
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

ARM Performance Libraries –
Current and future interests

Chris Goodyer

Workshop on Batched, Reproducible, and Reduced Precision BLAS

Senior Engineering Manager, HPC Software

25th February 2017

© ARM 2017 2

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

ARM Performance Libraries

Commercial 64-bit ARMv8 math libraries
§  Commonly used low-level math routines - BLAS, LAPACK and FFT
§  Validated with NAG’s test suite, a de-facto standard

Best-in-class performance with commercial support
§  Tuned by ARM for Cortex-A72, Cortex-A57 and Cortex-A53
§  Maintained and Supported by ARM for a wide range of ARM-based SoCs
§  Regular benchmarking against open source alternatives

Silicon partners can provide tuned micro-kernels for their SoCs
§  Partners can collaborate directly working with our source-code and test suite
§  Alternatively they can contribute through open source route

Commercially Supported
by ARM

Validated with
NAG test suite

Performance on par
with best-in-class math libraries

© ARM 2017 3

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case Leading in wearables and
the Internet of Things

Driving the transformation of
the network and data center to
an Intelligent Flexible Cloud

~85% share of
laptops, tablets,
and smartphones

Partnering to deliver
data center efficiency Taking mobile computing

to the next four billion people
Enabling innovation and creativity
with embedded intelligence

ARM’s mission

§  Deploy energy-efficient ARM-based technology, wherever computing happens…

© ARM 2017 4

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

ARM are big supporters of standards

§  One of the reasons the ARM ecosystem has been so successful in both mobile
and embedded spaces is that we actively support and encourage standards

§  The ARM model of working with partners to enable them to be successful
means that we want to help everyone
§  That comes from minimizing cost of switching between providers

§  Software standards, such as BLAS, are a vital part of this
§  BLAS is successful because everyone has adopted it
§  Vendor specific extensions are risky as it reduces portability of end-user code

§  End users are the only people that matter!
§  They (typically) don’t get to choose the architecture that is purchased
§  They just have to make sure their codes run as well as possible on them
§  This is why we don’t have a sparse BLAS yet

§  We need a standard that all vendors and the major packages will want to use

© ARM 2017 5

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Batched BLAS – finalized standard needed!

§  ARM is an emerging player in HPC and server workloads
§  For now, we have limited end-user deployment which gives us added flexibility to wait
§  We appreciate other vendors have been able to drive the need by providing implementations

ahead of the standard
§  Important now to encourage users to use the agreed standard rather than legacy interface

§  As such we have not rushed to get a Batched BLAS interface included, rather
waiting until the standard is settled

§  Wider adoption and usage may require codes, such as TensorFlow, adopting it

© ARM 2017 6

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Reduced precision – FP16

§  Reduced precision will be of great interest to many classes of our customers
§  Computer vision and machine learning are two such areas

§  ARMv8.2 optionally supports the IEEE half-precision floating-point format as a
first-class data type for all scalar and Advanced SIMD floating-point
computational instructions.
§  The optionality is significant: some ARMv8.2 processors may not implement FP16

§  Software will need to be able to fall back to using FP32 arithmetic with FP16 only as a
storage format when it isn't available.

§  ARM’s Scalable Vector Extension (SVE) includes FP16
§  Potential benefit is doubling the throughput of SIMD floating-point, though that does depend

on how FP16 SIMD has implemented
§  i.e. can it perform 2nxFP16 multiplies in no more cycles than nxFP32 multiplies?
§  Note: ARMv8-A’s Advanced SIMD (aka NEON) has 128-bit vectors, SVE is up to 2048 bits

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Reduced precision BLAS – questions from a vendor

§  The big question for BLAS in half precision is “Does it all need to be done?”
§  This is then followed by “if BLAS, why not LAPACK”

§  Compiler support, both commercial and open source, is important
§  At present we are not imagining existing HPC codes will want half precision

§  It can all be implemented, but will most of it be used for real work?
§  Will people pay for it?

§  Half precision versions of GEMMs will be vital for deep learning
§  The likelihood of wanting half precision is that absolute accuracy is less important

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Reproducibility from BLAS

§  ARM Performance Libraries are [should be!] reproducible between:
§  consecutive runs on with same input run on same number of identical cores

§  If a system was developed with multiple micro-architectures (e.g. ARM big.LITTLE)
then different vector lengths will give differences

§  We are adopting some OpenMP task-based parallelism into LAPACK
(c.f. PLASMA) which may, by default, change reproducibility
§  If patches get updated by multiple tasks then ordering of updates will make differences
§  Adding user control for reproducibility is not a current demand from users, but may be in future

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Future possible architectural reproducibility feature

§  Last year I talked a little about the High Precision Accumulator
§  This year a quick refresh and some notes on developments…

§  What our architecture team would like is an indication of interest from the
scientific community

§  From a BLAS point of view an operation like DDOT could be made effectively
associative, hence parallelizable, reproducible and accurate

© ARM 2017 10

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

IEEE FP exponent range

§  IEEE fp64: 11 bit exponent: 2-1074 ≤ fp64 value ≤ 2+1023⋅(1+f)
§  fp64 numbers have 53-bit significands
§  unrounded fp64 products have 106-bit significands

2+1023⋅(1+f) 2-1074 20

2+2139 2-2148 20

§  Kulisch accumulator spans lsb of Pmin to msb of Pmax with 92 extra bits’ “headroom”

§  Pmin = (fp64min)2 = 2-2148; Pmax = (fp64max)2 = 2+2047⋅(1+f)

© ARM 2017 11

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

High-Precision Anchored (HPA) Numbers

§ An HPA number comprises:
§  a long 2’s-complement integer, comprising 100-200 or even more bits
§  more precision than available in binary64 (or even binary128 if wanted)

§  an anchor that says how to interpret those digits

§  e.g. subatomic values could be in the range 2^-100 to 2^-1 (anchor = -100)
§  e.g. astronomical values could be in the range 2^20 to 2^199 (anchor = +20)
 the arithmetic works the same in both ranges
§  A programmer picks the range for the application area or problem

§  Anchor is analogous to a block floating-point FP exponent, i.e. fixed for a given problem
§  Anchor basically represents the least significant exponent value we are interested in
§  The length of the long integer then gives us a range over which we can accumulate exactly

§  Eliminating rounding and overflow allows HPA accumulation to be associative

© ARM 2017 12

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

High-Precision Anchored (HPA) format

§  New datatype, denoted (Vi, Vm)
§  vector of 64-bit integers considered as one long redundantly-represented integer
§  metadata (either vector or scalar) interpreting long integer – anchor point(s) & overlap

§  Example: 232-bit HPA number, with bit-weightings from 155 to -76
§  long long i[3:0]; // four 64-bit values
§  long long m[3:0] = {92, 36, -20, -76}; // boundaries, with 8-b overlaps
§  the high order bit of i[3] represents 2155

§  the low order bit of i[0] represents 2-76

§  could sum FP values corresponding to that range exactly

§  Metadata doesn’t have to be a vector
§  e.g. could specify long integer l.s.b. weight and overlap / lane
§  vector metadata would increase performance

© ARM 2017 13

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Long Integer Arithmetic

§  Central concept: treat vector of 64-bit values as one long integer
§  Long integer addition is associative
§  Example: 256-bit integer

§  long long a[3:0], b[3:0];

Accum[255:192] Accum[191:128] Accum[127:64] Accum[63:0]

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Redundant Long Integer Arithmetic

§  Allow vector elements to “overlap”

§  For example, allowing 8 bits’ overlap between lanes:

§  Provide headroom in each lane to accommodate carries
§  Treat each lane as a 2’s-complement number

Accum[255:192] Accum[191:128] Accum[127:64] Accum[63:0]

Accum[119:56]

Accum[175:112]

Accum[231:168]

overlaps are 8-b
carry-save numbers

© ARM 2017 15

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

FP Accumulation

§  Imagine a hypothetical implementation where converting is implemented in a
single cycle
§  You can then add n items in n+1 cycles

§  These adds are associative, so no dependencies
§  ∴fully parallelizable
§  (Suitable for GPUs?)

§  Establishing exponent range is the only additional task for a programmer

“Cycle” 1 2 3 4 5

ADD_HPA_FP (Vi,Vm,F1) Convert Add

ADD_HPA_FP (Vi,Vm,F2) C A

ADD_HPA_FP (Vi,Vm,F3) C A

ADD_HPA_FP (Vi,Vm,F4) C A

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

SVE

§  32 scalable vector registers
§  128⋅k bits: k = 1...16

§  “Vector Length Agnostic”
§  Software knows VL & “self-adjusts” degree of

parallel processing accordingly

§  Mitigates against HPA?
§  HPA explicitly not vector length agnostic!

§  Solution: place HPA accumulator across several vector registers
§  Process as many HPA accumulators in parallel as scalable vector allows

§  HPA is associative...

Z0
Z1
Z2

Z30
Z31

Z3
Z4
Z5

HPA
2 × 128b

H
PA

4
×

64
b

H
PA

H

PA

© ARM 2017 17

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Faster FP Accumulation

§  These adds are associative, so add in any order, on any number of
accumulators...
§  ... on any number of cores

§  Here, adding 4n items in n+2 cycles on two accumulators

“cycle” 1 2 3 4

ADD_HPA_FP (Vi,Vm, F1,F5) C A

ADD_HPA_FP (Vj,Vm, F2,F6) C A

ADD_HPA_FP (Vi,Vm, F3,F7) C A

ADD_HPA_FP (Vj,Vm, F4,F8) C A

VADD_HPA_FP (Vj,Vm,Vi) A

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

HPA and BLAS

§  Example method for utilizing an HPA in a DDOT

§  Extra call before BLAS call to say use HPAs for subsequent calls to the named routine
§  Anchor and length of HPA specified
§  DDOT call made as before

§  Within library if an HPA has been initialized for this calculation the appropriate anchor and
length will be used

§  Recommendation on destroying use of HPA after to avoid DDOT calls from subsequent
routines (e.g. from LAPACK calls the user doesn’t explicitly include themselves) having
wrongly assumed HPA parameters

§  Note this example API is not thread safe – better may be subsuming all into a single call

call blas_ddot_hpa_initialize(hpa_anchor, hpa_len)

call blas_dot_r64(n, dx, incx, dy, incy, result)

call blas_ddot_hpa_destroy()

© ARM 2017 19

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Summary

§  ARM Performance Libraries are the vendor supported BLAS and LAPACK
implementation for AArch64

§  Batched BLAS functions will appear once API standard is formalized
§  Reduced Precision BLAS will be important for some sectors of our customers

§  Architecture support will be provided but we’ll need to define correctness

§  Reproducibility is something we are very keen to see on being supported
through both our software and hardware

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be
trademarks of their respective owners.
Copyright © 2017 ARM Limited

© ARM 2017

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be
trademarks of their respective owners.
Copyright © 2017 ARM Limited

