

	(Source:	Daniel Reed UNC)
	(000100	
Machine	# CPU	Reliability
ASCI Q	8,192	MTBI 6.5 hr. 114 unplanned outages/month. HW outage sources: storage, CPU, memory *
ASCI White	8,192	MTBF 5 hr ('01) and 40 hr ('03) HW outage sources: storage, CPU, 3 rd party hardware **
NERSC Seaborg	6,656	MTBI 14 days. MTTR 3.3 hr Availability 98.74%. SW is main outage source. ***
PSC Lemieux	3,016	MTBI 9.7 hr Availability 98.33% ****
Google	~150,000	20 reboots/day. 2-3% machines replaced/year.

Reed-Solomon Approach $A^*P = C, \text{ where } A \text{ is } k \text{ x } p \text{ made } up \text{ of random numbers,} P \text{ is } p \text{ x } n, C \text{ is } k \text{ x } n$ Here using 4 processors and 3 Ckpt processors: $\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{pmatrix} = \begin{pmatrix} C \\ C_2 \\ C_3 \end{pmatrix}$

 $\begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$

Say 2 processors fail, P_2 and P_3 . Take a subset of *A*'s (columns 2 and 3) and solve for P_2 and P_3 .

20

23

	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Year	#Proc
1	IBM	BlueGene/L eServer Blue Gene	280.6	DOE/NNSA/LLNL	USA	2005 custom	131072
2	IBM	BGW eServer Blue Gene	91.29	IBM Thomas Watson	USA	2005 custom	40960
3	IBM	ASC Purple Power5 p575	63.39	DOE/NNSA/LLNL	USA	2005 custom	10240
4	SGI	Columbia Altix, Itanium/Infiniband	51.87	NASA Ames	USA	2004 hybrid	10160
5	Dell	Thunderbird Pentium/Infiniband	38.27	Sandia	USA	2005 commod	8000
6	Cray	Red Storm Cray XT3 AMD	36.19	Sandia	USA	2005 hybrid	10880
7	NEC	Earth-Simulator SX-6	35.86	Earth Simulator Center	Japan	2002 custom	5120
8	IBM	MareNostrum PPC 970/Myrinet	27.91	Barcelona Supercomputer Center	Spain	2005 commod	4800
9	IBM	eServer Blue Gene	27.45	ASTRON University Groningen	Netherlands	2005 custom	12288
0	Cray	Jaguar Cray XT3 AMD	20.53	Oak Ridge National Lab	USA	2005 hybrid	5200

	FT MM: Perform Computation with Encoded Data
•	Assume the original matrix M is distributed into a p by q processor grid with a 2D block cyclic distribution. Then from processor point of view, the distributed matrix is $M = \begin{pmatrix} M_{11} & \cdots & M_{1q} \\ \vdots & \cdots & \vdots \\ M_{p1} & \cdots & M_{pq} \end{pmatrix}$, where M_{ij} is the local
	matrix on processor (7, 5).
•	Define the <i>row distributed checksum</i> matrix of M as
	$M' = \begin{pmatrix} M_{11} & \cdots & M_{1q} \\ \vdots & \cdots & \vdots \\ M_{p1} & \cdots & M_{pq} \\ \sum_{i=1}^{p} M_{i1} & \cdots & \sum_{i=1}^{p} M_{iq} \end{pmatrix} = A_{r}$ Define the column distributed checking matrix of M as
.	Define the column distributed checksun matrix of M as
	$M^{c} = \begin{pmatrix} M_{11} & \cdots & M_{1q} & \sum_{j=1}^{q} M_{1j} \\ \vdots & \cdots & \vdots & & \vdots \\ M_{p1} & \cdots & M_{pq} & \sum_{j=1}^{q} M_{pj} \end{pmatrix} = B_{c}$
•	Define the full distributed checksum matrix of M as
	20 $M^{-f} = \begin{pmatrix} M_{-11} & \cdots & M_{-1q} & \sum_{j=1}^{q} M_{-1j} \\ \vdots & \cdots & \vdots & \vdots \\ M_{-p1} & \cdots & M_{-pq} & \sum_{j=1}^{q} M_{-pj} \\ \sum_{j=1}^{p} M_{-pj} & \sum_{j=1}^{p} M_{-pj} \end{pmatrix} = C_{f} $ 50

Ć 💑 Basic Idea Assume \succ we are running a parallel program where P_i(t) denotes the data on the ith processor at time t $P_1(t) + P_2(t) + ... + P_n(t) = P_{n+1}(t)$ • If the first processor failed, how can we recover the lost data $P_1(t)$ > Answer: $P_1(t) = -P_2(t) - ... - P_n(t) + P_{n+1}(t)$ • In this special case, we are lucky enough to be able to recover the lost data without maintaining any checkpoint due to the relationship $P_1(t) + P_2(t) + ... + P_n(t) = P_{n+1}(t)$ • Question: can we create this kind of special relationship on purpose? > The answer is YES for many programs doing matrix computations > How ? 20 53 > Perform computation with encoded data

Example the TSI	Matrice project	s from at ORN	Discretiz NL	ing Boltzmann Equation in
$\left(\begin{array}{c}D_1\\B_2\end{array}\right)$	$\begin{array}{c}C_{1}\\D_{2}\\ \vdots\\\vdots\\\vdots\\\end{array}$	·.		D_i is dense: m by m. B_i and C_i are diagonal.
	B_{n-}	$\begin{array}{c} D_{n-1} \\ B_n \end{array}$	$\begin{pmatrix} C_{n-1} \\ D_n \end{pmatrix}$	
G = 1 $G = 4$ $G = 4$	2, Q = 4 0, Q = 4 0, Q = 16	386 1,282 20,482	$ \begin{array}{c c} $	G, Q, m, and n are parameters used to discretize the problem
$ \begin{array}{c} n = 0\\ G = 1\\ G = 4\\ G = 4 \end{array} $	$ \begin{array}{r} \hline 012 \times 512 \\ 2, Q = 4 \\ 0, Q = 4 \\ 0, Q = 16 \\ \end{array} $	$ \begin{array}{r} $	$\begin{array}{c c} & n \\ \hline & 262,144 \\ 262,144 \\ 262,144 \\ 262,144 \end{array}$	5

Prototype Example II: Fault Tolerant Matrix Multiplication (PDGEMM in ScaLAPACK/PBLAS)

- Demonstrate how to survive (adapt to) partial process failures in parallel matrix multiplication
 - > Based on FT-MPI library
 - > Adapt to failures rather than restart the whole application
 - > Can be used in heterogeneous environments

• Use checkpoint-free technique

- > No periodical checkpoint is involved
- > Perform computation with encoded matrices

• Answer four questions

20

- > what is the overhead of calculating encodings ?
- > what is the overhead of performing computation with encoded matrices?
- > what is the overhead of recovering FT-MPI environment ?
 - > what is the overhead of recovering application data ?

56

/out FT	Process grid w/ FT	Size of the original matrix	Size of the checksum matrix
by 2	3 by 3	12,800	19,200
by 3	4 by 4	19,200	25,600
by 4	5 by 5	25,600	32,000
i by 5	6 by 6	32,000	38,400
by 6	7 by 7	38,400	44,800
' by 7	8 by 8	44,800	51,200
by 8	9 by 9	51,200	57,600
by 9	10 by 10	57,600	64,000
0 by 10	11 by 11	64,000	70,400

Machine	# CPU	Reliability
ASCI Q	8,192	MTBI 6.5 hr. 114 unplanned outages/month. HW outage sources: storage, CPU, memory *
ASCI White	8,192	MTBF 5 hr ('01) and 40 hr ('03) HW outage sources: storage, CPU, 3 rd party hardware **
NERSC Seaborg	6,656	MTBI 14 days. MTTR 3.3 hr Availability 98.74%. SW is main outage source. ***
PSC Lemieux	3,016	MTBI 9.7 hr Availability 98.33% ****
Google	~15,000	20 reboots/day. 2-3% machines replaced/year. HW outage sources; storage memory

Ć	Real Crisis With HPC Is With The	
ICLOF	Software	
•	Programming is stuck > Arguably hasn't changed since the 60's It's time for a change > Complexity is rising dramatically > highly parallel and distributed systems	
	 From 10 to 100 to 1000 to 10000 to 100000 of processors!! multidisciplinary applications 	
•	A supercomputer application and software are usually much more long-lived than a hardware	
	 Fortran and C are the main programming models 	
•	Software is a major cost component of modern technologies.	
	The tradition in HPC system procurement is to assume that the software is free.	
•	We have too few ideas about how to solve this	
20	problem.	88

PCG co checkp	nure occ omputatic oint r there	urs on is not c is a failu	affected b ure	by the roo	und-off e	rrors of
The re to round to	covered nd-off e	data is n rrors in t	ot exactly he recove	y the sam ry, howev	e as origi /er 4 proc	5 proc
1.0e-10	2917	2918	2918	2915	2917	2917
1.0e-12	3141	3136	3142	3138	3140	3147
l.0e-14	3383	3385	3387	3384	3385	3393
1.0e-16	3599	3596	3595	3590	3601	3599
l.0e-18	3806	3809	3814	3802	3806	3802
in PCG with	n 120 com	outation pro	cessors unti	il the relativ	e residual	r / b

•	Whenever	r there covered	is a faile data is n	ure ot exactly	the same	e as origi	nal data d	ue
	to rour # of Iters	nd-off e O proc	rrors in t	he recove	ry, howev	er 4 proc	5 proc	1
	1.0e-10	2917	2918	2918	2915	2917	2917	1
	1.0e-12	3141	3136	3142	3138	3140	3147	1
		2202	3385	3387	3384	3385	3393	1
	1.0e-14	3383	0000					
	1.0e-14 1.0e-16	3599	3596	3595	3590	3601	3599	1
	1.0e-14 1.0e-16 1.0e-18	3383 3599 3806	3596 3809	3595 3814	3590 3802	3601 3806	3599 3802	

