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Lecture 10:
Linear Algebra Algorithms

Jack Dongarra, U of Tennessee 

Slides are adapted from Jim Demmel, UCB’s Lecture on Linear Algebra Algorithms 2

Outline

° Motivation for Dense Linear Algebra
• Ax=b: Computational Electromagnetics
• Ax = λx: Quantum Chemistry

° Review Gaussian Elimination (GE) for solving Ax=b

° Optimizing GE for caches on sequential machines
• using matrix-matrix multiplication (BLAS)

° LAPACK library overview and performance

° Data layouts on parallel machines

° Parallel matrix-matrix multiplication

° Parallel Gaussian Elimination

° ScaLAPACK library overview

° Eigenvalue problem

3

Parallelism in Sparse Matrix-vector multiplication

° y = A*x, where A is sparse and n x n

° Questions
• which processors store

- y[i], x[i], and A[i,j]

• which processors compute
- y[i] = sum (from 1 to n) A[i,j] * x[j]

= (row i of A) . x          … a sparse dot product

° Partitioning
• Partition index set {1,…,n} = N1 u N2 u … u Np

• For all i in Nk, Processor k stores y[i], x[i], and row i of A 
• For all i in Nk, Processor k computes y[i] = (row i of A) . x

- “owner computes” rule: Processor k compute the y[i]s it owns

° Goals of partitioning
• balance load (how is load measured?)
• balance storage (how much does each processor store?)

• minimize communication (how much is communicated?)
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Graph Partitioning and Sparse Matrices 

1    1     1                      1

2    1     1             1               1

3                   1     1               1
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° Relationship between matrix and graph

° A “good” partition of the graph has
• equal (weighted) number of nodes in each part (load and storage balance)
• minimum number of edges crossing between (minimize communication )

° Can reorder the rows/columns of the matrix by putting all the 
nodes in one partition together
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More on Matrix Reordering via Graph Partitioning

° “Ideal” matrix structure for parallelism: (nearly) block diagonal
• p (number of processors) blocks

• few non-zeros outside these blocks, since these require communication

= *

P0

P1

P2

P3

P4

6

What about implicit methods and eigenproblems?

° Direct methods (Gaussian elimination)
• Called LU Decomposition, because we factor A = L*U
• Future lectures will consider both dense and sparse cases
• More complicated than sparse-matrix vector multiplication

° Iterative solvers
• Will discuss several of these in future

- Jacobi , Successive overrelaxiation (SOR) , Conjugate 
Gradients (CG), Multigrid,...

• Most have sparse-matrix-vector multiplication in kernel

° Eigenproblems
• Future lectures will discuss dense and sparse cases
• Also depend on sparse-matrix-vector multiplication,  direct 

methods

° Graph partitioning  
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Partial Differential Equations

PDEs
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Continuous Variables, Continuous Parameters

Examples of such systems include

° Heat flow:  Temperature(position, time)

° Diffusion:  Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)

° Quantum mechanics: Wave -function(position,time)

° Elasticity:   Stress,Strain(position,time)
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Example: Deriving the Heat Equation

0 1x x+h
Consider a simple problem

° A bar of uniform material, insulated except at ends

° Let u(x,t) be the temperature at position x at time t

° Heat travels from x-h to x+h at rate proportional to:

° As h    0, we get the heat equation:

d u(x,t)                  (u(x -h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h
dt h

= C *  

d u(x,t)               d 2 u(x,t)
dt dx2= C *

x-h
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Explicit Solution of the Heat Equation

° For simplicity, assume C=1

° Discretize both time and position

° Use finite differences with u[j,i] as the heat at
• time t= i*dt (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h)
• initial conditions on u[j,0]
• boundary conditions on u[0,i] and u[N,i]

° At each timestep i = 0,1,2,...

° This corresponds to
• matrix vector multiply (what is matrix?)
• nearest neighbors on grid

t=5

t=4

t=3

t=2

t=1

t=0
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

For j=0 to N

u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+
z*u[j+1,i]

where z = dt/h2
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Parallelism in Explicit Method for PDEs

° Partitioning the space (x) into p largest chunks
• good load balance (assuming large number of points relative to p )
• minimized communication (only p chunks)

° Generalizes to 
• multiple dimensions
• arbitrary graphs (= sparse matrices)

° Problem with explicit approach
• numerical instability
• solution blows up eventually if z = dt/h > .5
• need to make the timesteps very small when h is small: dt < .5*h

2
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Discretization Error

° How accurate will the approximate solution be?

° Beyond the scope of this course.

° The discretization error is

° The fact that ?t appears to the first power and ?x to 
the second power is usually described as the 
discretization is first-order accurate in time and 
second-order accurate in space.

° For the discretization to be stable ?t and ?x must 
satisfy the relationship

2( ) [( ) ]e O t O x= ∆ + ∆

21( )
2

t x∆ ≤ ∆
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Instability in solving the heat equation explicitly
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Implicit Methods

° The previous method was called explicit because the 
value of u[j,i+1] at the next time level are obtained by 
an explicit formula in terms of the values at the 
previous time level.

u[j,i+1]= z*u[j-1,i] + (1-2*z)*u[j,i] + z*u[j+1,i]

° Consider the difference approximation

u[j,i+1] - u[j,i] = z*(u[j+1,i+1] -2*u[j,i+1] + u[j-1,i+1]

• Similar in form but has the important difference that 
the values of uj on the right are now evaluated at the 
i+1th time level rather than at the i th.

• Must solve equations to advance to the next time 
level.
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Implicit Solution

° As with many (stiff) ODEs, need an implicit method

° This turns into solving the following equation

° Here I is the identity matrix and T is:

° I.e., essentially solving Poisson’s equation in 1D

(I + (z/2)*T) * u[:,i+1]= (I - (z/2)*T) *u[:,i]

2    -1 

-1    2    -1

-1     2    -1

-1    2     -1

-1     2

T = 2-1 -1

Graph and “ stencil”

u[j,i+1] - u[j,i] = z *(u[j+1,i+1] -2*u[j,i+1] + u[j-1,i+1] 16

2D Implicit Method 

° Similar to the 1D case, but the matrix T is now

° Multiplying by this matrix (as in the explicit case) is 
simply nearest neighbor computation on 2D grid

° To solve this system, there are several techniques

4    -1           -1

-1    4    -1          -1

-1     4                 -1

-1                4     -1          -1

-1         -1     4    -1          -1          

-1         -1     4                  -1

-1                   4    -1

-1            -1     4    -1

-1             -1     4

T =

4

-1

-1

-1

-1

Graph and “ stencil”
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Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs

° Dense LU N3 N N2 N2

° Band LU N2 N N3/2 N

° Jacobi N2 N N N

° Explicit Inv. N log N N N

° Conj.Grad. N 3/2 N 1/2 *log N N N

° RB SOR N 3/2 N 1/2 N N

° Sparse LU N 3/2 N 1/2 N*log N N

° FFT N*log N log N N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

(see next slide for explanation)
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Short explanations of algorithms on previous slide
° Sorted in two orders (roughly):

• from slowest to fastest on sequential machines

• from most general (works on any matrix) to most specialized (wor ks on matrices “like” T)

° Dense LU: Gaussian elimination; works on any N-by-N matrix

° Band LU: exploit fact that T is nonzero only on sqrt(N ) diagonals nearest main 
diagonal, so faster

° Jacobi: essentially does matrix -vector multiply by T in inner loop of iterative 
algorithm

° Explicit Inverse: assume we want to solve many systems with T, so we can 
precompute and store inv(T) “for free”, and just multiply by it

• It’s still expensive!

° Conjugate Gradients: uses matrix-vector multiplication, like Jacobi, but 
exploits mathematical properies of T that Jacobi does not

° Red-Black SOR (Successive Overrelaxation): Variation of Jacobi that exploits 
yet different mathematical properties of T

• Used in Multigrid

° Sparse LU: Gaussian elimination exploiting particular zero structure of T

° FFT(Fast Fourier Transform): works only on matrices very like T

° Multigrid: also works on matrices like T, that come from elliptic PDEs

° Lower Bound: serial (time to print answer); parallel (time to combine N inp uts)
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Composite mesh from a mechanical structure

20

Converting the mesh to a matrix

21

Effects of Ordering Rows and Columns on Gaussian Elimination
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Irregular mesh: NASA Airfoil in 2D (direct solution)

23

Irregular mesh: Tapered Tube (multigrid)

24

Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion
°John Bell and Phil Colella at LBL (see class web page for URL)
°Goal of Titanium is to make these algorithms easier to implement

in parallel
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Computational Electromagnetics

•Developed during 1980s, driven by defense 
applications

•Determine the RCS (radar cross section) of airplane

•Reduce signature of plane (stealth technology)

•Other applications are antenna design, medical 
equipment

•Two fundamental numerical approaches: 

•MOM methods of moments ( frequency domain), 
and  

•Finite differences (time domain)
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Computational Electromagnetics

image: NW Univ. Comp. Electromagnetics Laboratory  http://nueml.ece.nwu.edu/

- Discretize surface into triangular facets using   
standard modeling tools

- Amplitude of currents on surface are 
unknowns 

- Integral equation is discretized into a set of linear 
equations

27

Computational Electromagnetics (MOM)

After discretization the integral equation has the 
form

A x = b
where

A is the (dense) impedance matrix,  

x is the unknown vector of amplitudes, and 

b is the excitation vector.

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone Delta, 
IEEE Supercomputing ‘92, pp 538 - 542) 28

The main steps in the solution process are

Fill:             computing the matrix elements of A

Factor:       factoring the dense matrix A

Solve:        solving for one or more excitations b

Field Calc: computing the fields scattered from the 

object

Computational Electromagnetics (MOM)
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Analysis of MOM for Parallel Implementation

Task            Work             Parallelism           Parallel Speed

Fill                O(n**2)        embarrassing                 low

Factor          O(n**3)       moderately diff.           very high

Solve           O(n**2)        moderately diff.                 high

Field Calc.    O(n)            embarrassing                     high
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Results for Parallel Implementation on Delta

Task                     Time (hours)

Fill                         9.20                        

Factor                   8.25

Solve                    2 .17                           

Field Calc.             0.12

The problem solved was for a matrix of size 
48,672. (The world  record in 1991.)
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Current Records for Solving Dense Systems

Year        System Size     Machine              # Procs Gflops (Peak)

1950's         O(100)                                           
1995         128,600             Intel Paragon      6768        281 (  338)
1996         215,000             Intel ASCI Red    7264      1068 (1453)
1998         148,000             Cray T3E             1488      1127 (1786)
1998         235,000             Intel ASCI Red    9152      1338 (1830)
1999         374,000             SGI ASCI Blue     5040     1608 (2520)
1999         362,880             Intel ASCI Red    9632      2379 (3207)
2000         430,000             IBM ASCI White  8192      4928 (12000)
2002      1,075,200             NEC Earth Sim 5120    35860   (41000)

source: Alan Edelman http://www-math.mit.edu/~edelman/records.html
LINPACK Benchmark: http://www.netlib.org/performance/html/PDSreports.html
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Computational Chemistry

° Seek energy levels of a molecule, crystal, etc.
• Solve Schroedinger’s Equation for energy levels = eigenvalues
• Discretize to get Ax = λBx, solve for eigenvalues λ and eigenvectors x

• A and B large, symmetric or Hermitian matrices (B positive definite)
• May want some or all eigenvalues/eigenvectors

° MP-Quest (Sandia NL)
• Si and sapphire crystals of up to 3072 atoms
• Local Density Approximation to Schroedinger Equation

• A and B up to n=40000, Hermitian
• Need all eigenvalues and eigenvectors

• Need to iterate up to 20 times (for self -consistency)

° Implemented on Intel ASCI Red
• 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP)

• Overall application ran at 605 Gflops (out of 1800 Glops peak), 
• Eigensolver ran at 684 Gflops

• www.cs.berkeley.edu/~stanley/gbell/index.html
• Runner-up for Gordon Bell Prize at Supercomputing 98
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EISPACK and LINPACK

° EISPACK
• Design for the algebraic eigenvalue problem,     Ax = λx and Ax = λBx.

• work of J. Wilkinson and colleagues in the 70’s.

• Fortran 77 software based on translation of ALGOL.

° LINPACK
• Design for the solving systems of equations, Ax = b.

• Fortran 77 software using the Level 1 BLAS.
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Review of Gaussian Elimination (GE) for solving Ax=b

° Add multiples of each row to later rows to make A upper 
triangular

° Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
for k = i to n

A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k)
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Refine GE Algorithm (1)

° Initial Version

° Remove computation of constant A(j,i)/A(i,i) from 
inner loop

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
for k = i to n

A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)
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Refine GE Algorithm (2)

° Last version

° Don’t compute what we already know:                    
zeros below diagonal in column i

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)
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Refine GE Algorithm (3)

° Last version

° Store multipliers m below diagonal in zeroed entries 
for later use

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)
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Refine GE Algorithm (4)

° Last version

° Express using matrix operations (BLAS)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) 

- A(i+1:n , i) * A(i , i+1:n)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)
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What GE really computes

° Call the strictly lower triangular matrix of multipliers 
M, and let L = I+M

° Call the upper triangle of the final matrix U

° Lemma (LU Factorization): If the above algorithm 
terminates (does not divide by zero) then A = L*U

° Solving A*x=b using GE
• Factorize A = L*U using GE                   (cost = 2/3 n3 flops)
• Solve L*y = b for y, using substitution (cost = n2 flops)
• Solve U*x = y for x, using substitution (cost = n2 flops)

° Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)
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Problems with basic GE algorithm

° What if some A(i,i) is zero? Or very small?
• Result may not exist, or be “unstable”, so need to pivot

° Current computation all BLAS 1 or BLAS 2, but we know that 
BLAS 3 (matrix multiply) is fastest (Lecture 2)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1

IBM RS/6000 Power 3 (200 MHz, 800 Mflop/s Peak)

0

200

400

600

800

10 100 200 300 400 500
Order of vector/Matrices

M
flo

p
/s

41

Pivoting in Gaussian Elimination
° A =  [ 0  1 ]    fails completely, even though A  is “easy”

[ 1  0 ]

° Illustrate problems in 3-decimal digit arithmetic:

A = [ 1e-4  1  ]    and    b = [ 1 ],   correct answer to 3 places is x = [ 1 ]
[    1    1  ]                    [ 2 ]          [ 1 ]

° Result of LU decomposition is

L = [  1               0 ]   =  [  1        0  ]        … No roundoff error yet
[ fl(1/1e-4)    1 ]       [ 1e4     1  ]

U = [ 1e-4           1          ]  =  [  1e-4        1  ]    … Error in 4th decimal place
[ 0          fl(1-1e4*1) ]      [     0      -1e4 ]

Check if A = L*U = [ 1e-4     1 ]                        … (2,2) entry entirely wrong
[     1      0 ]

° Algorithm “forgets” (2,2) entry, gets same L and U for all |A(2 ,2)|<5
° Numerical instability
° Computed solution x totally inaccurate

° Cure: Pivot (swap rows of A) so entries of L and U bounded
42

Gaussian Elimination with Partial Pivoting (GEPP)
° Partial Pivoting: swap rows so that each multiplier  

|L(i,j)|  =  |A(j,i)/A(i,i)| <=  1

for i = 1 to n-1
find and record k where |A(k,i)| = max {i <= j <= n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k != i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i)        … each quotient lies in [ -1,1]
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)

° Lemma: This algorithm computes A = P*L*U, where P is a
permutation matrix

° Since each entry of |L(i,j)| <= 1, this algorithm is considered
numerically stable

° For details see LAPACK code at www.netlib.org/lapack/single/sgetf2.f
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History of Block Partitioned Algorithms

° Early algorithms involved use of small main 
memory using tapes as secondary storage.

° Recent work centers on use of vector registers, 
level 1 and 2 cache, main memory, and “out of 
core” memory.

44

Blocked Partitioned Algorithms

° LU Factorization

° Cholesky factorization

° Symmetric indefinite 
factorization

° Matrix inversion

° QR, QL, RQ, LQ factorizations

° Form Q or QTC

° Orthogonal reduction to:
• (upper) Hessenberg form

• symmetric tridiagonal form

• bidiagonal form

° Block QR iteration for 
nonsymmetric eigenvalue 
problems

45

Converting BLAS2 to BLAS3 in GEPP

° Blocking
• Used to optimize matrix-multiplication  
• Harder here because of data dependencies in GEPP 

° Delayed Updates
• Save updates to “trailing matrix” from several consecutive BLAS2

updates
• Apply many saved updates simultaneously in one BLAS3 

operation

° Same idea works for much of dense linear algebra
• Open questions remain

° Need to choose a block size b
• Algorithm will save and apply b updates
• b must be small enough so that active submatrix consisting of b 

columns of A fits in cache
• b must be large enough to make BLAS3 fast

46

Blocked GEPP   (www.netlib.org/lapack/single/sgetrf.f )

for   ib = 1 to n-1 step b     … Process matrix b columns at a time
end = ib + b-1                … Point to end of block of b columns 
apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’
… let LL denote the strict lower triangular part of A(ib:end , ib:end ) + I
A(ib:end , end+1:n) = LL- 1 * A(ib:end , end+1:n) … update next b rows of U
A(end+1:n , end+1:n ) = A(end+1:n , end+1:n )

- A(end+1:n , ib:end) * A(ib:end , end+1:n)
… apply delayed updates with single matrix -multiply
… with inner dimension b

(For a correctness proof,
see on- lines notes.)
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LAPACK

° Linear Algebra library in Fortran 77
• Solution of systems of equations

• Solution of eigenvalue problems

° Combine algorithms from LINPACK and EISPACK into a single 
package

° Efficient on a wide range of computers
• RISC, Vector, SMPs

° User interface similar to LINPACK
• Single, Double, Complex, Double Complex

° Built on the Level 1, 2, and 3 BLAS

48

Derivation of Blocked Algorithms
Cholesky Factorization A = UTU

Equating coefficient of the jth column, we obtain

Hence, if U11 has already been computed, we can 
compute ujand uj j from the equations:

A a A
a a

A A

U
u u

U U

U u U
u

U

j

j
T

j j j
T

T
j

T

j
T

jj

T
j

T

j

j j j
T
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13 33

11

13 33

11 13

33

0 0
0 0

0 0
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T
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a u u ujj j
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j jj
= + 2

U u aT
j j11 =

u a u ujj jj j
T

j
2 = −
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LINPACK Implementation

° Here is the body of the LINPACK routine SPOFA which 
implements the method:

DO 30 J = 1, N

INFO = J

S = 0.0E0

JM1 = J - 1

IF( JM1.LT.1 ) GO TO 20

DO 10 K = 1, JM1

T = A( K, J ) - SDOT( K -1, A( 1, K ), 1,A( 1, J ), 1 )

T = T / A( K, K )

A( K, J ) = T

S = S + T*T

10       CONTINUE

20       CONTINUE

S = A( J, J ) - S

C        ...EXIT

IF( S.LE.0.0E0 ) GO TO 40

A( J, J ) = SQRT( S )

30 CONTINUE 
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LAPACK Implementation

DO 10 J = 1, N

CALL STRSV( 'Upper', 'Transpose', 'Non-Unit’, J-1, A, LDA, A( 1, J ), 1 )
S = A( J, J ) - SDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
IF( S.LE.ZERO ) GO TO 20
A( J, J ) = SQRT( S )

10 CONTINUE 

° This change by itself is sufficient to significantly improve the
performance on a number of machines.

° From 238 to 312 Mflop/s for a matrix of order 500 on a Pentium 4-1.7 
GHz.

° However on peak is 1,700 Mflop/s.

° Suggest further work needed.
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Derivation of Blocked Algorithms

Equating coefficient of second block of columns, we obtain

Hence, if U11 has already been computed, we can 
compute U 12 as the solution of the following equations 
by a call to the Level 3 BLAS routine STRSM:

A A A

A A A
A A A

U

U U
U U U

U U U

U U
U

T

T T

T

T T

T T T
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12 22 12

13 12 33
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12 22

13 23 33

11 12 13

22 23

33
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0 0
0 0
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A U UT
12 11 12=

A U U U UT T
22 12 12 22 22= +

U U AT
11 12 12=

U U A U UT T
22 22 22 12 12= −
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LAPACK Blocked Algorithms

DO 10 J = 1, N, NB
CALL STRSM( 'Left', 'Upper', 'Transpose','Non -Unit', J-1, JB, ONE, A, LDA,

$               A( 1, J ), LDA )
CALL SSYRK( 'Upper', 'Transpose', JB, J -1,-ONE, A( 1, J ), LDA, ONE,

$               A( J, J ), LDA )
CALL SPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
IF( INFO.NE.0 ) GO TO 20

10 CONTINUE 

•On Pentium 4, L3 BLAS squeezes a lot more out of 1 proc
Rate of ExecutionIntel Pentium 4 1.7 GHz

N = 500

1262 Mflop/sLevel 3 BLAS Variant

312 Mflop/sLevel 2 BLAS Variant

238 Mflop/sLinpack variant (L1B)
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LAPACK Contents

° Combines algorithms from LINPACK and EISPACK into a 
single package. User interface similar to LINPACK.

° Built on the Level 1, 2 and 3 BLAS, for high performance 
(manufacturers optimize BLAS)

° LAPACK does not provide routines for structured problems or 
general sparse matrices (i.e sparse storage formats such as 
compressed -row, -column, -diagonal, skyline ...).

54

LAPACK Ongoing Work

° Add functionality 
• updating/downdating , divide and conquer least squares,bidiagonal bisection, bidiago nal inverse 

iteration, band SVD, Jacobi methods, ...

° Move to new generation of high performance machines 
• IBM SPs , CRAY T3E, SGI Origin, clusters of workstations 

° New challenges
• New languages: FORTRAN 90, HP FORTRAN, ...

• (CMMD, MPL, NX ...) 

- many flavors of message passing, need standard (PVM, MPI): BLACS

° Highly varying ratio 

° Many ways to layout data,

° Fastest parallel algorithm sometimes less stable numerically.

Computational speed
Communication speed
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Gaussian Elimination

0
x

x

x
x

.

.

.

Standard Way
subtract a multiple of a row

0

x

0
0

. . .

0

LINPACK
apply sequence to a column

x

nb

then apply nb to rest of matrix

a3=a3-a1*a2

a3

a2

a1

L

a2 =L -1 a2

0

x

0
0

. . .

0

nb LAPACK
apply sequence to nb
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LU Algorithm:
1: Split matrix into two rectangles (m x n/2)

if only 1 column, scale by reciprocal of pivot & retur n

2: Apply LU Algorithm to the left part

3: Apply transformations to right part 
(triangular solve A 12 = L-1A12 and                
matrix multiplication A 22=A22 -A21*A12 )

4: Apply LU Algorithm to right part

Gaussian Elimination via a Recursive Algorithm

L A12

A21 A22

F. Gustavson and S. Toledo

Most of the work in the matrix multiply 
Matrices of size n/2, n/4, n/8, …
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Recursive Factorizations

° Just as accurate as conventional method

° Same number of operations

° Automatic variable blocking
• Level 1 and 3 BLAS only !

° Extreme clarity and simplicity of expression

° Highly efficient

° The recursive formulation is just a rearrangement of the point -
wise LINPACK algorithm

° The standard error analysis applies (assuming the matrix 
operations are computed the “conventional” way).

° OK for LU, LLT, & QR
• Open question on 2-sided algs. eg eigenvalue reduction
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DGEMM ATLAS & DGETRF Recursive 
AMD Athlon 1GHz (~$1100 system)
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LU Factorization
Pentium 4, 1.5 GHz, using SSE2

0
500

1000
1500
2000
2500
3000
3500

10
0

30
0

50
0

70
0

90
0

12
00

16
00

20
00

24
00

28
00

Order

M
fl

op
/s

sLU
dLU
cLU
zLU

60

Challenges in Developing Distributed Memory 
Libraries

° How to integrate software?
• Until recently no standards
• Many parallel languages

• Various parallel programming models
• Assumptions about the parallel environment

- granularity

- topology
- overlapping of 

communication/computation
- development tools

° Where is the data
• Who owns it?
• Opt data distribution

° Who determines data layout
• Determined by user?
• Determined by library developer?
• Allow dynamic data dist.
• Load balancing
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ScaLAPACK

° Library of software dealing with dense & banded 
routines

° Distributed Memory - Message Passing

° MIMD Computers and Networks of Workstations

° Clusters of SMPs

62

Programming Style

° SPMD Fortran 77 with object based design

° Built on various modules
• PBLAS Interprocessor communication

• BLACS 

- PVM, MPI, IBM SP, CRI T3, Intel, TMC

- Provides right level of notation.

• BLAS

° LAPACK software expertise/quality
• Software approach

• Numerical methods

63

Overall Structure of Software

° Object based - Array descriptor
• Contains  information required to establish  mapping between a global 

array entry and its corresponding process and memory location.
• Provides a flexible framework to easily specify additional data

distributions or matrix types.

• Currently dense, banded, & out -of-core

° Using the concept of context

64

PBLAS

° Similar to the BLAS in functionality and naming.

° Built on the BLAS and BLACS

° Provide global view of matrix
CALL DGEXXX   ( M, N, A( IA, JA ), LDA,... )

CALL PDGEXXX( M, N, A, IA, JA, DESCA,... )

65

ScaLAPACK Structure

ScaLAPACK

BLAS

LAPACK BLACS

PVM/MPI/...

PBLAS
Global
Local
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Choosing a Data Distribution

° Main issues are:
• Load balancing
• Use of the Level 3 BLAS
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Possible Data Layouts

° 1D block and cyclic column distributions

° 1D block-cycle column and 2D block-cyclic distribution

° 2D block-cyclic used in ScaLAPACK for dense matrices

68

Distribution and Storage

° Matrix is block-partitioned & maps blocks

° Distributed 2-D block- cyclic scheme
5x5 matrix partitioned in 2x2 blocks                       2x2 process grid point of view

° Routines available to distribute/redistribute data.

A1 1 A1 2 A13 A 14 A 15

A2 1 A2 2 A23 A 24 A 25

A3 1 A3 2 A33 A 34 A 35

A4 1 A42 A43 A 44 A 45

A5 1 A5 2 A53 A 54 A 55

A1 1 A1 2 A15 A13 A14

A2 1 A2 2 A25 A23 A24

A5 1 A5 2 A55 A53 A54

A3 1 A3 2 A35 A33 A34

A4 1 A42 A45 A43 A44
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Parallelism in ScaLAPACK

° Level 3 BLAS block 
operations

• All the reduction routines

° Pipelining
• QR Algorithm, Triangular Solvers, 

classic factorizations

° Redundant computations
• Condition estimators 

° Static work assignment
• Bisection

° Task parallelism
• Sign function eigenvalue 

computations

° Divide and Conquer
• Tridiagonal and band solvers, 

symmetric eigenvalue problem and 
Sign function 

° Cyclic reduction
• Reduced system in the band solver

° Data parallelism
• Sign function
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ScaLAPACK - What’s Included
Problem type
Ax = b

SDrv EDrv Factor Solve Inv Cond
Est

Iter
Refin

Triangular X X X X

SPD
SPD Banded
SPD Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

General
General Banded
General Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

Least squares
GQR
GRQ

X X
X
X

X

Ax = λx or Ax = λB x SDrv Edrv Reduct Solution

Symmetric (2 types) X X X X
General (2 types) X X
Generalized BSPD X X X
SVD X X

° Timing and 
Testing routines 
for almost all

° This is a large 
component of 
the package

° Prebuilt libraries 
available for SP, 
PGON, HPPA,  
DEC, Sun, RS6K
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Heterogeneous Computing

° Software intended to be used in this context

° Communication of ft. pt. numbers between processors

° Machine precision and other machine specific parameters

° Iterative convergence across clusters of processors

° Defensive programming required 
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T0 Dual (500 MHz Alpha EV5/6)
 Fast & Gigabit Ethernet
ScaLAPACK LU Solver
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Out of Core Approach

° High-level I/O Interface

° ScaLAPACK uses a `Right-looking’ variant for LU, QR and 
Cholesky factorizations.

° A `Left-looking’ variant is used for Out-of-core factorization to 
reduce I/O traffic.

° Requires two in -core column panels.

° Imposes another level in the memory hierarchy. 
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Out of Core Algorithm

Panel A Panel B

° Hybrid approach

° Algorithm is ``Left-Looking’’ in 
nature, but uses ``Right-
Looking’’ (ScaLAPACK) on 
Panel B

° Latency Tolerant

° Model for deep memory 
hierarchy algorithms
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Out-of-core In-core
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