A Little History

- Von Neumann and Goldstine - 1947
 - "Can't expect to solve most big [n>15] linear systems without carrying many decimal digits [d>8], otherwise the computed answer would be completely inaccurate." - WRONG!
- Turing - 1949
 - "Carrying d digits is equivalent to changing the input data in the d-th place and then solving Ax=b. So if A is only known to d digits, the answer is as accurate as the data deserves."
 - Backward Error Analysis
- Rediscovered in 1961 by Wilkinson and publicized
- Starting in the 1960s- many papers doing backward error analysis of various algorithms
- Many years where each machine did FP arithmetic slightly differently
 - Both rounding and exception handling differed
 - Hard to write portable and reliable software
 - Motivated search for industry-wide standard, beginning late 1970s
- First implementation: DEC 8087
- ACM Turing Award 1989 to W. Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
 - Nearly universally implemented in general purpose machines

Defining Floating Point Arithmetic

- Representable numbers
 - Scientific notation: +/- d.d…d x rexp
 - sign bit
 - radix r (usually 2 or 10, sometimes 16)
 - significand d.d…d (how many base-r digits d?)
 - exponent exp (range?)
- Operations:
 - arithmetic: +,-,x,/,...
 - how to round result to fit in format
 - comparison (<, =, >)
 - conversion between different formats
 - short to long FP numbers, FP to integer
 - exception handling
 - what to do for 0, 2*largest_number, etc.
 - binary/decimal conversion
 - for I/O, when radix not 10
- Language/library support for these operations

IEEE Floating Point Arithmetic Standard 754 (1985) - Normalized Numbers

- Normalized Nonzero Representable Numbers: +/- 1.d.d x 2^exp
 - Macheps = Machine epsilon = 2^{-#significand bits} = relative error in each operation
 - OV = overflow threshold = largest number
 - UN = underflow threshold = smallest number

<table>
<thead>
<tr>
<th>Format</th>
<th># bits</th>
<th>#significand bits</th>
<th>macheps</th>
<th>exponent range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>32</td>
<td>23+1</td>
<td>2^{-24} (~10^{-7})</td>
<td>2^{-126} - 2^{127} (~10^{38})</td>
</tr>
<tr>
<td>Double</td>
<td>64</td>
<td>52+1</td>
<td>2^{-53} (~10^{-16})</td>
<td>2^{-1022} - 2^{1023} (~10^{308})</td>
</tr>
<tr>
<td>Extended (80 bits on all Intel machines)</td>
<td>>=80</td>
<td>>=64</td>
<td><=2^{-64} (~10^{-19})</td>
<td>>=15</td>
</tr>
</tbody>
</table>

IEEE Floating Point Arithmetic Standard 754 - "Denorms"

- Denormalized Numbers: +/-0.d.d x 2^{min_exp}
 - sign bit, nonzero significand, minimum exponent
 - Fills in gap between UN and 0
 - Underflow Exception
 - occurs when exact nonzero result is less than underflow threshold UN
 - Ex: UN/2
 - return 0 denominator, or zero
 - Why bother?
 - Necessary so that following code never divides by zero
 if (a != b) then x = a/(a-b)

IEEE Floating Point Arithmetic Standard 754 - +/- Infinity

- +/- Infinity: Sign bit, zero significand, maximum exponent
- Overflow Exception
 - occurs when exact finite result too large to represent accurately
 - Ex: 2^{OV}
 - return +/- infinity
- Divide by zero Exception
 - return +/- infinity = 1/+-0
 - sign of zero important!
- Also return +/- infinity for
 - 3+infinity, 2*infinity, infinity*infinity
 - Result is exact, not an exception!
IEEE Floating Point Arithmetic
Standard 754 - NAN (Not A Number)

- NaN: Sign bit, nonzero significand, maximum exponent
- Invalid Exception
 - occurs when exact result not a well-defined real number
 - 0/0
 - sqrt(-1)
 - infinity-infinity, infinity/infinity, 0*infinity
 - NaN > 3?
 - Return a NaN in all these cases
- Two kinds of NaNs
 - Quiet - propagates without raising an exception
 - Signaling - generate an exception when touched
 - good for detecting uninitialized data

Error Analysis

- Basic error formula
 \[f(a \text{ op } b) = (a \text{ op } b)(1 + d) \]
 where
 - op one of +,-,*,/
 - \(|d| \leq \text{macheps}\)
- Assuming no overflow, underflow, or divide by zero
- Example: adding 4 numbers
 \[f(x_1 + x_2 + x_3 + x_4) = (x_1 + x_2)(1 + d_1)(1 + d_2) + x_3 + x_4 \]
 where each \(|e| \leq 3 \text{macheps}\)
- Get exact sum of slightly changed summands \(x_i(1+e_i)\)
- Backward Error Analysis - algorithm called numerically stable if it gives the exact result for slightly changed inputs
- Numerical Stability is an algorithm design goal

Backward Error

- Approximate solution is exact solution to modified problem.
- How large a modification to original problem is required to give result actually obtained?
- How much data error in initial input would be required to explain all the error in computed results?
- Approximate solution is good if it is exact solution to “nearby” problem.

Sensitivity and Conditioning

- Problem is insensitive or well conditioned if relative change in input causes commensurate relative change in solution.
- Problem is sensitive or ill-conditioned, if relative change in solution can be much larger than that in input data.

\[\text{Cond} = \left| \frac{\text{Relative change in solution}}{\text{Relative change in input data}} \right| = \frac{\|f(x') - f(x)\|/\|f(x')\|}{/\|x' - x\|/\|x\|} \]

- Problem is sensitive, or ill-conditioned, if cond \(\gg 1\).
- When function \(f\) is evaluated for approximate input \(x' = x + h\) instead of true input value of \(x\).
- Absolute error \(= f(x + h) - f(x) = h \cdot f'(x)\)
- Relative error \(= \|f(x + h) - f(x)\|/\|f(x)\| \approx h \cdot f'(x)/f(x)\)

Sensitivity: 2 Examples

cos(\(\pi/2\)) and 2-d System of Equations

- Consider problem of computing cosine function for arguments near \(\pi/2\).
- Let \(x \approx \pi/2\) and let \(h\) be small perturbation to \(x\). Then
 - absolute error \(= \cos(x + h) - \cos(x) \approx -h \sin(x) \approx -h\)
 - relative error \(\approx -h \tan(x) \approx -h\)
- So small change in \(x\) near \(\pi/2\) causes large relative change in \(\cos(x)\) regardless of method used.
- \(\cos(1.57079) = 0.63267949 \times 10^{-5}\)
- \(\cos(1.57078) = 1.64267949 \times 10^{-5}\)
- Relative change in output is a quarter million times greater than relative change in input.

Sensitivity: 2 Examples

\(\cos(\pi/2)\) and 2-d System of Equations

- Consider problem of computing cosine function for arguments near \(\pi/2\).
- Let \(x \approx \pi/2\) and let \(h\) be small perturbation to \(x\). Then
 - absolute error \(= \cos(x + h) - \cos(x) \approx -h \sin(x) \approx -h\)
 - relative error \(\approx -h \tan(x) \approx -h\)
- So small change in \(x\) near \(\pi/2\) causes large relative change in \(\cos(x)\) regardless of method used.
- \(\cos(1.57079) = 0.63267949 \times 10^{-5}\)
- \(\cos(1.57078) = 1.64267949 \times 10^{-5}\)
- Relative change in output is a quarter million times greater than relative change in input.
Example: Polynomial Evaluation Using Horner’s Rule

- Horner’s rule to evaluate \(p = \sum_{k=0}^{n} c_k x^k \)
 \(p = c_0, \) for \(k = n-1 \) down to \(0, \) \(p = x^*p + c_k \)
- Numerically Stable
- Apply to \((x-2)^9 = x^9 - 18x^8 + ... - 512 \)
- \(-2^9 + x^*(- 2^8 - x^*(2^7 + ...))) \)
- Evaluated around \(2 \)

```latex
\begin{verbatim}
begin
\text{ } p := c[n];
\text{ } for \text{ } k := n-1 \text{ to } 0 \text{ by } -1 \text{ do }
\text{ } p := p*x + c[k];
end \{ \text{ for } \}
HonerPoly := p;
end \{ \text{ HonerPoly } \}
\end{verbatim}
```

Example: polynomial evaluation (continued)

- \((x-2)^9 = x^9 - 18x^8 + ... - 512 \)
- We can compute error bounds using
 \(\text{fl}(a \text{ op } b) = (a \text{ op } b)(1+\text{d}) \)

Exception Handling

- What happens when the "exact value" is not a real number, or too small or too large to represent accurately?
- 5 Exceptions:
 > Overflow - exact result > OV, too large to represent
 > Underflow - exact result nonzero and < UN, too small to represent
 > Divide-by-zero - nonzero/0
 > Invalid - 0/0, sqrt(-1), ...
 > Inexact - you made a rounding error (very common!)
- Possible responses
 > Stop with error message (unfriendly, not default)
 > Keep computing (default, but how?)

Summary of Values Representable in IEEE FP

- + - Zero
- Normalized nonzero numbers
- Denormalized numbers
- + - Infinity
- NaNs
 > Signaling and quiet
 > Many systems have only quiet

Hazards of Parallel and Heterogeneous Computing

- What new bugs arise in parallel floating point programs?
- Ex 1: Nonrepeatability
 > Makes debugging hard!
- Ex 2: Different exception handling
 > Can cause programs to hang
- Ex 3: Different rounding (even on IEEE FP machines)
 > Can cause hanging, or wrong results with no warning
- See www.netlib.org/lapack/lawns/lawn112.ps
- IBM RS6K and Java
Types of Parallel Computers

- The simplest and most useful way to classify modern parallel computers is by their memory model:
 - shared memory
 - distributed memory

Standard Uniprocessor Memory Hierarchy

- Intel Pentium 4
 - 2 GHz processor
- P7 Prescott 478
 - 8 Kbytes of 4 way assoc.
 - L1 instruction cache with 32 byte lines
 - L1 data cache with 32 byte lines
 - 256 Kbytes of 8 way assoc.
 - L2 cache, 32 byte lines
 - 400 MB/s bus speed
 - SSE2 provide peak of 4 Gflop/s

Shared Memory / Local Memory

- Usually think in terms of the hardware
- What about a software model?
- How about something that works like cache?
- Logically shared memory

Parallel Programming Models

- Control
 - how is parallelism created
 - what orderings exist between operations
 - how do different threads of control synchronize
- Naming
 - what data is private vs. shared
 - how logically shared data is accessed or communicated
- Set of operations
 - what are the basic operations
 - what operations are considered to be atomic
- Cost
 - how do we account for the cost of each of the above

Trivial Example \(\sum_{i=0}^{n-1} f(A[i]) \)

- Parallel Decomposition:
 - Each evaluation and each partial sum is a task
 - Assign n/p numbers to each of p procs
 - Each computes independent “private” results and partial sum
 - One (or all) collects the p partial sums and computes the global sum

 => Classes of Data
 - Logically Shared
 - the original n numbers, the global sum
 - Logically Private
 - the individual function evaluations
 - what about the individual partial sums?

Programming Model 1

- Shared Address Space
 - program consists of a collection of threads of control,
 - each with a set of private variables
 - e.g., local variables on the stack
 - collectively with a set of shared variables
 - e.g., static variables, shared common blocks, global heap
 - threads communicate implicitly by writing and reading shared variables
 - threads coordinate explicitly by synchronization operations on shared variables
 - writing and reading flags
 - locks, semaphores
- Like concurrent programming on uniprocessor
Model 1

- **Shared Memory Machine**
 - Processors all connected to a large shared memory
 - "Local" memory is not (usually) part of the hardware
 - Example: DEC, Sun, Origin, SGI Origin
 - Cost: much cheaper to cache than main memory

- Machine model 1a: A Shared Address Space Machine
 - Replace caches by local memories (in abstract machine model)
 - This affects the cost model -- repeatedly accessed data should be copied

- Example: Cray T3E

Shared Memory code for computing a sum

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[s = 0 initially]</td>
<td>[s = 0 initially]</td>
</tr>
<tr>
<td>for i = 0, n/2-1</td>
<td>for i = n/2, n-1</td>
</tr>
<tr>
<td>local_s1 = local_s1 + f(A[i])</td>
<td>local_s2 = local_s2 + f(A[i])</td>
</tr>
<tr>
<td>s = s + local_s1</td>
<td>s = s + local_s2</td>
</tr>
</tbody>
</table>

What could go wrong?

- Pitfall in computing a global sum s = local_s1 + local_s2
 - Instructions from different threads can be interleaved arbitrarily
 - What can final result s stored in memory be?
 - Race Condition
 - Possible solution: Mutual Exclusion with Locks

- Locks must be atomic (execute completely without interruption)

Programming Model 2

- **Message Passing**
 - Program consists of a collection of named processes
 - Thread of control plus local address space
 - Local variables, static variables, common blocks, heap
 - Processes communicate by explicit data transfers
 - Matching pair of send & receive by source and dest. proc.
 - Coordination is implicit in every communication event
 - Logically shared data is partitioned over local processes
 - Like distributed programming
 - Program with standard libraries: MPI, PVM

Model 2

- **A distributed memory machine**
 - Cray T3E, IBM SP2, Clusters
 - Processors all connected to own memory (and caches)
 - Cannot directly access another processor's memory
 - Each "node" has a network interface (NI)
 - All communication and synchronization done through this

- Computing s = x(1) + x(2) on each processor
 - First possible solution
 - Second possible solution - what could go wrong?
Programming Model 3

- Data Parallel
 - Single sequential thread of control consisting of parallel operations
 - Parallel operations applied to all (or defined subset) of a data structure
 - Communication is implicit in parallel operators and "shifted" data structures
 - Elegant and easy to understand and reason about
 - Not all problems fit this model
- Like marching in a regiment

\[
\begin{align*}
A &= \text{array of all data} \\
fA &= f(A) \\
s &= \text{sum}(fA)
\end{align*}
\]

* Think of Matlab

Model 3

- Vector Computing
 - One instruction executed across all the data in a pipelined fashion
 - Parallel operations applied to all (or defined subset) of a data structure
 - Communication is implicit in parallel operators and "shifted" data structures
 - Elegant and easy to understand and reason about
 - Not all problems fit this model
- Like marching in a regiment

\[
\begin{align*}
A &= \text{array of all data} \\
fA &= f(A) \\
s &= \text{sum}(fA)
\end{align*}
\]

* Think of Matlab

Model 3

- An SIMD (Single Instruction Multiple Data) machine
- A large number of small processors
- A single "control processor" issues each instruction
 - each processor executes the same instruction
 - some processors may be turned off on any instruction

\[
\text{control processor}
\]

\[
\begin{align*}
P_1 & \quad \text{memory} \\
P_2 & \quad \text{memory} \\
\ldots & \quad \text{memory} \\
P_n & \quad \text{memory}
\end{align*}
\]

- Machines not popular (CM2), but programming model is
 - implemented by mapping n-fold parallelism to p processors
 - mostly done in the compilers (HPF = High Performance Fortran)

Programming Model 4

- Since small shared memory machines (SMPs) are the fastest commodity machine, why not build a larger machine by connecting many of them with a network?
- CLUMP = Cluster of SMPs
- Shared memory within one SMP, message passing outside
- Clusters, ASCI Red (Intel), ...
- Programming model?
 - Treat machine as "flat", always use message passing, even within SMP (simple, but ignore important part of memory hierarchy)
 - Expose two layers: shared memory (OpenMP) and message passing (MPI) higher performance, but ugly to program

Programming Model 5

- Bulk Synchronous Processing (BSP) – L. Valiant
- Used within the message passing or shared memory models as a programming convention
- Phases separated by global barriers
 - Compute phases: all operate on local data (in distributed memory)
 - or read access to global data (in shared memory)
 - Communication phases: all participate in rearrangement or reduction of global data
- Generally all doing the "same thing" in a phase
 - all do f, but may all do different things within f
- Simplicity of data parallelism without restrictions

Summary so far

- Historically, each parallel machine was unique, along with its programming model and programming language
- You had to throw away your software and start over with each new kind of machine – ugh
- Now we distinguish the programming model from the underlying machine, so we can write portably correct code, that runs on many machines
 - MPI now the most portable option, but can be tedious
- Writing portably fast code requires tuning for the architecture
 - Algorithm design challenge is to make this process easy
 - Example: picking a blocksize, not rewriting whole algorithm
Recap
- Parallel Comp. Architecture driven by familiar technological and economic forces
 - application/platform cycle, but focused on the most demanding applications
 - hardware/software learning curve
- More attractive than ever because ‘best’ building block - the microprocessor - is also the fastest BB.
- History of microprocessor architecture is parallelism
 - translates area and density into performance
- The Future is higher levels of parallelism
 - Parallel Architecture concepts apply at many levels
 - Communication also on exponential curve
=> Quantitative Engineering approach

History
- Parallel architectures tied closely to programming models
 - Divergent architectures, with no predictable pattern of growth.
 - Mid 80s renaissance

Programming Model
- Conceptualization of the machine that programmer uses in coding applications
 - How parts cooperate and coordinate their activities
 - Specifies communication and synchronization operations
- Multiprogramming
 - Independent jobs, no communication or synch. at program level
- Shared address space
 - like bulletin board
- Message passing
 - like letters or phone calls, explicit point to point
- Data parallel
 - more regimented, global actions on data
 - Implemented with shared address space or message passing

Economics
- Commodity microprocessors not only fast but CHEAP
 - Development costs tens of millions of dollars
 - BUT, many more are sold compared to supercomputers
 - Crucial to take advantage of the investment, and use the commodity building block
- Multiprocessors being pushed by software vendors (e.g. database) as well as hardware vendors
- Standardization makes small, bus-based SMPs commodity
- Desktop: few smaller processors versus one larger one?
- Multiprocessor on a chip?