Discussion on

NVIDIA's Compute Unified Device Architecture (CUDA)

Stan Tomov

04/10/2013

specifications and graphs taken from
CUDA Programming Guide Version 1.0
(references on: http://www.nvidia.com/object/cuda_get.html)
CUDA

CUDA Libraries

CUDA Runtime

CUDA Driver

Application

CUDA

CUBLAS, CUFFT, ...
we can easily use
LAPACK with CUBLAS

C like API
Programming model

A highly multithreaded coprocessor
* thread block
 (a batch of threads with fast shared memory executes a kernel)
* Grid of thread blocks
 (blocks of the same dimension, grouped together to execute the same kernel; reduces thread cooperation)

```cpp
// set the grid and thread configuration
Dim3 dimBlock(3, 5);
Dim3 dimGrid(2, 3);

// Launch the device computation
MatVec<<<dimGrid, dimBlock>>>(...);

__global__ void MatVec(...)
{
    // Block index
    int bx = blockIdx.x;
    int by = blockIdx.y;

    // Thread index
    int tx = threadIdx.x;
    int ty = threadIdx.y;
    ...
}
```
GPUs & Challenges

- Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

Quadro FX 5600
Installed (at ICL) on a 4 x Dual Core AMD Opteron Processor 265 (1800 MHz, 1024 KB cache)

Some numbers:
- Processors: 128 (total)
- Registers: 8192 / block
- Warp size: 32
- Max threads / block: 512
- Max performance: 346 GFlop/s
- Memory bandwidth: 76.8 GB/s
- Bandwidth to CPU: 8 GB/s
- Shared memory: 16 KB
- Among 8 processors on a multiproc.
GPUs & Challenges

- Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

1. Get data into shared memory
2. Compute

For DLA the CI is about 32 (on IBM Cell about 64)
* not enough to get close to peak (346 GFlop/s)
* CUBLAS sgemm is about 120 Gflop/s
GPUs & Challenges

• Programming is 'easier' with NVIDIA's Compute Unified Device Architecture

http://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf

Discussion

- Dense Linear Algebra
 - Matrix-matrix product
 - LAPACK with CUDA
- Sparse Linear Algebra
 - Sparse matrix-vector product
- Projects using CUDA