MATRIX Multiplication
with Quantized matrices

Intel® Math Kernel Library (Intel® MKL) Team - Presenter: Murat Efe Guney
Workshop on Batched, Reproducible, and Reduced Precision BLAS
Georgia Tech, Atlanta

February 24, 2017

Acknowledgements

Benoit Jacob - Google*

Greg Henry and Peter Tang - Intel®

Why integer matrix multiplication?

Deep-learning applications rely on integer matrix-matrix

multiplication

= GEMMLOWP?*: speech/face recognition

= KALDI* speech recognition Sesaces 1’% New

= Inference using 8/16bit integer weights w DN

= Open question: training with integers A

Intel® Instruction Set Architecture (ISA) extensions for v
integer matrix operations Step 1: Training Step 2: Inference

= AVXS512 4VNNIW: Vector instructions for deep
learning enhanced word variable precision

= https://software.intel.com/en-us/isa-extensions

1

perty of others.

Quantizing with mtegers

Integers instead of floating points for lower power/bandwidth and higher throughput
Integers to represent a real number range [a, b]

= real = scale * (integer + offset)

Why do we need an offset?

= Unsigned integers to represent signed real number domains, for e.g., [-0.5, +1]

quantized domain (unsigned 2bits)

A

0

real numbers [-0.5, +1]
scale =1/2
offset = -1

Quantized matrices

The real number range [a, b] is known in advance

= Choose scale and offset values for each matrix
accordingly

= Sacrifice dynamic range

Zero point (0) must be represented perfectly in the
quantized domain

= Zero-padding of the signal
= offset value represents the zero point
Scope of offset and scale:

= offset is a signed integer typically being the same
precision as quantized domain

= scale is an arbitrary real number

Optimization Notice
c 2 2 erved.
*QOther names and brands may be claimed as the property of others.

real = scale * (integer + offset)

real

= ascale

/‘

Aoffset Ao ffset
n1an Aoffset Ao ffset
Aoffset Ao ffset

_/

T
aoffset Um VUn

Quantized matrix operations

Standard GEMM operation:

» C =alpha AB + beta C
For neural networks, we need a GEMM-like operation:
= Extra requirement: add bias values to rows/columns of the output matrix
Croql = AveaiBreqr + b VL , ot Creqi = AreqiBrear + VmbT, Where v: vector of all ones; b: bias vector

First, let’s look at the C..,=A,.,;B,..; part:

~ T
Cscale (Cquan + Coffsetvm vrTL‘) = Oscale (Aquan + aoffsetvm vk)bscale (Bquan + boffsetvk v%')

- __ Qscalebscale (A

Cquan = quan T QoffsetVm UIZ)(Bquan + boffsetvk vTTl‘) + CoffsetVm 771?; where (Coffset = _Cgffset)

Cscale

Next, add the bias term:

a b
Cquan = —scale scale (Aquan + aoffsetvm v;)(Bquan + boffsetvk 177?;) + Coffsetvm vr’{ + (b 17771w or vmbT)

Cscale

Quantized matrix-matrix multiplication

Finally, add the beta * C term and incorporate the c g, to bias term

__ Qscalebscale T T T T
Cquan - W (Aquan + aoffsetvm Vg) (Bquan + boffsetvk Un) + beta Cquan + (b Up OT vmb)
alpha
N/A CBLAS_LAYOUT Row-major or column-major storage
char* CBLAS_TRANSPOSE op(A)
char* CBLAS_TRANSPOSE op(B)
B char CBLAS_OFFSET C bias is applied to rows or columns or a fixed offset for the entire matrix
EX VKL INT* MKL INT First dimension of C matrix (number of rows for column major)
E VKL INT* MKL_INT Second dimension of C matrix (number of columns for column major)
MKL_INT* MKL_INT Common dimension of A and B matrices
BT double* double Alpha scalar multiplication
MKL_INT16* MKL_INT16* Pointer to input matrix A
P VKL INT* MKL INT Leading dimension for A matrix
I VKL INT16* MKL_INT16 Scalar offset value for A matrix
EN VKL INTI6* MKL_INT16* Pointer to input matrix B
I VKL INT* MKL INT Leading dimension for B
I VKL INT16* MKL_INT16 Scalar offset value for the B matrix
double* double Scalar scaling of the input/output C matrix
MKL INT32* MKL INT32* Pointer to the C matrix
MKL INT* MKL INT Leading dimension for the C matrix
_ MKIL_INT32* MKL_INT32* Vector storing bias/offsets for C matrix.

Optimization Notice

ight © 2017, Intel C
*Other names and brands may be claimed as th erty of others.

Function syntax and naming convention

C = alpha(op(A) + apffsetvm Vi) (0P(B) + bosrsecVic Vit) + beta C + (b vl or v, bT)

GEMM_{S,U}{b1}{S,U}{b2}{S,U}{b3} (char* transa, char* transb, char* biasc, MKL INT* m,
MKL INT* n, MKL INT* k, double* alpha, MKL [U]JINT{bl1}* A, MKL INT{bl}* oa,

MKL INT* lda, MKL [U]JINT{b2}* B, MKL INT{b2}* ob, MKL INT* ldb, double* beta,
MKL [U]JINT{b3}* C, MKL INT* Idc, MKL INT{b3}* bc)

= Offset/bias are same types as the corresponding matrix elements
= alpha and beta are double precision values

= Bias for C (bc) can be a scalar or a vector based on the value of offsetc
— biasc = “F”, sizeof(bc) = 1

— biasc = “R?”, sizeof(bc) = num_cols(C)

— biasc = “C”, sizeof(bc) = num_rows(C)

Implementation notes

Results from double-precision multiplications round to the nearest

Cquan = alpha(Aquan + aoffsetvm UIZ)(Bquan + boffsetvk vr’I;) + beta Cquan ?‘ (‘b vz or vmbT)

| | |

X Y zZ
= X,Y and Z are the partial results stored in double-precision

" Cyuan=round_to_nearest(X +Y + Z);
= Open question: do we need alternative rounding modes (for e.g., stochastic rounding)?
Results may not be identical for X +Y + Z

» Enforcing the ordering ((X+Y) + Z) provides bitwise identical results

Optimization Notice

Additional implementation notes

Computation of the X term 1s susceptible to overflow/underflow

Cquan = alpha(Aquan + aoffsetvm vz)(Bquan + boffsetvk UT’I;) + beta Cquan + (b v‘;{ or vmbT)

X Y Z

= Currently X term is expanded as:

X = AgquanBquan + offsetVm Vi Bquan + DoffsetAquanVi Vi + GoffsetboffsetVm Vi Vie Vi
" AguanBquan 18 like a regular matrix multiplication with input matrix precision

= This approach allows effectively utilizing input matrix precision for all offset values

= The order of integer addition is important to prevent overflows/underflows

What happens in the event of overflow/underflow?

= Overflow/underflow is highly undesirable for application developers

= Intel® MKL implementations saturate, which may lead to non-reproducible results

Optimization Notice
© , Intel Corporation. All ri i

*QOther names and perty of others.

Integer GEMM i1mplementations in Intel® MKL

Two variants are available in Intel® MKL 2018 Beta

GEMM_S16S16S32: Input matrices A/B are 16-bit signed integer, input/output matrix C is 32bit signed
integer

GEMM _S16S16S16: All matrices A/B/C are 16-bit signed integer
All scaling factors are double-precision (likely to be changed to single-precision for 16-bit output)
Internal summation is with at least 32-bit signed integers

Loosely follows XBLAS naming convention (missing the internal summation precision and
abbreviations)

Fixed-point matrix multiplication is a subset of the functionality (set offset values to 0)

Only saturation variants are implemented

More optimizations are coming for Intel® MKL 2018 Gold release

Future considerations

Rounding modes other than round-to-nearest

= Stochastic rounding may be required for the training (S Gupta et. al, [CML, 2015)
Alternative representations (for e.g., flex-point)

= Adjust scaling/offset values inside integer GEMM

Fuse activation functions with the integer GEMM functionality

= tanh, RelLU, etc...

= Partial results are already in double-precision

A flexible API that allows fusing operations for best performance

= Currently needed: round function(activation function(double(GEMM + bias)))

= In the future: f (...f5(f,(f,(f(GEMM))))

Scaling factors as fixed-points?

Are FORTRAN interfaces needed?

Summary

Intel® MKL 2018 Beta will provide two GEMM variants for quantized matrices

Bias is fused into the matrix-multiply for improved performance

Saturate instead of over-flowing or under-flowing

Reproducible results due to the integer computations - as long as there is no saturation

Additional variants with different precisions may be introduced based on the hardware
support

Operation fusing is important for best performance

FORTRAN APIs are less relevant for the machine learning domain

Optimization Notice

2017, Intel Corporation. All rights ved

cd.
ther names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED *“AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

d.

perty of others.

