Sparse Linear Algebra on GPUs
General Purpose Computing on GPUs

- properties of GPUs
 - extremely high computing power
 - high bandwidth
 - high parallelism
 - small caches

- why
 - traditional use for graphics
 - no dependencies when updating pixels on a screen - but need to update many pixels at the same time

many lightweight cores
General Purpose Computing on GPUs

- suitable for highly parallel applications with:
 - SIMD operations
 - no data dependencies
 - uniform memory access
 - no branching (if…)

- high speedup potential compared to CPU code for:
 - Monte-Carlo simulations
 - MD code
 - statistics
 - dense linear algebra
 - AXPY, DOT, stencils…
General Purpose Computing on GPUs

- what about the memory wall?
 - on CPUs: sophisticated memory hierarchy
 - on GPUs: fast switching between threads hides latencies
 - latencies: 100… 1000 … 10000 cycles
 - execute operation on data present
 - many threads have to be active
Performance vs. algorithm complexity

- Regular data structures
- Explicit time stepping
- Simple update rules

- Unstructured mesh
- Implicit solvers
- Adaptive alg.
PCI bottleneck

~288 GB/s (NVIDIA K40)

~68 GB/s (Haswell)

4GB/s (v2.0)
8GB/s (v3.0)

PCI

CPU

co-processor

system memory

device memory
NVIDIA CUDA

C extension to program an NVIDIA GPU:
• program execution on the GPU multi-processors
• target highly-parallel algorithms

abstraction layer:
• hierarchy of thread-blocks
• shared memory for communication between threads in the same block
• barrier synchronization
• scales up to hundreds of cores/thousands of threads

focus on parallel algorithm, not hardware properties
NVIDIA CUDA

- kernel written as program for one thread
- all threads execute that code
- every thread is executed by one core
- threads are gathered in thread blocks (up to 3D)
- every thread block is assigned to a multiprocessor (SM)
- 32 thread=1warp are executed in parallel
- 16 threads parallel data access
- many thread-blocks can be active
- a kernel is executed by a (up to 3D) grid of thread blocks
Input and output arrays

Single-threaded:
input and output array may overlap

multi-threaded:
overlap may result in read/write conflicts
GPUs have no fixed execution order for thread-blocks
CUDA execution scheme

- **thread-block**
 - Localization via unique IDs
 - `threadIdx.x = 0 ... 11`
 - `threadIdx.y = 0 ... 1`
 - `blockDim.x = 12`
 - `blockDim.y = 2`

- **grid of thread-blocks**
 - Localization via unique IDs
 - `blockIdx.x = 0 ... 2`
 - `blockIdx.y = 0 ... 1`
 - `gridDim.x = 3`
 - `gridDim.y = 2`
CUDA execution scheme

gridDim.x = 3
gridDim.y = 2

blockDim.x = 4
blockDim.y = 3

blockIdx.x = 0 ... 2
blockIdx.y = 0 ... 1

threadIdx.x = 0 ... 3
threadIdx.y = 0 ... 2
CUDA kernel example

```c
__global__ void kernel(int* a) {
    a[blockIdx.x*blockDim.x + threadIdx.x]=0;
}

int main() {
    ...
    dim3 block(4);
    dim3 grid(n/block.x);
    kernel<<<grid,block>>>(d_a);
    ...
    return 0;
}
```
CUDA kernel example: hands-on

```
__global__ void kernel(int* a)
{ a[blockIdx.x*blockDim.x + threadIdx.x]=7;}
Output: 7777777777777777
```

```
__global__ void kernel(int* a)
{ a[blockIdx.x*blockDim.x + threadIdx.x]=blockIdx.x;}
Output: 0000111122223333
```

```
__global__ void kernel(int* a)
{ a[blockIdx.x*blockDim.x + threadIdx.x]=threadIdx.x;}
Output: 0123012301230123
```

see kernel01 and kernel02 in gpukernels.zip
Thread-block and grid configuration

- **1D data of size N**: linear arrangement of threads
 - $\text{dim3 block}(b,1,1), \text{grid}(g,1,1)$ with $b \times g = N$
 - $\text{idx} = \text{blockId.x} \times \text{blockDim.x} + \text{threadId.x}$
 - kernel$<<<\text{grid}, \text{block}>>>$ oder kernel$<<<g, b>>>$

- **2D data of size NxM**: rectangular arrangement of threads
 - $\text{dim3 block}= (b,c,1), \text{grid}=(g,h,1)$ with $b \times g = N$ und $c \times h = M$
 - $\text{idx} = \text{blockId.x} \times \text{blockDim.x} + \text{threadId.x}$ (global 2D)
 - $\text{idy} = \text{blockId.y} \times \text{blockDim.y} + \text{threadId.y}$ (global 2D)
 - $\text{id} = \text{idy} \times N + \text{idx}$ (global 1D)
 - kernel$<<<\text{grid}, \text{block}>>>$

see kernel03 in gpukernels.zip
CUDA kernel example: saxpy

- **sequential / CPU**

```c
void saxpy_serial(int n, float a, float *x, float *y){
    for (int i = 0; i < n; i++)
        y[i] = a*x[i] + y[i];
}
saxpy_serial(n, 2.0, x, y);
```

- **parallel / CUDA**

```c
__global__ void saxpy_parallel(int n, float a, float *x, float *y){
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
```
CUDA kernel example: saxpy

• high parallelism
 – no dependencies
 – no communication
 – every thread handles one vector component

• good GPU usage?
 – yes, uniform operation on large data
 – yes, no branching (if…)
 – yes, no synchronization / no communication
 – no, few computations on data
Performance Bounds

 execution time $T_R \geq \max \{ T_C , T_T \}$
 - T_C … computation time
 - T_T … data transfer / communication time
 - classification between \textit{computation-bound} and \textit{communication-bound} algorithms

• algorithm characteristics
 - f … number of floating point operations = 2N for saxpy
 - w … data size (words) = 3N+1 for saxpy (R/W)
 - f / w … compute intensity = 2/3 for saxpy

• hardware characteristics
 - L … max compute performance (in GFlop/s) = 1040 GFlop/s (GT750 M)
 - B … max bandwidth (in GByte/s) = 80 GB/s (GT750 M)
Performance bounds

- lower bounds
 - \(T_C \geq \frac{f}{L} \) and \(T_T \geq \frac{4w}{B} \) (single precision)

- actual performance
 - \(L_{\text{eff}} = \frac{f}{T_R} \leq \min \{ L, \frac{fB}{4w} \} \)

- for high performance: \(L_{\text{eff}} \leq \frac{fB}{4w} \)
 - ratio \(\frac{f}{w} \) defines compute intensity

- for BLAS 3 (matrix matrix multiplication)
 - \(\frac{f}{w} \) is in order \(O(N) \)! (matrix dimension \(NxN \))
 - bandwidth not an issue for large problems!

- for saxpy
 - \(L_{\text{eff}} \leq \frac{B}{4*3} \times 2 \text{ flop/byte} = 13 \text{ Gflop/s} = 1.3 \% \text{ Peak} \)
 - experimental results … !

try cuBLAS axpy on your system…
Kernel timing

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

cudaEventRecord(start);
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
cudaEventRecord(stop);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

cudaEventSynchronize(stop);

float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);
Example program

- 1D-partial sum
 - add entries of the adjacent array entries (radius of 3) of a 1D array
Example program

- 1D-partial sum
 - add entries of the adjacent array entries (radius of 3) of a 1D array

- initial approach
 - 7 kernels, each adding one element to the sum
 - data always read from main memory
Example program

```c
__global__ void kernel_add(int n, int offset, int *a, int *b)
{
    int i = blockDim.x*blockIdx.x+threadIdx.x;
    int j = i + offset;
    if( j>-1 && j<n ){
        b[i]+=a[j];
    }
}
```

```c
int nbblocks = (n + 255) / 256;
kernell_add<<<nbblocks, 256>>>(n, -3, a, b);
kernell_add<<<nbblocks, 256>>>(n, -2, a, b);
kernell_add<<<nbblocks, 256>>>(n, -1, a, b);
kernell_add<<<nbblocks, 256>>>(n, 0, a, b);
kernell_add<<<nbblocks, 256>>>(n, 1, a, b);
kernell_add<<<nbblocks, 256>>>(n, 2, a, b);
kernell_add<<<nbblocks, 256>>>(n, 3, a, b);
```

see kerneladd1 in gpukernels.zip
Example program

- 1D-partial sum
 - add entries of the adjacent array entries (radius of 3) of a 1D array

- initial approach
 - 7 kernels, each adding one element to the sum
 - data always read from main memory

- better approach
 - merge the 7 kernels into one
Example program

```c
__global__ void kernel2(int n, int *a, int *b)
{
    int i = blockDim.x*blockIdx.x+threadIdx.x;
    if( i<n ){
        if(i>2)
            b[i]+=a[i-3];
        if(i>1)
            b[i]+=a[i-2];
        if(i>0)
            b[i]+=a[i-1];
        b[i]+=a[i];
        if(i<n-3)
            b[i]+=a[i+3];
        if(i<n-2)
            b[i]+=a[i+2];
        if(i<n-1)
            b[i]+=a[i+1];
    }
}
```

see kerneladd2 in gpukernels.zip
Example program

- **1D-partial sum**
 - add entries of the adjacent array entries (radius of 3) of a 1D array

- initial approach
 - 7 kernels, each adding one element to the sum
 - data always read from main memory

- better approach
 - merge the 7 kernels into one

- even better
 - one thread reads needed data into shared memory
 - every thread-block computes blockDim.x partial sums
 - data read from shared memory
Example program

• 1D-partial sum
 - add entries of the adjacent array entries (radius of 3) of a 1D array

• initial approach
 • 7 kernels, each adding one element to the sum
 • data always read from main memory

• better approach
 • merge the 7 kernels into one

• even better
 - one thread reads needed data into shared memory
 - every thread-block computes blockDim.x partial sums
 - data read from shared memory

• even better
 - every thread reads one entry into shared memory
 - every thread-block computes blockDim.x-6 partial sums
 - data read from shared memory
__global__ void kernel3(int n, int *a, int *b)
{
 int i = (blockDim.x-6)*blockIdx.x+threadIdx.x-3;
 int idx = threadIdx.x;
 __shared__ int values[256];
 int sum = 0;

 values[idx] = (i>-1 && i<n) ? a[i] : 0;

 if(idx>2 && idx<256-3){
 for(int j=-3; j<4; j++)
 sum += values[idx+j];

 b[i]=sum;
 }
}
Matrix-vector multiplication

• Input A, x, Output y = Ax
• Part of the BLAS functionality
• Key routine for many iterative solvers
 • e.g. for generating orthogonal Krylov subspaces
 • Then often with sparse matrices, SpMV
Matrix-vector multiplication

```c
__global__ void
sgemv_rowmajor(int n, float a, float *m, float *x, float *y)
{
    int row = blockIdx.x*blockDim.x + threadIdx.x;
    float sum = 0.0;

    if (row < n){
        for( int col=0; col<n; col++){
            sum+= m[row*n+col] * x[i];
        }
        y[row] = a*sum;
    }
}

int nblocals = (n + 255) / 256;
sgemv_rowmajor<<<nblocals, 256>>>(n, 2.0, x, y);

see kernel04 in gpukernels.zip
```
void sgemv_colmajor(int n, float a, float *m, float *x, float *y)
{
 int row = blockIdx.x*blockDim.x + threadIdx.x;
 float sum = 0.0;

 if (row < n)
 {
 for(int col=0; col<n; col++)
 {
 sum+= m[col*n+row] * x[i];
 }
 y[row] = a*sum;
 }
}

int nblocks = (n + 255) / 256;
sgemv_colmajor<<<nbblocks, 256>>>(n, 2.0, x, y);

see kernel04 in gpukernels.zip
__global__ void
gemv_colmajor(int n, float a, float *m, float *x, float *y){

 int row = blockIdx.x*blockDim.x + threadIdx.x;
 float sum = 0.0;

 if (row < n){
 for(int col=0; col<n; col++){
 sum+= m[col*n+row] * x[i];
 }
 y[row] = a*sum;
 }
}

int nbblocks = (n + 255) / 256;
gemv_colmajor<<<nbblocks, 256>>>(n, 2.0, x, y);

aligned memory access important for performance
Sparse matrices

What if Matrix has only few non-zero entries?
 • storage overhead by storing zero elements
 • computational overhead by multiplication with zero elements
 • idea: store only non-zero elements explicitly
 • need to store also location, then…
 • popular: CSR format
CSR SpMV

\[
A = \begin{pmatrix}
5.4 & 1.1 & 0 & 0 & 0 & 0 \\
0 & 6.3 & 0 & 7.7 & 0 & 8.8 \\
0 & 0 & 1.1 & 0 & 0 & 0 \\
0 & 0 & 2.9 & 0 & 3.7 & 2.9 \\
9.0 & 0 & 0 & 1.1 & 4.5 & 0 \\
1.1 & 0 & 2.9 & 3.7 & 0 & 1.1
\end{pmatrix}
\]

rowptr: \((0 \ 2 \ 5 \ 6 \ 9 \ 12 \ 16) \)

colind: \((0 \ 1 \ 1 \ 3 \ 5 \ 2 \ 2 \ 4 \ 5 \ 0 \ 3 \ 4 \ 0 \ 2 \ 3 \ 5) \)

values: \((5.4 \ 1.1 \ 6.3 \ 7.7 \ 8.8 \ 1.1 \ 2.9 \ 3.7 \ 2.9 \ 9.0 \ 1.1 \ 4.5 \ 1.1 \ 2.9 \ 3.7 \ 1.1) \)

for(row=0; row<n; row++){
 sum = 0.0;
 for(j=rowptr[row]; j<rowptr[row+1]; j++)
 sum += values[j] * x[colind[j]];
 y[row] = sum;
}
Sparse matrices

What if Matrix has only few non-zero entries?
 • storage overhead by storing zero elements
 • computational overhead by multiplication with zero elements
 • idea: store only non-zero elements explicitly
 • need to store also location, then...
 • popular: CSR format

• conversion pays off if many sparse-matrix-vector multiplications are needed - e.g. an iterative solver
• conversion should be implemented on the GPU to avoid data transfers via PCI
Conversion to CSR

- count non-zeros in the matrix
- allocate memory
- copy non-zeros into new data structures
- fill column-indices
- fill row pointer
Conversion to CSR

- count non-zeros in the matrix
- allocate memory
- copy non-zeros into new data structures
- fill column-indices
- fill row pointer
Conversion to CSR

- count non-zeros in the matrix
 - first approach: one thread counts all non-zeros
Conversion to CSR

- count non-zeros in the matrix
 - first approach: one thread counts all non-zeros
 - better: non-zeros in the different rows are counted in parallel, then one thread adds the partial sums
Conversion to CSR

- count non-zeros in the matrix
 - first approach: one thread counts all non-zeros
 - better: non-zeros in the different rows are counted in parallel, then one thread adds the partial sums
 - even better: non-zeros in the different rows are counted in parallel, then a global reduction phase forms overall sum
Conversion to CSR

- count non-zeros in the matrix
 - first approach: one thread counts all non-zeros
 - better: non-zeros in the different rows are counted in parallel, then one thread adds the partial sums
 - even better: non-zeros in the different rows are counted in parallel, then a global reduction phase forms overall sum

Map-Reduce scheme

- map the data to the computing resources
- collect the results in a reduction operation
Conversion to CSR

- count non-zeros in the matrix
 - first approach: one thread counts all non-zeros
 - better: non-zeros in the different rows are counted in parallel, then one thread adds the partial sums
 - even better: non-zeros in the different rows are counted in parallel, then a global reduction phase forms overall sum

Map-Reduce scheme

- map the data to the computing resources
- collect the results in a reduction operation

Tutorial:
Parallel reduction on GPUs

Tree-based approach used within each thread block

Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array
Parallel reduction I

Values (shared memory)

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>1</th>
<th>8</th>
<th>-1</th>
<th>0</th>
<th>-2</th>
<th>3</th>
<th>5</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>
| Step 1 Stride 1
| Thread IDs | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
| Values | 11 | 1 | 7 | -1 | -2 | -2 | 8 | 5 | -5 | -3 | 9 | 7 | 11 | 11 | 2 | 2 |

Step 2 Stride 2

| Thread IDs | 0 | 4 | 8 | 12 |
| Values | 18 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 4 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 3 Stride 4

| Thread IDs | 0 | 8 |
| Values | 24 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 4 Stride 8

| Thread IDs | 0 |
| Values | 41 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

problem: warps are divergent
Parallel reduction II

Values (shared memory)

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Step 1
Stride 1
Thread IDs

0 1 2 3 4 5 6 7

Values

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

Step 2
Stride 2
Thread IDs

0 1 2 3

Values

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

Step 3
Stride 4
Thread IDs

0 1

Values

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

Step 4
Stride 8
Thread IDs

0

Values

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

problem: bank conflicts
Conversion to CSR

- count non-zeros in the matrix
- allocate memory
- copy non-zeros into new data structures
- fill column-indices
- fill row pointer

 -> Homework assignment