1. Power Wall is the problem of...

2. Frequency Wall is the problem of...

3. Memory Wall is the problem of...

4. An accelerator is...

5. The PetaFlop barrier was breached by a system of (circle one):
 a) Cell processors
 b) GPUs
 c) a homogeneous system
 d) a hybrid design including Cell processor
 e) a hybrid design including GPUs
 f) a hybrid design including Cell processors and GPUs

6. The fastest unclassified supercomputer in the world is built of (circle one):
 a) Cell processors
 b) GPUs
 c) a homogeneous system
 d) a hybrid design including Cell processor
 e) a hybrid design including GPUs
 f) a hybrid design including Cell processors and GPUs

7. We can expect the Cell processor in Playstation 4 (circle one):
 a) To have 32 SPEs
 b) To have longer vectors
 c) To have higher memory bandwidth
 d) none of the above
 e) all of the above

8. The performance price of not vectorizing Cell code is (circle one):
 a) minimal
 b) half the performance of vectorized code
 c) one fourth the performance of vectorized code
 d) more than an order of magnitude less performance than vectorized code

9. In order to get good performance all threads in a have to execute the same instructions (branch together).

10. The advantage of the FMA instruction over the MADD instruction is (circle one):
 a) twice the performance
 b) twice the accuracy
 c) better performance
 d) better accuracy
11. Each CUDA core (Fermi & Kepler) can execute one single precision FMA per cycle:
 a) TRUE
 b) FALSE

12. Each CUDA core (Fermi & Kepler) can execute one double precision FMA per cycle:
 a) TRUE
 b) FALSE

13. Threads can communicate through registers:
 a) TRUE
 b) FALSE

14. Threads can communicate through shared memory:
 a) TRUE
 b) FALSE

15. Thread blocks can communicate through shared memory:
 a) TRUE
 b) FALSE

16. SMs can communicate through shared memory:
 a) TRUE
 b) FALSE

17. GPU thread divergence happens if (circle one):
 a) different SMs execute different code
 b) different thread blocks in one SM execute different code
 c) different warps in one thread block execute different code
 d) none of the above
 e) all of the above

18. What happens when two GPU threads access the same address in shared memory? (circle one):
 a) bank conflict
 b) broadcast
 c) coalescing

19. What happens when two GPU threads access the same bank in shared memory? (circle one):
 a) bank conflict
 b) broadcast
 c) coalescing