Sony/Toshiba/IBM (STI) CELL Processor

Scientific Computing for Engineers: Spring 2007

icL £ or

Innovative Computing Laboratory
COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF TENNESSEE

> Power Wall

Increasingly, microprocessor performance is limited by achievable power dissipation
rather than by the number of available integrated-circuit resources (transistors and
wires). Thus, the only way to significantly increase the performance of microprocessors
is to improve power efficiency at about the same rate as the performance increase.

Frequency Wall

Conventional processors require increasingly deeper instruction pipelines to achieve
higher operating frequencies. This technique has reached a point of diminishing returns,
and even negative returns if power is taken into account.

Memory Wall

On multi-gigahertz symmetric multiprocessors - even those with integrated memory
controllers - latency to DRAM memory is currently approaching 1,000 cycles. As a
result, program performance is dominated by the activity of moving data between main
storage (the effective-address space that includes main memory) and the processor.

IcL . Ur 01/31/07 11:10
A

The Mémo’nyall\ MY - DN

"When a sequential program on a conventional architecture performs a load instruction that
misses in the caches, program execution now comes to a halt for several hundred cycles. [...]
Even with deep and costly speculation, conventional processors manage to get at best a
handful of independent memory accesses in flight. The result can be compared to a bucket
brigade in which a hundred people are required to cover the distance to the water needed to
put the fire out, but only a few buckets are available."

H. Peter Hofstee
"Cell Broadband Engine Architecture from 20,000 feet"
http://www-128.ibm.com/developerworks/power/library/pa-cbea.html

Their (multicore) low cost does not guarantee their effective use in HPC. This relates back to

the data-intensive nature of most HPC applications and the sharing of already limited
bandwidth to memory. The stream benchmark performance of Intel's new Woodcrest dual
core processor illustrates this point. [...] Much effort was put into improving Woodcrest's
memory subsystem, which offers a total of over 21 GBs/sec on nodes with two sockets and
four cores. Yet, four-threaded runs of the memory intensive Stream benchmark on such nodes
that | have seen extract no more than 35 percent of the available bandwidth from the
Woodcrest's memory subsystem."

Richard B. Walsh

"New Processor Options for HPC"
http://www.hpcwire.com/hpc/906849.html

ICL e,, or 01/31/07 11:10
-

CELL Overview I\

$400 million over 5 years

Sony/Toshiba/IBM alliance known as STI

STI Design Center - Austin, Texas — March 2001
Mercury Computer Systems Inc. — dual CELL blades
Cell Broadband Engine Architecture / CBEA / CELL BE

Playstation3, dual CELL blades, PCl accelerator cards
3.2 GHz, 90nm 0OSlI,
234 million transistors

» 165 million — Xbox 360

» 220 million - Itanium 2 (2002)

» 1,700 million — Dual-Core Itanium 2 (2006)

ICL e,, ur 01/31/07 11:10
-

CE-I__I'_'_..-ISihrgh'i}i:ecture‘ | Il _

PPU — PowerPC 970 core
Symevissc Processor Elements for High (FL ops Watt SPE - Synergistic Processing Element
» SPU - Synergistic Processing Unit
» LS - Local Store
» MFC - Memory Flow Controller
EIB - Element Interconnection Bus
MIC — Memory Interface Controller

Power Processing Element (PPE)
> Power 970 architecture compliant
» 2-way Symmetric Multithreading (SMT)
» 32KB Level 1 instruction cache
32KB level 1 data cache
512KB level 2 cache
VMX (AltiVec) with 32 128-bit vector registers

standard FPU
» fully pipelined DP with FMA
> 6.4 Gflop/s DP at 3.2 GHz

AltiVec
» noDP
> 4-way fully pipelined SP with FMA
> 25.6 Gflop/s SP at 3.2 GHz

IcL . Ur 01/31/07 11:10
A

> Synergistic Processing Elements (SPEs)
» 128-bit SIMD
» 128 vector registers
> 256KB instruction and data local memory
> Memory Flow Controller (MFC)

16-way SIMD (8-bit integer)

8-way SIMD (16-bit integer)

4-way SIMD (32-bit integer, single prec. FP)
2-way SIMD (64-bit double prec. FP)

25.6 Gflop/s SP at 3.2 Ghz (fully pipelined)
1.8 Gflop/s DP at 3.2 Ghz (7 cycle latency)

ICL e,, or 01/31/07 11:10
-

> Dual issue (in order) pipeline
> Even - arithmetic
> integer
» floating point
» 0dd - data motion
> permutations
> local store
> branches
> channel

ictLor o

Element Interconnection Bus (EIB)
» 4 16B-wide unidirectional channels
> half the system clock (1.6GHz)
» 204.8 GB/s bandwidth (arbitration)

ICL e,, or 01/31/07 11:10
-

Element Interconnection Bus (EIB)
» 4 16B-wide unidirectional channels
» half the system clock (1.6GHz)
» 204.8 GB/s bandwidth (arbitration)

cL £ or

Memory Interface Controller (MIC)
» external dual XDR,
» 3.2 Ghz max effective frequency,
(max 400 MHz, Octal Data Rate),
» each: 8 banks - max 256 MB,
> total: 16 banks - max 512 MB,
» 25.6 GB/s.

ictLor o

A

C'EL_L'.-Fi:_g__g:ft;rmancé - Dq__ubl'e' Precision

In
> every seven cycles each SPE can:
» process a two element vector,
> perform two operations on each element.

> in one cycle the FPU on the PPE can:
> process one element,
» perform two operations on the element.

8x2x2x32GHz/7 Gflop/s
2 x 3.2 GHz Gflop/s

Gflop/s

31/07 11:10

A

\

A

CELL Per.foﬁrmance' - Single 'Precision'

In
in one cycle each SPE can:
> process a four element vector,
> perform two operations on each element.

> in one cycle the VMX on the PPE can:
> process a four element vector,
> perform two operations on each element.

8x4x2x3.2GHz = Gflop/s
4x2x3.2GHz= Gflop/s

Gflop/s

ICL e,, or 01/31/07 11:10
-

CELL -P_er.fd'rmance' _ Bandwidth

Bandwidth:

» 3.2 GHz clock:
> each SPU - GB/s, (compare to Gflop/s per SPU)
» Main memory - GB/s,

> EIB- GB/s. (compare to Gflop/s - 8
SPUs)

ICL e,, ur 01/31/07 11:10
-

A

Performa,n/ce Comp‘a'ris_q_n - Double P_l_"_e'iéi\s';ibn'

\

1.6 GHz Dual-Core ltanium 2
> 1l.6x4x2= Gflop/s

3.2 GHz CELL BE (SPEs only)
> 3.2Xx8x8= Gflop/s

ICL e,, or 01/31/07 11:10
-

A

Performa,n/ce Comp‘a"ris_q__n _ Single Pr_c_'_a:cmis\i"dn .

£ ‘“““‘"‘"""“"’m : 1.6 GHz Dual-Core Itanium 2
et i > 16x4x2= Gflop/s

3.2 GHz SPE
> 3.2x8= Gflop/s
> One SPE = 2 Dual-Core Itaniums 2

3.2 GHz CELL BE (SPEs only)
> 3.2x8x8= Gflop/s
» One CBE = 16 Dual-Core Itaniums 2

ICL . UF 01/31/07 11:10
A

CELL Programming Basics

» Programming the SPUs
> SIMD'ization (vectorization)

» Communication
> DMAs
> Mailboxes

» Measuring Performance
> SPU decrementer

ICL .e,, or 01/31/07 11:10
-

SPE Register File

General-Purpose Registers

GPR 127

0

Floating-Point Status and Control Register [

FPSCR

ICL .e,, ur 01/31/07 11:10
-

addVC VA VB

ICL e,, or 01/31/07 11:10
-

shuffle VT,VAVBVC

\H_'.|!‘-1| 14|18|1D|-16| 15|19|1A|1C| IC|1C| 13|-‘.B| 1D|IB|:1E|

ICL e,, ur 01/31/07 11:10
-

SPE SIMD Vector Data Types

Vector Data Type
vector unsigned char
vector signed char
vector unsigned short
vector signed short
vector unsigned int

vector signed int

vector unsignaed long long

vector signed long long

01/31/07 11:10

Content

|Sixteen 8-bit unsigned chars

Sixteen 8-bit signed chars

Eight 16-bit unsigned halfwords

.Elghl 16-bit signed halfwords
Four 32-bit unsigned words

Four 32-bit signed words

:Two G4-bit unsignad u:luhlm(l.s
ITwn B4-bit signed doublewords
.FOL.II 32-bit single-pracision floals
.Two 64-bit double precision floats
Iquauwora (16-byte)

SPE SIMD Arithmetic Intrinsics

| Arithmetic Intrinsics

[d = spu_add(a, b}

(0= spu_addx(a, b, ¢)
[d- spu_genbla, b)

j d = spu_genbx(a, b, c)

: d = spu_genc(a, b)

| d = spu_gencx(a, b, c)

I d = spu_madd(a, b, c}

| d = spu_mhhadd(a, b, c)
I o = spu_msub(a, b, c)

.\fp.-clnr add

I\feclor add extended

:Veclor generate bormow

E\«fz}«:l\:w generate borrow extended
.Vp.-clor qenaerate carry

| vector generate camy extended
.\u"eclor multiply and add

I\«’eclor multiply high high and add

Vector multiply and subtract

ICL .e,, ur 01/31/07 11:10
-

SPE Scalar Processing

Preferred Slot
o 1 2 3

Byte Index
14 15

01/31/07 11:10

cL £ or

oD

1D 012

oD

1D 0123

0 0

0 ----456789

345878
===T7880
-==1234
-=-567850
123456
785012
89

8501

01/31/07 11:10

a
Loz

lax
ai
fma
st
1gx
ai

logx
rotgby

fm
fma
St
ai
LL39:
bimz

849, 48,510
$51,56,59
$47,66051
552, %6, 511
$7,87,-1
350,451,512, 852
550, %6, 511
548,48, 510
58,%8,4
544, ctx+16
$43,56,59
$46, 548,549
845,846, 546,547
$42,512, 845
541,542, 544, 543
$41,%6,59
$6,%6,16

$7, .118

SPE DM_A'éommahds

5 DMA Commands

| mic_put(is, ea, size, tag, tid, rid)
émlcgumﬂs. ea, size, tag. tid, Nd}
:mlc_pmzlis, ea, size, tag. tid, rid)
Eml‘r._ge‘[lls. ea, size, tag, tid, rid)
;rnlc__qem{!s. ea, size, tag, td, rid)
:mlc._ge'lﬂis, ea, size, tag, tid, rid)
|List DMA Commands

| mic_putl(ls, ea, list, list_size, tag, tid, rid)

:ml:JJulII){hi, ea, list, list_size, taq, tid, rid)

| mfc_putf(ls, ea, list, list_size, tag, tid, rid)
| mic_get(ls, ea, list, list_size, taq, tid, rid)

| mic_getb(ls, ea, list, list_size, tag, tid, rid)

| mic_getli(ls, ea, list, list_size, tag, tid, rid)

01/31/07 11:10

cL £ or

Move data from local storage to effective address

Move data from local storage to effective address with barrier

Move data from local storage o effective address with fence
Move data from effective address to local storage
Move data from effective address to local storage with barrier

Move data from effective address to local storage with fence

Move data from local storage 1o effective address using MFC fist

-Move data from local storage to effective address using MFC list
with barrier

Move data from local storage to effective address listing MFC list
with lence

Move data from effective address to local storage using MFC list

Maove data from effective address to local storage using MFC list
with barrier

Move data from effective address to local storage using MFC list
with fence

SPE DMA Status

|DMA Status

;rn1c__sl.a1__ emd_gueue()
imfr._mim_mg__mask{mask}

irnfc _read_tag_mask()
gmfc_mi[e_lag__updnle(ls]
:mfc_mite,lag_update,lrnmedIale{}
;rnﬂ;_mi[.n_l.ag__u[ﬂﬂle_any[}
Irnfc_ mita__lég__updale_ all)
ErnTc__sIai__ tag_update()
Emfc,read,_lag_stalus{l
;rnTL:_lead_lag_s[alus_lmrnﬂdla‘ln{]
gmfc_lend_lag_stafus_nnyo

:rnTt: read_tag_status_all()
fn.ﬂc_s.lzit_tag_s!atus.t}
ir|'|1'c__rf_~a11__II's:__s.talI_ status()
imfc_slm_llst_smll_slnms{:
;mfr.,,w:ite,,llst_slall_,acl((tag}
;rnTu_mad_momic_slalus[}

01/31/07 11:

cL £ or

:Check number of available entries in MFC DMA queusa

!Se'[tag mask to select tag groups to be included in query operation |

| Read tag mask Indicating groups to be Included in query operation I

EReque-sI the tag status to be updated

!Request that tag status be updated Immediately

iRﬁq.msl that tag stalus be updated when any 1ag groups complete |

iRequesl that tag status be updated when all tag groups complete
:CIu:-‘cR availability of tag Update Request Status channel

iWaIt for an updated tag status

Wail for the updated tag status of any enabled group

iWnil for no outstanding operations for any enabled groups

;W’uil for no outstanding operations for all enabled groups

| Chieck avallabilty of MFC_RdTagStat channel

[Read list DMA stall-and-notlly status

Check avallability of List DMA stall-and-notify status
:An:knowled_qe tag group containing stalled DMA list commands

' Check availability of alomic command status

DMA Double Buffering

Initiate DMA transfer
to buffer Bg

Initiate DMA, transfier Wait for DMA, transfer Use data in
1o buffer By 1o buffer By 1o complete buffer By

I l

Use data in | Waitfor DMA transfer | | Initiate DIMA transfer
buffer By

1o buffer By 1o complete 1o buffer By

Receive tile 1
Receive tile 2 I=2 TO N-1

Compute tile 1 Send tile I-1
Swap buffers Receive tile I+1
Compute tile I

Send tile N-1 Swap buffers
Compute tile N FOR
Send tile N1

ICL .e_, or 01/31/07 11:10
-

SPE Mailboxes

|SPU Mailboxes

:spu_ read_in_mbox() jRead I:1E}(I data entry in the SPU Inbound Mailbox
;spu_slm_in_rnho:ﬂ ?GEI the number of data entries in the SPU Inbound Mailbox
;spu write_out_mbox(data) Sond data to the SPU Qutbound Mailbox
?:;pu_slat_nul_mhn:{] .Gel the available capacity of the SPU Outbound Mailbox
.spu,mite_om_lnu_mxtdma} :ﬂnd data to the SPU Outbound Interrupt Mailbox

| spu_stat_out_intr_mbox() | Get the available capacity of the SPU Outbound Interrupt Mailbox

FIFO queues
32-bit messages

Intended for mainly for communication between the PPE and the
SPEs

ICL .e_, ur 01/31/07 11:10
A

SPE Decrementer

| SPU Decrementer

| spu_read_decrementer() Read the current value of the decrementer

| spu_write_decrementer(count) | Load a value into the decrementer

> 14MHz - IBM dual CELL blade
> 80MHz - Sony Playstation3

ICL .e,, or 01/31/07 11:10
-

CELL Basic Coding Tips

Local Store

> Keep in mind the Local Store is 256KB in size

» Use plug-ins to handle larger codes
DMA Transfers

» Use SPE-initiated DMA transfers

» Use double-buffering to hide transfers

» Use fence and barrier to order transfers
Loops

> Unroll loops to reduce dependency stalls,

increase dual-issue rate, and exploit SPU large register file

Branches

» Eliminate non-predicted branches
Dual-Issue

» Choose intrinsics to maximize dual-issue

ICL .e,, ur 01/31/07 11:10
-

UT CELL BE Cluster

Ashe.cs.UTK.EDU

ICL .e_, or 01/31/07 11:10
-

Connection Machine CM-5 (512 CPUs)
> 512 x 128 = Gflop/s DP

Playstation3 (4 units)
> 4x17 = Gflop/s DP

ICL .e_, ur 01/31/07 11:10
A

