
Intel® Math Kernel Library (Intel® MKL) Team - Presenter: Murat Efe Guney

Workshop on Batched, Reproducible, and Reduced Precision BLAS

Georgia Tech, Atlanta

February 24, 2017

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Acknowledgements

Benoit Jacob - Google*

Greg Henry and Peter Tang - Intel®

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Why integer matrix multiplication?

Deep-learning applications rely on integer matrix-matrix
multiplication

§ GEMMLOWP*: speech/face recognition

§ KALDI* speech recognition

§ Inference using 8/16bit integer weights

§ Open question: training with integers

Intel® Instruction Set Architecture (ISA) extensions for
integer matrix operations

§ AVX512_4VNNIW: Vector instructions for deep
learning enhanced word variable precision

§ https://software.intel.com/en-us/isa-extensions

Step 1: Training Step 2: Inference

CNN,
RNN,
RBM,
etc.

New
DataUntrained Trained

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Quantizing with integers
Integers instead of floating points for lower power/bandwidth and higher throughput

Integers to represent a real number range [a, b]

§ real = scale * (integer + offset)

Why do we need an offset?

§ Unsigned integers to represent signed real number domains, for e.g., [-0.5, +1]

0 1 2 3
quantized domain (unsigned 2bits)

-0.5 0 0.5 +1.0

real numbers [-0.5, +1]
scale = 1/2
offset = -1

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Quantized matrices

The real number range [a, b] is known in advance

§ Choose scale and offset values for each matrix
accordingly

§ Sacrifice dynamic range

Zero point (0) must be represented perfectly in the
quantized domain

§ Zero-padding of the signal

§ offset value represents the zero point

Scope of offset and scale:

§ offset is a signed integer typically being the same
precision as quantized domain

§ scale is an arbitrary real number

Aquan= ascale*

aoffset aoffset

aoffset aoffset

aoffset aoffset

+

real = scale * (integer + offset)

Areal

𝑎"##$%&	𝑣)	𝑣*+

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Quantized matrix operations
Standard GEMM operation:

§ 𝐶 = 𝑎𝑙𝑝ℎ𝑎	𝐴	𝐵 + 𝑏𝑒𝑡𝑎	𝐶

For neural networks, we need a GEMM-like operation:

§ Extra requirement: add bias values to rows/columns of the output matrix

§ 𝐶7%89 = 𝐴7%89𝐵7%89 + 𝑏	𝑣*+ , or 𝐶7%89 = 𝐴7%89𝐵7%89 + 𝑣)𝑏+, where	𝑣: vector of all ones; 𝑏: bias vector

First, let’s look at the Creal=ArealBreal part:

§ 	𝑐$;89% 𝐶<=8* + 𝑐"##$%&~ 𝑣)	𝑣*+ = 𝑎$;89% 𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝑏$;89% 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+

§ 𝐶<=8* =
8@ABCDE@ABCD

	;@ABCD
𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+ + 𝑐"##$%&𝑣)	𝑣*+	where	(𝑐"##$%& = −𝑐"##$%&~)

Next, add the bias term:

§ 𝐶<=8* =
8@ABCDE@ABCD

	;@ABCD
𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+ + 𝑐"##$%&𝑣)	𝑣*+ + (𝑏	𝑣*+	𝑜𝑟	𝑣)𝑏+)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Quantized matrix-matrix multiplication
Finally, add the beta * C term and incorporate the coffset to bias term

§ 𝐶<=8* =
8@ABCDE@ABCD

	;@ABCD
𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+ + 𝑏𝑒𝑡𝑎	𝐶<=8* + 𝑏	𝑣*+	𝑜𝑟	𝑣)𝑏+

𝑎𝑙𝑝ℎ𝑎
Argument BLAS Type CBLAS Type Description

layout N/A CBLAS_LAYOUT Row-major or column-major storage
transa char* CBLAS_TRANSPOSE op(A)
transb char* CBLAS_TRANSPOSE op(B)
biasc char* CBLAS_OFFSET C bias is applied to rows or columns or a fixed offset for the entire matrix
m MKL_INT* MKL_INT First dimension of C matrix (number of rows for column major)
n MKL_INT* MKL_INT Second dimension of C matrix (number of columns for column major)
k MKL_INT* MKL_INT Common dimension of A and B matrices
alpha double* double Alpha scalar multiplication
A MKL_INT16* MKL_INT16* Pointer to input matrix A
lda MKL_INT* MKL_INT Leading dimension for A matrix
oa MKL_INT16* MKL_INT16 Scalar offset value for A matrix
B MKL_INT16* MKL_INT16* Pointer to input matrix B
ldb MKL_INT* MKL_INT Leading dimension for B
ob MKL_INT16* MKL_INT16 Scalar offset value for the B matrix
beta double* double Scalar scaling of the input/output C matrix
C MKL_INT32* MKL_INT32* Pointer to the C matrix
ldc MKL_INT* MKL_INT Leading dimension for the C matrix
bc MKL_INT32* MKL_INT32* Vector storing bias/offsets for C matrix.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Function syntax and naming convention
𝐶 = 𝑎𝑙𝑝ℎ𝑎 𝑜𝑝(𝐴) + 𝑎"##$%&𝑣)	𝑣?+ 𝑜𝑝(𝐵) + 𝑏"##$%&𝑣?	𝑣*+ + 𝑏𝑒𝑡𝑎	𝐶 + 𝑏	𝑣*+	𝑜𝑟	𝑣)𝑏+

GEMM_{S,U}{b1}{S,U}{b2}{S,U}{b3} (char* transa, char* transb, char* biasc, MKL_INT* m,
MKL_INT* n, MKL_INT* k, double* alpha, MKL_[U]INT{b1}* A, MKL_INT{b1}* oa,
MKL_INT* lda, MKL_[U]INT{b2}* B, MKL_INT{b2}* ob, MKL_INT* ldb, double* beta,
MKL_[U]INT{b3}* C, MKL_INT* ldc, MKL_INT{b3}* bc)

§ Offset/bias are same types as the corresponding matrix elements

§ alpha and beta are double precision values

§ Bias for C (bc) can be a scalar or a vector based on the value of offsetc

– biasc = “F”, sizeof(bc) = 1

– biasc = “R”, sizeof(bc) = num_cols(C)

– biasc = “C”, sizeof(bc) = num_rows(C)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Implementation notes
Results from double-precision multiplications round to the nearest

§ 𝐶<=8* = 𝑎𝑙𝑝ℎ𝑎 𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+ + 𝑏𝑒𝑡𝑎	𝐶<=8* + 𝑏	𝑣*+	𝑜𝑟	𝑣)𝑏+

§ X, Y and Z are the partial results stored in double-precision

§ Cquan= round_to_nearest(X + Y + Z);

§ Open question: do we need alternative rounding modes (for e.g., stochastic rounding)?

Results may not be identical for X + Y + Z

§ Enforcing the ordering ((X+Y) + Z) provides bitwise identical results

X Y Z

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Additional implementation notes
Computation of the X term is susceptible to overflow/underflow

§ 𝐶<=8* = 𝑎𝑙𝑝ℎ𝑎 𝐴<=8* + 𝑎"##$%&𝑣)	𝑣?+ 𝐵<=8* + 𝑏"##$%&𝑣?	𝑣*+ + 𝑏𝑒𝑡𝑎	𝐶<=8* + 𝑏	𝑣*+	𝑜𝑟	𝑣)𝑏+

§ Currently X term is expanded as:

§ 𝑋 = 𝐴<=8*𝐵<=8* + 𝑎"##$%&𝑣)	𝑣?+𝐵<=8* + 𝑏"##$%&𝐴<=8*𝑣?	𝑣*+ + 𝑎"##$%&𝑏"##$%&𝑣)	𝑣?+𝑣?	𝑣*+

§ 𝐴<=8*𝐵<=8* is like a regular matrix multiplication with input matrix precision

§ This approach allows effectively utilizing input matrix precision for all offset values

§ The order of integer addition is important to prevent overflows/underflows

What happens in the event of overflow/underflow?

§ Overflow/underflow is highly undesirable for application developers

§ Intel® MKL implementations saturate, which may lead to non-reproducible results

X Y Z

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Integer GEMM implementations in Intel® MKL

Two variants are available in Intel® MKL 2018 Beta

§ GEMM_S16S16S32: Input matrices A/B are 16-bit signed integer, input/output matrix C is 32bit signed
integer

§ GEMM_S16S16S16: All matrices A/B/C are 16-bit signed integer

§ All scaling factors are double-precision (likely to be changed to single-precision for 16-bit output)

§ Internal summation is with at least 32-bit signed integers

§ Loosely follows XBLAS naming convention (missing the internal summation precision and
abbreviations)

§ Fixed-point matrix multiplication is a subset of the functionality (set offset values to 0)

Only saturation variants are implemented

More optimizations are coming for Intel® MKL 2018 Gold release

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Future considerations
Rounding modes other than round-to-nearest

§ Stochastic rounding may be required for the training (S Gupta et. al, ICML, 2015)

Alternative representations (for e.g., flex-point)

§ Adjust scaling/offset values inside integer GEMM

Fuse activation functions with the integer GEMM functionality

§ tanh, ReLU, etc…

§ Partial results are already in double-precision

A flexible API that allows fusing operations for best performance

§ Currently needed: round_function(activation_function(double(GEMM + bias)))

§ In the future: fn(…f3(f2(f1(f0(GEMM))))

Scaling factors as fixed-points?

Are FORTRAN interfaces needed?

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Summary

Intel® MKL 2018 Beta will provide two GEMM variants for quantized matrices

Bias is fused into the matrix-multiply for improved performance

Saturate instead of over-flowing or under-flowing

Reproducible results due to the integer computations - as long as there is no saturation

Additional variants with different precisions may be introduced based on the hardware
support

Operation fusing is important for best performance

FORTRAN APIs are less relevant for the machine learning domain

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

14

