compute capability:
- 1.0 and 1.1
- 1.2 and 1.3
- 2.x and 3.x

Memory transactions:

<table>
<thead>
<tr>
<th>Compute capability</th>
<th>Uncached</th>
<th>Uncached</th>
<th>Cached</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 and 1.1</td>
<td>1x 64B at 128</td>
<td>1x 64B at 128</td>
<td>1x 128B at 128</td>
</tr>
<tr>
<td></td>
<td>1x 64B at 192</td>
<td>1x 64B at 192</td>
<td>1x 32B at 160</td>
</tr>
<tr>
<td>1.2 and 1.3</td>
<td>1x 64B at 128</td>
<td>1x 64B at 192</td>
<td>1x 32B at 192</td>
</tr>
<tr>
<td></td>
<td>1x 32B at 224</td>
<td>1x 32B at 224</td>
<td>1x 32B at 224</td>
</tr>
</tbody>
</table>
DRAM Access

aligned and non-sequential

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads:</td>
<td>0</td>
<td>...</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aligned and non-sequential

<table>
<thead>
<tr>
<th>Compute capability:</th>
<th>1.0 and 1.1</th>
<th>1.2 and 1.3</th>
<th>2.x and 3.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory transactions:</td>
<td>Uncached</td>
<td>Uncached</td>
<td>Cached</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 128</td>
<td>1x 64B at 128</td>
<td>1x 128B at 128</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 160</td>
<td>1x 64B at 192</td>
<td>1x 32B at 128</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 192</td>
<td>1x 32B at 192</td>
<td>1x 32B at 192</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 224</td>
<td>1x 32B at 224</td>
<td>1x 32B at 224</td>
</tr>
</tbody>
</table>
DRAM Access

mis-aligned and sequential

Mis-aligned and sequential

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
</table>

![Diagram showing mis-aligned and sequential addresses](image)

| Threads: | 0 | ... | 31 |

<table>
<thead>
<tr>
<th>Compute capability:</th>
<th>1.0 and 1.1</th>
<th>1.2 and 1.3</th>
<th>2.x and 3.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory transactions:</td>
<td>Uncached</td>
<td>Uncached</td>
<td>Cached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7x 32B at 128</td>
<td>1x 128B at 128</td>
<td>1x 128B at 128</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 160</td>
<td>1x 64B at 192</td>
<td>1x 32B at 128</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 192</td>
<td>1x 32B at 256</td>
<td>1x 32B at 160</td>
</tr>
<tr>
<td></td>
<td>8x 32B at 224</td>
<td></td>
<td>1x 32B at 192</td>
</tr>
<tr>
<td></td>
<td>1x 32B at 256</td>
<td></td>
<td>1x 32B at 224</td>
</tr>
</tbody>
</table>
Explaining the simpler model of compute capability 2.x.

Shared memory is organized in banks.

There are 32 banks mapped to consecutive memory locations.

The best case is when each thread in a warp reads from a different bank.

If different threads read from the same bank, bank conflicts happen.

(One bank can only serve one request at a time.)

In that case the read instruction has to be replayed.

This is called “warp serialization”.

The exception is when many threads read the same address.

In this case broadcast happens.
Explaining bank conflicts for compute capability 2.x (easier to explain than 3.x)

- stride one – no conflicts
- stride two – two-way conflicts
- stride three – no conflicts

For compute capability 3.x there are no conflicts for stride two.
Explaining bank conflicts for compute capability 2.x (easier to explain than 3.x)

- random permutations – no conflicts
- broadcast & permutation – no conflicts
- broadcast – no conflicts
The more registers and shared memory each block needs the less blocks there will be. less blocks = less threads = low occupancy = low performance

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>Compute Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td>512</td>
</tr>
<tr>
<td>Warp size</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td>24</td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td>768</td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td>8 K</td>
</tr>
<tr>
<td>Maximum number of 32-bit registers per thread</td>
<td>128</td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td>16 KB</td>
</tr>
</tbody>
</table>
Optimization
further reading

CUDA C Best Practices Guide

- Assess
- Parallelize
- Deploy
- Optimize
 - trace
 - profile
 - disassemble