COMPUTER SCIENCES

Self Adapting Numerical Software
(SANS) - Effort and Fault Tolerance in
Linear Algebra Algorithms

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

9/16/2006 1

N

<= Self Adapting Numerical Software

+ The process of arriving at an efficient
solution involves many decisions by an

expert. .
Proceedings of the IEEE,
H H37 V:93 #: 2 Feb. 2005
> Algorithm decisions s on Progan
> Data decisions Optimizaton, and

Platform Adaptation

> Management of the computing
environment

> Processor specific tuning

Complex set of interaction between

Users’ applications

Algorithm

Programming language

Compiler

Machine instruction

Hardware
Many layers of translation from the application
to the hardware. Changing with each generation
of hardware.

20

N
<-Self Adapting Numerical Software

+ Optimizing software to exploit the features of a
given system has historically been an exercise in
hand customization.

> Time consuming and tedious
> Hard to predict performance from source code
> Must be redone for every architecture and compiler
> Software technology lags hardware/architecture

> Best algorithm may depend on input, so some tuning may be
needed at run-time.

+ With good reason scientists expect their computing
tools to serve them and not the other way around.

¢ There is a need for quick/dynamic deployment of
optimized routines.

20 » ATLAS, PhiPAC, BeBoP, Spiral, FFTW, GCO, .. 3
N
» - - -
“ Fault Tolerance: Failure is an Option
. 1000000 Top500 Data
¢ Trends in HPC: - EEEE
> High end systems with thousand of =
processors . SEEEEEERT Y
> Move to multicore nodes g EEEEEEE s
N . //w—H
¢ Increased probability of a node =2
fﬂilur'e P PSS F PSS F S SE

> However, most systems today are robust

¢ MPI widely accepted in scientific computing
> Process faults not tolerated in MPI standard

Mismatch between potential hardware problems
and (non fault-tolerant) programming paradigm
of MPT.

N
By Reliability of Large Systems

| (Source: Daniel Reed, UNC)
Machine # CPU Reliability

ASCI Q 8,192 MTBI 6.5 hr. 114 unplanned outages/month.
HW outage sources: storage, CPU, memory *

ASCI 8,192 MTBF 5 hr ('01) and 40 hr ('03)

White HW outage sources: storage, CPU, 3 party
hardware **

NERSC 6,656 MTBI 14 days. MTTR 3.3 hr

Seaborg Availability 98.74%. SW is main outage
source. ***
PscC 3,016 MTBI 9.7 hr
Lemieux Availability 98.33% ****
Google ~150,000 | 20 reboots/day. 2-3% machines
replaced/year.
20| HW outage sources: storage, memory 5

‘

< Related work

A classification of fault tolerant message passing environments considering
A) level in the software stack where fault tolerance is managed and
B) fault tolerance techniques.

Automatic iNon Automatic

Checkpoint
based

Cocheck 3

\ndependent of MPJ:

Framework [Ste96] !
'

Starfish "\ |
Enrichment of MPI)|
AF9Q; '

Clip ! !
emi-transparent checkpoir .
[CLPO7] Egida MP1/FT
API ! Redundance of tas|
! [RAV99] [BNCO1]
Pruitt 98 f
MPI-FT\!
N fault !
Centralized server /|
NLEOOL !

Log based

Optimistic log
(sender based)

Causal log Pessimistic log

Optimistic recovery
In distributed systems
n faults with coherent checkpoint

[SY85]

Causal logging +
Coordinated
checkpoint

Manetho
n faults
[EZ92]

FT-MPI
lodification of MPI routines
User Fault Treatment

DOQ

2 faults sender based

' PRU98'
der based Mess. Log>
h 1 fault sender based
' JZ87 ot
OPEN MPL

New community MPI effort OPEN-MPI
U of Tennessee, LANL, Indiana U

MPICH-V
" N faults
3] Distributed logging

Layer

Communication g

S 4

Compiler generated chkpt

[Pingali, SC04]

N
-
cL

Open-MPI: Fault Tolerance Models Overview

+ Frameworks planned to be
supported, depending on the user
involvement level

> Automatic (no user involvement)
»Check-point/restart (coordinated)
>Log Based (uncoordinated)
> Optimistic, Pessimistic, Casual
>User driven

»>The environment recover depending on the
user specifications, then the user recover
the algorithmic requirements

20

N

LS

< FT-MPI http:/ficl.cs.utk.edu/ft-mpi/

+ Define the behavior of MPI in case a process
failure occurs.

¢+ FT-MPTI based on MPI 1.3 (plus some MPI 2
features) with a fault tolerant model similar to
what was done in PVM.
> Complete reimplementation, not based on other

implementations.

¢ A regular, non fault-tolerant MPI program will

run using FT-MPI.

+ Gives the application the possibility to recover
from a process-failure.

¢+ What FT-MPI does not do:
> Recover user data (e.g. automatic check-pointing)
> Provide transparent fault-tolerance
20 Part of the DOE Harness (ORNL, UTK, Emory) Project

N

e Assumptions and Basic Ideas

¢+ Assume
> Only a small number (or percentage) of processes will fail
» The failed processes stop working (fail-stop model)

> It is possible to detect such failures with the help of the execution
environment (such as PVM, FT-MPI, Open MPT, ..)

+ The basic idea of our work
> Keep dll surviving processes (DO NOT ABORT)
» Maintain redundancy locally by coding approaches

> Eliminate periodical I/0 access to stable storage which is the bottle
neck for performance and scalability

> Restart only the failed processes (same number to resume i.e. no
data redistribution)

> Reconstruct the global consistent states from the local redundancy

+ Two approaches
> Scalable in-memory (or local disk) checkpointing

20 » Scalable algorithm-based checkpoint-free fault tolerance 9
(\
“* FT-MPI Failure Modes
¢ ABORT: just do as other S
implementations s
[
¢ BLANK: leave hole |
¢+ SHRINK: re-order processes L
to make a contiguous L

communicator
> Some ranks change

T mama

¢ REBUILD: re-spawn lost SR
processes and add them to Ll
MPI_COMM_WORLD e

20 10

£ Three ldeas for Fault Tolerant
“ Linear Algebra Algorithms

¢ Lossless diskless check-pointing # ¥k
for iterative methods
» Checksum maintained in active processors
> On failure, roll back to checkpoint and continue
> No lost data

¢+ Lossy approach for iterative methods
> No checkpoint maintained
> On failure, approximate missing data and carry on
> Lost data but use approximation to recover

¢+ Check-pointless methods for
dense algorithms

> Checksum maintained as part of
computation

** % No roll back needed; No lost data

n

< Disk-less Checkpointing

¢ Similar to RAID for disks.

COPYRIGHT & 1996, 1957, 1958, 15%% ADVANCED COMPUTER & NETWORK CORFORATION

AO
BO
co
DO

® >

20 12

i

;. Checkpoint/Restart
Comp Proc 1 Comp Proc K
Process Stal Process St
P1 P \

n

table
torag

&

¢ Checkpoint/restart is today's typical fault tolerance approach in HPC
» Periodically write process states into stable-storage
» If one process fails, abort all processes
> Good to tolerate the failure of the whole system

> But the overhead is high :

20

T =

of procs * size_ckpt / bandwidth

13

n

KcLor-

First Approach: Diskless

(K. Li & J. Plank, et. el.)

Checkpointing

Comp Proc 1

Process Staj
Py

Comp Proc k

Ckpt Proc

o

Py

ocess St

N

wn-wn

tor

table

age/

Each computational processor saves a copy of its state locally in memory
Dedicate an additional processor to save the encoding of these states

The checkpoint overhead is (binary tree encoding):

20 T = log (# of procs) *size_ckpt / bandwidth + log (# of procs)*latenc

N

< Diskless Checkpointing

¢+ When failure occurs:

» control passes to user
PO ® supplied handler
P4 > “subtraction” performed
to recover missing data
P2 P3
> P4 takes on role of P1
> Execution continue
P4 takes on the identity of P1
and the computation continues.
PO PO
P4 P1
P2 P3 P2 P3
20 15
N
< CG Parallel Version
Think of the data like this Think of the data like this
A b 3 vectors on each processor

] A 3 vectors

i

N No need to checkpoint

each iteration, say every
iterations.

Need a copy of the 3 vectors

" to maintain state.

from checkpt in each processor

16

S FTPCG Algorithm Analysis

Compute r®) = b — Az”) for some initial guess z(%)
for 1=1,2,...
solve Mzli—1) = pli-1)
pioy = pli=17 L (i=1)
iti=1
p1) = 20
else
Bi—1 = pi-1/pi-2
pl) = z0-0 4 g, pli-1)
endif
¢ = Apl)

Global Operations

a; = pioy /p)7 g

) = gi-1) 4 (r;;ﬂil

pli) = pli=1) — (r;q(;

check convergence; continue if necessary
end

Global operation in PCG: three dot product, one preconditioning, and one matrix

vector multiplication.

20 Global operation in Checkpoint: encoding the local checkpoint.

17

S FTPCG Algorithm Analysis

Compute r®) = b — Az”) for some initial guess z(%)
for 1=1,2,...
solve M 01 = p0i-1)
pioy = pli=17 L (i=1)
iti=1
p1) = 20
else
Bi—1 = pi-1/pi-2
pl) = z0-0 4 g, pli-1)
endif
gl = Apl?)

Checkpoint x, r, and p
every k iterations

Global Operations

a; = pioy /p)7 g

) = gi-1) 4 (r;;ﬂil

pli) = pli=1) — (r;q(;

check convergence; continue if necessary
end

Global operation in PCG: three dot product, one preconditioning, and one matrix

vector multiplication.

20 Global operation in Checkpoint: encoding the local checkpoint.

Global operation in checkpoint can be localized bv sub-aroup

18

& PCG: Performance =

PCG Perforamce Overhead for Checkpoint and Recovery '“\
__.1000
2 —e—T_ckpt %
< —= T _revr_data NN
o _revr_
g 100 +— —4—T_revr_ftmpi —
® /
o
© s IBM RS/6000 SP w/176
0 +—% 9
E ¥ ~ Winterhawk Il thin nodes
@ (each with four 375 MHz
o 1 | | | Power3-Il processors)

60 120 240 480
Number of Computation Processors
Run PCG for 5000 iterations and take checkpoint every 1000 iterations
Cause a failure at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M

Time (Sec) Time w/o Checkpoint Data System Total time to
checkpoint time Recovery Recovery time recover from
time fault
60 procs 1399.1 8.0 9.8 24.8 14417
120 procs 1429.3 9.2 9.9 42.1 1490.5
20| 240 procs 1461.1 9.2 10.0 77.2 1557.5 19
480 procs 1531.1 9.7 10.1 146.1 1697.0

. Coding to Survive Multiple Failures: Basic Scheme

" (Reed-Solomon Encoding)

P; is the checkpoint data on the ;7 comp procs
C, is the encoded data on the / ckpt procs
A =(a;;)nxn is a encoding matrix

Q Ci=ay*Pi+ ... +aq,*P,

_ * *
> Cm—am1 P1+...+amn Pn
Compute Procs Checkpoint Procs
Key idea: establish m equalities by m encodings

If there are & (<= m) processes failed, then the m equalities become
m equations with A unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assume pipelined encoding):

PO0=m * { (1 + O(1/size_ckpt~0.5)) * size_ckpt / bandwidth + #of procs * latency’}

10

N

LS

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,
Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

dy G, a3 8y E G
Ay Ay Ay Ay pz - Q
Ay 8 A)R \G

; is the data on the / ckpt procs
P, is the data on the /* comp procs

P

20

21

N

LS

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,
Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

W % % AR (G
& A A A |y |G
8y 8, 8y 8y)R) \G

Say 2 processors fail, P, and P5

20

22

11

N

A

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,

Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

&, &, s ay 5 G
&y Sy 3 Ay || |7 G
8y & &y 8y)R) \G

Say 2 processors fail, P, and P4
Take a subset of A’s (columns 2 and 3) and solve for P, and P,

a, a;|(R _ G
20 a, a,)\ PR C, 23

1 .0

pS

[P

0

N
@ Floating-Point Coding to Tolerate Multiple Failures

Co=a,*P+-+a; "B ++ay ., *Hn++a, *F

— * * * *
C,=a, Pl+~--+amj et Qi P ot Ay, P,

+ In order to be able to recover from any k (k <= m) failures, the
checkpoint encoding matrix A has to satisfy
Any square sub-matrix of A is non-singular

¢+ How to find such an A ?
» Vandermonde matrix, Cauchy matrix,
¢ To maintain the checksum relationship

» Floating-point arithmetic has to be used in calculating encodings

+ Due to round-off errors in floating-point computations
20 Require any square sub-matrix of A is well-conditioned 24

{—‘» Condition Numbers of Gaussian Random
Matrices: Theory

[n—m|+1
n

0.245 ——— 6.414
[n—m|+1

S — < Pr(x, (G

1
> X)< —
27[X mxn)) 2/[

n
E(IOg 10 K2 (Gmxn))< log m+ 0.981.

In our fault tolerant applications:

n: is the number of redundant processor used.
m: is the number of processor failures actually occurred.
G xn: Is the coefficient matrix of the recovery equation.

Example: Assume you are running an application on a 100K-processor system, and
tolerating 20 concurrent failures. If there are 10 concurrent failures actually
occurred, then m=10, n=20

E (log,p k) <1.25: On average, you will loss about 1 digit in recovery
Pr(k >10?) < 3.1*10 —11: The probability to loss 2 digits is less than 10 - 1°

20 Condition Numbers of Gaussian Random Matrices, Z. Chen & J. Dongarra, 25
SIAM Matrix Analysis and Applications, Volume 27, Number 3, pp 603-620, 2005.

-

a- PCG: Performance Overhead of Recovery

PCG Performance Overhead for Performaning Recovery

250% —| —— 1 failed proc

—=— 2 failed proc
2.00% -

N 3 failed proc 7
1.50% 1 4 failed proc %

0.50%

Recovery Overhead (%)

0.00%

15 30 60 120

Number of Computation Processors

64 dual processor 2.4 GHz Opteron
Nodes are connected with GigE

Run PCG for 20000 iterations and take checkpoint every 2000 iterations
Cause a failure by exiting some processes at the 10000-th iteration

T (ckpt T) | O failures | 1 failures 2 failures 3 failures 4 failures 5 failures

15 comp 517.8 521.7 (2.8) 522.1 (3.2) 522.8 (3.3) 522.9 (3.7) 523.1 (3.9)
30 comp 532.2 537.5 (4.5) 537.7 (4.9) 538.1 (5.3) 538.5 (5.7) 538.6 (6.1)
60 comp 546.5 554.2 (6.9) 554.8 (7.4) 555.2 (7.6) 555.7 (8.2) 556.1 (8.7)
120 @mp | 622.9 637.1 (10.5) | 637.2 (11.1) |637.7 (11.5) | 638.0 (12.0) | 638.5 (12.5¥°

13

N

< Second Approach

¢+ Lossy approach for iterative methods
> Here there is only a checkpoint of the

primary data

» Continuous checkpointing is not done during the
iteration.

> When the failure occurs we will approximate
the missing data and continue
> No guarantee here: may or may not work

20 27

N

< Lossy Algorithm : Basic ldea

¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

A x=b

Processor 1

Processor 2

—_ Processor 3

Processor 4

Processor 5

Processor 6

20 28

14

N

< Lossy Algorithm : Basic ldea

¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

A X =b

Processor 1
1 Processor 2

— Processor 3

Processor 4

Processor 5

Processor 6

Processor 2 (e.g.) fails, all its data is lost.

How to recover the lost part of x in this case?

20 29

N

< Lossy Algorithm : Basic ldea

¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

3 steps
A X =b _ P
Step 1: recover a processor and a

Processor 1 running parallel environment (the job
Processor 2 of the FT-MPI library)

— Processor 3

Processor 4

Processor 5

Processor 6

20 30

N

< Lossy Algorithm : Basic ldea

¢+ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

3 steps
A X =D P
- Step 1: revover a processor and a
|| | Processor 1 running parallel environement (the job
Processor 2 of the FT-MPI library)
— Processor 3 Step 2: recover Ay; Ay, ..., Az and b,
T Processor 4 (the original data) on the failed
H processor
Processor 5
Processor 6
20 31

N

< Lossy Algorithm : Basic ldea

¢ Let us assume that the exact solution of
the system Ax=b is stored on different
processors by rows

A X =b . 3 steps
- Step 1: recover a processor and a
|| | Processor1 running parallel environment (the job
Processor 2 of the FT-MPI library)
— || 7 Processor 3 Step 2: recover Ay; Ay, ..., A and b,
T Processor 4 (the original data) on the failed
H processor

Processor 5 .
H 5 Step 3: Notice that
P

[Frocessor Agg X1+ Agp Xp + .+ Ay Xy = b=

Xy = A, 1 (b, — XioAg X)

20 32

N

By Using GMRES(30) Non Symetric Matrix
stomach; n=213,360; nnz=3,021,648; tol=10-10; #procs=16; n.;=13,335; nnz=185,541
recovery | iter; | #iter | Tyq Ternipt Troll Trecov T Tar T
lossy no 385 38.89
chkpt, no 385 41.04 (1,92
lossy 100 372 42 .38 1.56 5.38 1.03 0.33 3.91
chkpt, 100 395 45.49 [1.92 2.40 1.68 1.02 0.32 0.20
1.00E+00 |
1.00E-01
108 1.00E-02 |
1.00E-03
Last checl«yoint 1.00E04 ~chkpt_R
O, C[\“\ 00E-05 lossy
1.00E-06 no failure
1.00E-07
100E-05 T T
) 1 110 1.00E-08
Time are given in seconds 1.00E-09
Intel Xeon at 2.40 GHz with 1.00E-10 T T T
Myripet interconnect 0 100 200 300 33
£ Third Approach: Matrix-Vector Multiplication
e with Checksum Matrix
M" = M
M,
Let
Then b, + + b, =Db .,
Matrix and vectors stored by rows on processors.
Conclusion: Any singuiar failure in the result 6 can be corrected
34

20 K.-H. Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations," IEEE Transactions on Computers, vol. C-33, June 1984, pp. 518--528.

17

N

L

Fault Tolerant Dense Matrix Computations

Assume the original matrix M is distributed into a p by ¢ processor grid with a

2D block cyclic distribution. Then from processor point of view, the distributed
matrix is

M M
M = ;11 51q , where M ij is the local

matrix on processor (7 , J).
M p1 M pa P /

. Define the full distributed checksum matrix of M as:

0 M ., > qj=1 M,
2

Z ip=1 M il Z kp=1 M ig Z

¢ For p x q processors need extra p + q + 1 processors to maintain the checksum.

20

35
N . T .
+ An Example: ScaLAPACK/PBLAS Matrix Multiplication
L
A:11 Alq B11 Blp z T:].Bll
’ *
A pl A pa p
z,p=1A|1 Ziil ia B s B s z 1:1BqJ
Cu Clp Z Tzlclj
B Co Co Z T:lc pi
Z ilcil Z ::1Cip Z |P:1z T:lCiJ
+ Single failure during computation can be recovered from the checksum
relationship
+ By using a floating-point version Reed-Solomon code, multiple failures can
be tolerated
20 36

18

h |

{
v PDGEMM: the Overhead for Fault Tolerance

L

Overhead of Fault Tolerance (Time) Overhead of Fault Tolerance (Percentage)
i~ 50
< 5000 T without ft o —4&— Overhead_without_recover
o
< 4000 T with & j 4 \ —8— Overhead_with_recover
< 3000 o A ®
b T_with_recover / =%

LN

£ ,
= 2000 % 32
S ! ®

< 1000 . 3%

5 +

Executio

4 9 16 25 36 49 64 81 100

L 4 9 16 25 36 49 64 81 100
Number of Processors (on Original Data)

Number of Processors (on Original Data)

+ Size of local matrices on each process: 6,400 by 6,400
Platform: 128 processors, Intel EM64T, 64bit w/Myrinet

+ Note that the overhead (%) for fault tolerance is

*

20 >»0(1/(p*n)) — 0, asp — OO 37

N
= Predictive Adaptive Fault Tolerence

¢ Large-scale fault tolerance

> adaptation: resilience and recovery
> predictive techniques for probability of failure
> resource classes and capabilities
> coupled to application usage modes
> resilience implementation mechanisms
> adaptive checkpoint frequency
> in memory checkpoints
+ By monitoring, one can identify
> performance problems
> failure probability

¢+ When potential of failure

> Migrate process to another
processor

Drive Reliability
Typical Temperature Sensitivity

Reliability Degradation Factor

20

0 5 0 5 10 15

Deviation from Recommended Temperature (Degrees C)

19

N

< Next Steps

+ Software to determine the checkpointing interval and number of
checkpoint processors from the machine characteristics.
» Perhaps use historical information.
» Monitoring
» Migration of task if potential problem
+ Local checkpoint and restart algorithm.
> Coordination of local checkpoints.
> Processors hold backups of neighbors.
+ Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.
> Use p processors for the computation and have k of them hold
checkpoint.
+ Generalize the ideas to provide a library of routines to do the
diskless check pointing.

20 39

N

~ PAPI 4.0

¢ PAPI is software layer that aims to provide the tool
designer and application engineer with a consistent
interface and methodology for use of the performance
counter hardware found in most major
microprocessors.

¢ PAPI has historically targeted on on-processor
performance counters
> Ops, cycles, memory traffic
> Extending to look at other features of system
» Communication and power issues
+ Substrates available for
> ACPI (Advanced Configuration and Power Interface)
> Myrinet MX
¢ Substrates under development for
> Infiniband
> GigE
¢, PAPI 4.0 Beta release expected Q2, 2006

40

20

N

< Temperature Sensor

¢+ AMD Opteron provides an on-die thermal diode with anode and
cathode brought out to processor pins.

+ This diode can be read by an external temperature sensor to
determine the processors temperature.

HPL Benchmark pdgesvk? -7 Node 7

mflops
Temperature

Iterations

A bl

20

Packets Transmitted

N
< Temperature Sensor

¢+ AMD Opteron provides an on-die thermal diode with anode and
cathode brought out to processor pins.

+ This diode can be read by an external temperature sensor to
determine the processors temperature.

HPL Benchmark pdgesvk? - 7o Node 3

o |l i |

mflops
Temperature

Iterations

b Ll o

20

Packets Transmitted

N
<= Summary of Current Unmet Needs

Performance / Portability
Fault tolerance
Memory bandwidth/Latency
Adaptability: Some degree of autonomy to self optimize,
test, or monitor.
> Able to change mode of operation: static or dynamic
+ Better programming models
» Global shared address space
» Visible locality
+ Maybe coming soon (incremental, yet offering real benefits):
» Global Address Space (GAS) languages: UPC, Co-Array Fortran,
Titanium, Chapel, X10, For"rr'ess%
> “"Minor” extensions to existing languages
> More convenient than MPT
> Have performance transparency via explicit remote memory
references
¢ What's needed is a long-term, balanced investment in
hardware, software, algorithms and applications in the HPC

Ecosystem.
20 43

* & o o

N

< Collaborators / Support

+ Top500 Team
» Erich Strohmaier, NERSC
> Hans Meuer, Mannheim
» Horst Simon, NERSC

| 77 6‘ S Office of
.ﬁ; ~d Science

LS. DEPARTMENT OF ENEROY

.
oo Y
'ﬁ.
B Tl
] N

¢ Fault Tolerant Work
> Julien Langou, UTK
> Jeffery Chen, UTK

o+ FT-MPI GO 0O gle

http://icl.cs.utk.edu/ft-mpi/

> Gf‘aham Fagg’ UTK Web. Images Groups MNews Froogle Local Desktap molrex
. D - =
> Edgar Gabriel, UH I

[Google Search][I'm Feeling Lucky*

» Thara Angskun, UTK
> George Bosilca, UTK
> Jelena Pjesivac-Gf‘boviC’ UTK Advertising Programs - Business Solutions - About Google

©2006 Google

20

N

~
L
20 45
N
~ 26th List: The T
< 26th List: The TOP10
Manufacturer Computer E_mr_.?:] Installation Site Country Year | #Proc
1| 1M BlueGene/L 280.6 DOE/NNSA/LLNL usa | 2% l131072
eServer Blue Gene custom
BGW 2005
2 IBM eServer Blue Gene 91.29 IBM Thomas Watson UsA o 40960
ASC Purple 2005
3 IBM Power5 p575 63.39 DOE/NNSA/LLNL USA custom| 10240
4 Columbia 2004
5 ser Altix, Itanium/Infiniband 51.87 NASA Ames usa hybrid 10160
Thunderbird . 2005
5 Dell Pentium/Infiniband 38.27 Sandia USA commad 8000
6 Red Storm . 2005
ko Cray Cray XT3 AMD 36.19 Sandia USA hybrid 10880
| N Farth_Simulator 135.86 | Earth Simulator Center Japan [22 | 5120
8 MareNostrum Barcelona Supercomputer . 2005
El BM PPC 970/Myrinet 27.91 Center Spain commod 4800
o IBM eServer Blue Gene 27.45 . A.STRON . Netherlands <0 12288
5\ v
niversity Groningen custom
Jaguar g q 2005
10 Cray Cray XT3 AMD 20.53 Oak Ridge National Lab USA hybrid 5200
20 46

23

IBM BlueGene/L #1 131,072 Processors

Total of 18 systems all in the Top100
1.6 MWatts (1600 homes) (64 racks, 64x32x32)
43,000 ops/s/person Rack 131,072 procs

(32 Node boards, 8x8x16)
2048 processors

Node Board
(32 chips, 4x4x2)
16 Compute Cards

64 processori

Compute Card
(2 chips, 2x1x1)

_Apr
Chip
(2 processors)

180/360 TF/s
32 TB DDR

2.9/5.7 TFls
0.5 TE DDR Full system total of

90/180 GF/s 131,072 processors

16 GB DDR
5.6/11.2 GF/s
2.8/5.6 GF/s 1 GB DDR - -
4 MB (cache) Fastest Computer
BG/L 700 MHz 131K proc
The compute node ASICs include all networking and processor functionality. 64 racks
Each compute ASIC includes two 32-bit superscalar PowerPC 440 embedded Peak: 367 Tflop/s

2V cores (note that L1 cache coherence is not maintained between these cores).
(13K sec about 3.6 hours; n=1.8M)

Linpack: 281 Tflop/s
77% of peak

L

S
L

< FT-MPI Approach for Dealing with Faults

- Application checkpointing, MP APIl+Fault management,
automatic.

« Application ckpt: application store intermediate results and restart form them
e MP API+FM: message passing API returns errors to be handled by the programmer

 Automatic: runtime detects faults and handle recovery

20 48

24

N

LS

“ Open-MPI Approach for Dealing with Faults

Application checkpointing, MP API+Fault management,
automatic.

« Application ckpt: application store intermediate results and restart form them

« MP API+FM: message passing API returns errors to be handled by the programmer

e Automatic: runtime detects faults and handle recovery
Checkpoint coordination: no, coordinated, uncoordinated.

e Coordinated: all processes are synchronized, network is flushed before ckpt;

= all processes rollback from the same snapshot

e Uncoordinated: each process checkpoint independently of the others
« each process is restarted independently of the other

Message logging: no, pessimistic, optimistic, causal.
e Pessimistic: all messages are logged on reliable media and used for replay

e Optimistic: all messages are logged on non reliable media. If 1 node fails, replay is
done according to other nodes logs. If >1 node fail, rollback to last
coherent checkpoint

e Causal: optimistic+Antecedence Graph, reduces the recovery time

20 49
£ FT MM:
Perform Computation with Encoded Data
° Assume the original matrix M is distributed into a p by ¢ processor grid with a
2D block cyclic distribution. Then from processor point of view, the distributed
matrix is My - My,
M= :
M, - M,)] , where My is the local
matrix on processor (7/ , j).
. Define the row distributed checksum matrix of M as
M 1 M 1q
M= M:pl M:pq =A
Z ip=1 M Z ip=1 M iq
¢ Define the column distributed checksum matrix of M as
M-u M‘lq z qJ=1M 1]
M ¢ = : : : = Bc
M pl M pa Z q]=1 M pi
. Define the full distributed checksum matrix of M as
M M, Z r:fl My
20 M M pl M pa 2 q,:lM pj =Cf 50
> My >iM, Iy My

25

i
< Real Crisis With HPC Is With The Software

¢ Our ability to configure a hardware system capable of
1 Ze;%Flop (1015 ops/s) is without question just a matter of time
an .

¢ A supercomﬂuter application and software are usually much more
long-lived than a hardware
> Hardware life typically five years at most.... Apps 20-30 years
» Fortran and C are the main programming models (stilll!)

¢+ The REAL CHALLENGE is Software
> Programming hasn't changed since the 70's
> HUGE manpower investment
» MPI.. is that all there is?
> Often requires HERO programming
> Investments in the entire software stack is required (OS, libs, etc.)

+ Software is a major cost component of modern technologies.

» The tradition in HPC system procurement is to assume that the
software is free.. SOFTWARE COSTS (over and over)
20 51

n

<= “Last Mile” Problem With Software

+ Expected to be innovative
> Proof of concept software generated

¢ Message Passing Interface (MPI)
> “assembly language” of parallel computing
> lowest common denominator
> portable across architectures and systems
+ High-Performance Fortran (HPF)
> higher level data parallel specification EoaNce
> limited to regular data structures e e
> we expected too much too soon
> see Earth System Simulator
+ Costs and implications
> Software productivity is low
» Next generation of machine will have increased levels of
parallglism
» human productivity
> low-level programming model
» software innovation
20 > limited development of alternatives 52

26

r\
«- Basic Idea

¢ Assume

> we are running a parallel program where P(t) denotes the data on
the ith processor at time t

> Py(1)+ Py(t)+ .+ P (1) = P 4(1)

¢ If the first processor failed, how can we recover the lost data P,(t)
?

> Answer: P (1) = - P,(1) - .. - P (1) + P (1)

*

In this special case, we are lucky enough to be able to recover the
lost data without maintaining any checkpoint due to the relationship

> Py(1)+ Py(t)+ .+ P (1) = P 4(1)

*

Question: can we create this kind of special relationship on purpose ?

» The answer is YES for many programs doing matrix computations
20 > How ? 53
» Perform computation with encoded data

N
ievr- Overhead and Scalability Analysis

¢ Assume a p by p processor grid and a # by n local matrix per processor

+ Without fault tolerance, the number of calculations on each processor is
> 2*p*n”3. (because 2*(p*n)"3 calculations by p*p processors)

+ With fault tolerance, the number of calculations on each processor is still
» 2*p*n”3. (the # of calculations per processor does not increase !)

¢ Overhead for fault tolerance
» Calculate encoding at the beginning: O (1/ (p*n))
» Increased communication (due to larger processor grid): O (1/ (
p*n))
> Recover decoding: O (1/(p*n))

+ Note that —_ —_—00

20>O(1/7(p*n)) 0, asn, p >4

27

Example Matrices from Discretizing Boltzmann Equation in
the TSI project at ORNL

b, C,

B D C
g 2 2 D_i is dense: m by m.

B_i and C_i are diagonal.

B n-1 D n-1 C n-1
B n D n

n=128x32 | m | n
G=12,Q=14 386 4,096
G=40,Q =4 1,282 4,096 6. Q. m, and n are
G'=40,Q =16 | 20,482 4,096 parameters used to
n =512 x 512 ‘ m ‘ n discretize the problem
G=12,Q =4 386 | 262,144
G=40.Q =4 1,282 | 262,144
G=40.Q =16 | 20,482 | 262,144 55

N
Prototype Example II: Fault Tolerant Matrix Multiplication
(PDGEMM in ScaLAPACK/PBLAS)

+ Demonstrate how to survive (adapt to) partial process failures in parallel
matrix multiplication

> Based on FT-MPT library
> Adapt to failures rather than restart the whole application
> Can be used in heterogeneous environments

¢ Use checkpoint-free technique
> No periodical checkpoint is involved
> Perform computation with encoded matrices

+ Answer four questions
> what is the overhead of calculating encodings ?

> what is the overhead of performing computation with encoded
matrices?

> what is the overhead of recovering FT-MPI environment ?
20 > what is the overhead of recovering application data ? 56

28

N

o PDGEMM: Experiment Configurations
Process grid Process grid Size of the Size of the
w/out FT w/ FT original matrix checksum matrix
2 by 2 3by3 12,800 19,200
3by3 4 by 4 19,200 25,600
4 by 4 5by 5 25,600 32,000
5 by 5 6 by 6 32,000 38,400
6 by 6 7by7 38,400 44,800
7by7 8 by 8 44,800 51,200
8 by 8 9by9 51,200 57,600
9 by 9 10 by 10 57,600 64,000
10 by 10 11 by 11 64,000 70,400

+ Size of local matrices on each process: 6,400 by 6,400

+ Platform (6rig @ UTK):
> 64 nodes, 128 processors, Intel EM64T, 64bit

20 » Myrinet >7
» FT_MPT + Dohian |l inux

L

N
~. PDGEMM: The Overhead (%) for Calculating Encodings

Over head for Constructing Checksum Matrices

25

20

15 [

Qrerhead (%

10 [

4 9 16 25 36 49 64 81 100
Nunber of Processors (on Oiginal Data)

+ Note that the overhead for encoding is

o »0(C 1/(p*n)—D— Q—as+p 00 58

29

{. PDGEMM: The Overhead for Performing Computation
= with Encoded Matrices

Overhead for Performi ng Conputations on Encoded
Matri ces

Qrerhead (%
IS

5‘\\
2 \
1 f T

4 9 16 25 36 49 64 81 100

Nunber of Processors (on Oiginal Data)

+ Note that the overhead for performing computation with encoded

matrices is

20

>»0(1/(p*n) — G—eas*»p OO

59

£ PDGEMM: The Overhead for Recovering
FT-MPI Environment

Overhead for Recovering FT- M

0.2

0.18 //‘\\.//‘,/0
0.16
0.14 ‘///6///'

0.12
o /

0.08

Qverhead (%

0.06

0.04

0.02

4 9 16 25 36 49 64 81 100

Nunber of Processors (on Original Data)

+ Note that the time to recover FT-MPI
> is currently O (p?)
> will be improved to O(log p) soon

> is negligible compared with the time to recover application
data

30

5 PDGEMM: The Overhead for Recovering
Application Data

Overhead for Recovering Lost Data

RN
B 10
2
g 8 \
6 \‘\‘\
4 6\’\’
2
0
4 9 16 25 36 49 64 81 100

Nunber of Processors (on Original Data)

+ Note that the overhead for recovering the application data is

0 >0(1/(pn)—— 0—asp OO 61

N
« Coding to Survive Multiple Failures: Subgroup Scheme

Sub-group 1 Sub-group s

Divide the computational processors into s sub-groups (with g procs per group), dedicate m
checkpoint processors for each sub-group to holding the encodings of the local checkpoint.

The checkpoint overhead (assume pipelined encoding within each sub-group):
T=m * { (1 +0(1/size_ckpt"0.5)) * size_ckpt / bandwidth + g * latency }

Nege that g (g « # of fotal procs) is a constant independent of # of total procs, 62
therefore, the checkpoint overhead is independent of # of total procs.

31

N

< Diskless Version

20

N =

P1

P2

P3

PO P1

P2 P3

P4

e

Extra storage needed on each process
from the data that is changing.
Actually don’'t do XOR, add the information,

63

r. PLGIFertormance Overnead oT 1aking

L

Checkpoints

PCG Performance Overhead for Taking Checkpoints

;\;‘ 1.20% | —&—1ckptproc
= —4— 2 ckpt proc
g 1.00% BCKZ:zroc
£ 080% ‘*‘gm,_:,,*’*’/fx
3 0.60%
S 040% - & = -
> - —
S 0.20% -— + =
2
o 0.00% } } }
15 30 60 120
Number of Computation Processors
T (ckpt T) 0 ckpt 1 ckpt 2 ckpt 3 ckpt 4 ckpt 5 ckpt
15 comp 517.8 518.9 (1.0) | 519.6 (1.7) 519.8 (2.1) 520.4 (2.8) 521.0 (3.2)
30 comp 532.2 533.3 (1.1) | 533.7 (1.8) 534.5 (2.3) 535.1 (3.0) 535.6 (3.5)
60 comp 546.5 547.8 (1.2) | 548.0 (2.0) 548.8 (2.7) 549.7 (3.2) 550.1 (3.7)
120 comp 622.9 624.4 (1.5) | 625.5 (2.3) 626.7 (3.6) 627.5 (4.2) 628.6 (4.5)
20 64

32

N
«-PCG: Performance with Different MPI Implementations

h Y 64 dual-processor 2.4 GHz AMD Opteron nodes

besstk17
Nodes are connected with a Gigabit Ethernet.
besstk17: \ B

The size is: y
10974 x 10974 N

Non-zeros: bf-ss‘{
428650

Sparsity: :

39 non-zeros per row 4
on average %

Source: N
Linear equation from bessi1T
elevated pressure J
vessel

N Procs | LAM- MPICH2- | FT-MPI
7.0.4 1.0

165K 15 |[522.5 536.3 517.8
329K 30 |532.9 542.9 532.2
658K 60 |545.5 553.0 546.5
1317K | 120 | 674.3 624.4 622.9

0 . . 65
: http://icl.cs.utk.edu/ft-mpi/
N
- - - -
«~PCG: Performance with Different MPI Implementations
A\
.‘\._ 64 dual-processor 2.4 GHz AMD Opteron nodes
besstk17: bcw Nodes are connected with a Gigabit Ethernet.
The size is: ‘--\
10974 x 10974 N,
Non-zeros: 9553‘{
428650 J
Sparsity: ;
39 non-zeros per row ‘
on average % N
Source: \
Linear equation from besst17
elevated pressure .
vessel
N Procs | LAM- MPICH2- | FT-MPI FT-MPI ckpt /2000
7.0.4 1.0 iters
165K 15 522.5 536.3 517.8 518.9
329K 30 532.9 542.9 532.2 533.3
658K 60 545.5 553.0 546.5 547.8
1317K | 120 | 674.3 624.4 622.9 624.4
66

http://icl.cs.utk.edu/ft-mpi/

33

N

«-PCG: Performance with Different MPI Implementations
.‘\._ 64 dual-processor 2.4 GHz AMD Opteron nodes
bessik17
besstk17: Nodes are connected with a Gigabit Ethernet.
The size is: \‘-_
10974 x 10974 N
Non-zeros: besStg17
428650 3‘\
Sparsity: > %
39 non-zeros per row
on average b N
Source: N
Linear equation from besst1T
elevated pressure
vessel
N Procs | LAM- MPICH2- | FT-MPI FT-MPTI ckpt /2000 | FT-MPI exit 1 proc
7.0.4 1.0 iters @10000 iters
165K | 15 |522.5 536.3 |517.8 |518.9 521.7
329K | 30 |532.9 5429 |532.2 |[533.3 537.5
658K | 60 |545.5 553.0 |546.5 |547.8 554.2
1317k | 120 |674.3 624.4 |622.9 |[624.4 637.1
20 http://icl.cs.utk.edu/ft-mpi/ !
N
i Reliability of Large Systems
(Source: Daniel Reed, UNC)
Machine # CPU Reliability
ASCI Q 8,192 MTBTI 6.5 hr. 114 unplanned outages/month.
HW outage sources: storage, CPU, memory *
ASCI 8,192 MTBF 5 hr ('01) and 40 hr ('03)
White HW outage sources: storage, CPU, 3 party
hardware **
NERSC 6,656 MTBI 14 days. MTTR 3.3 hr
Seaborg Availability 98.74%. SW is main outage
source. ***
Psc 3,016 MTBI 9.7 hr
Lemieux Availability 98.33% ****
Google ~15,000 |20 reboots/day. 2-3% machines
replaced/year.
20 HW outage sources: storage, memory 68

34

IBM BlueGene/L #1 131,072 Processors

Total of 18 systems all in the Top100
1.6 MWatts (1600 homes) (64 racks, 64x32x32)
43,000 ops/s/person Rack 131,072 procs

(32 Node boards, 8x8x16)
2048 processors

Node Board
(32 chips, 4x4x2)
16 Compute Cards

64 processori g
ompute Card .
(2 chips, 2x1x1)

4 pr

-n"n‘._‘
[)

180/360 TF/s
] 32 TB DDR

Chip

(2 processors) "
2 2.9/5.7 TFIs

2V cores (note that L1 cache coherence is not maintained between these cores).
(13K sec about 3.6 hours; n=1.8M)

Linpack: 281 Tflop/s
77% of peak

Full system total of

0.5TB DDR
90/180 GF/s 131,072 processors
16 GB DDR
5.6/11.2 GF/s
2.8/5.6 GF/s 1 GB DDR - -
4 MB (cache) Fastest Computer
BG/L 700 MHz 131K proc
The compute node ASICs include all networking and processor functionality. 64 racks
Each compute ASIC includes two 32-bit superscalar PowerPC 440 embedded Peak: 367 Tflop/s

£L .
<~ Commaodity Processors

¢ Intel Pentium Nocona
> 3.6 GHz, peak = 7.2 Gflop/s
> Linpack 100 = 1.8 Gflop/s
> Linpack 1000 = 4.2 Gflop/s

¢+ Intel Itanium 2
> 1.6 6Hz, peak = 6.4 Gflop/s
> Linpack 100 = 1.7 Gflop/s
> Linpack 1000 = 5.7 Gflop/s

WMBLICache L3 Tagn

McKinley microprocessor

¢+ AMD Opteron

> 2.6 6Hz, peak = 5.2 Gflop/s
> Linpack 100 = 1.6 Gflop/s
> Linpack 1000 = 3.9 Gflop/s

20

70

35

N

< Architectures / Systems

500
O SIMD
400
] W Single Proc.
300 -
i O Cluster (360)
200 A O Constellations
100 * O smP
0 T o mpp
™ < Te] (e} N~ [ee] (2] o — N ™ < Lo
(2] (2] (2] (2] (2] (2] D o o o o o o
(o] (o)} (o)} (o] (o] (o] (o)} o o o o o o
— — i - i i i N N N N N N
Cluster: Commodity processors & Commodity interconnect
20 Constellation: # of procs/node > nodes in the system n
N

< Customer Segments / Performance

Government

100%

E Classified
90% ;_’/\/_\}dgz_/\/\/\
80% 7 .
] Academic
70% 1
60% 1 50%
50% _ Industry
40% A
30% A

20% Research
10% 3
0% - T T T T T T T T T T T T

[s2] <t n [{e] N~ [ee] ()] o — N [ap] < n
(2] (2] (2] (2] (2] (2] ()] o o o o o o
(o] (o] (o] ()] (o] (o] (o] o o o o o o
— — — — — — — N N N N N [aV]

20 72

36

. A PetaFlop Computer by the End of the
© Decade

+ 10 Companies working on a building a
Petaflop system by the end of the
decade.
> Cray
> IBM

> Sun e : lay
> Dawning , ?
> Galactic Chinese ae

5 Lenovo Companies

> Hitachi Japanese
> NEC } “Life Simulator” (10 Pflop/s)
> Fujitsu
20 > BU" 73

N

< Fuel Efficiency: GFlops/Watt

GFlops/Watt

20 Top 20 systems 74

| Based on processor power rating onlv seues

37

KcLor-

£ Future Challenge:
Developing the Ecosystem for HPC

From the NRC Report on "The Future of Supercomputing”:

+ Hardware, software, algorithms, tools, networks, institutions,
applications, and people who solve supercomputing applications

can be thought of collectively as a multifaceted ecosystem

+ Research investment in HPC should be informed by the

ecosystem point of view - progress must come on a broad front
of interrelated technologies, rather than in the form of
individual breakthroughs.

A supercomputer ecosystem is a
continuum of computing platforms,
system software, algorithms, tools,
networks, and the people who know

how to exploit them to solve

computational science applications.

20

75

{\

<~ CPU Desktop Trends 2004-2010

+ Relative processing power will continue to double
every 18 months

+ 256 logical processors per chip in late 2010

140
]

120+— |
00— |
/

80

60

40+

20

07 .
2004 Hardware Threads Per Chip

2005 2006 Cores Per Processor Chip

2008

2009

- 2010

76

38

N

< Third Approach

+ Checkpointless methods for dense
algorithms
>»We need extra processors to
participate in the computation

>The extra processors carry the active
checksum

>No roll back needed: just compute
what's missing and carry on.

20 7

[ﬁT ScalAPACK: Perform Computation with Encoded Data

° Assume the original matrix M is distributed into a p by ¢ processor grid with a
2D block cyclic dlsfrlbu'ﬂon Then from processor point of view, the distributed

matrix is = (M- ., where M ; is the local matrix on processor (/.j).
M'lli M.IIQ
. Define the row distributed checksum matrix of M as
M 11 M 1q
M= :
M pl M pq
P P
Z i=1 M il Z 1 q
. Define the column distributed checksum matrix of M as
q
My M 1q Z i=1 M j
M ¢ = : : :
q
M M Z j=1 My
. Define the full distributed checksum matrix of M as
q
M 1 M 1q Z j=1 M 1j
M "= q
M pl M pq Z j=1 M pi
p p p q
20 Z M Z a1 Mg Z i=1 j=1 M 78

39

i

leLwr

An Example: ScaLAPACK Matrix Multiplication

20

79

n

leLwr

An Example: ScaLAPACK Matrix Multiplication

20

80

40

£ An Example: ScaLAPACK Matrix Multiplication

KcLor-

L

FT-PDGEMM operates
oh A¢, Brand Cf

At the j* iteration: =1 (4]

¢ Theorem:
At the end of each iteration, the checksum relationship
in A", B¢, and C* are still maintained

¢ Conclusion

> Single failure during computation can be recovered from the checksum
20 pelationship 81

> By using a floating-point version Reed-Solomon code, multiple failures can be

£ An Example: ScaLAPACK Matrix Multiplication

KcLor-

FT-PDGEMM operates
on A¢, Br and Cf

N
At the j iteration: .I= cr(Jj) I+ IX-D

[BN [

¢ Theorem:
At the end of each iteration, the checksum relationship
in A", B¢, and €7 are still maintained

¢ Conclusion

> Single failure during computation can be recovered from the checksum
20 relationship 82

» By using a floating-point version Reed-Solomon code, multiple failures can be

41

(\
“* Qverhead for Recovery

B MM Recovery Overhead on Boba Clucter Recovery Overhead on Boba Cluster
B FT-MM
__ 10
1400 IS
Jof —
II 900 I g —
-100 0 ‘ ‘
12800 19200 25600 12800 19200 25600
Problem Size .
Problem Size
Size of Matrix 12,800 19,200 25,600
Process 6rid w/o FT 2 by 2 3 by 3 4 by 4
Process 6rid w/ FT 3 by 3 4 by 4 5by5
Execution time w/o FT 453.9 699.1 965.3
Execution time w/ Recvr |543.4 800.6 1078.4
Time for Recovery 31.6 33.4 34.9
Overhead for Recovery (7.0 4.8 3.6
20 83

g'\n Example: ScaLAPACK Matrix Multiplication

3 3|4 4
3 314 4 300 3001400 400

Assume the original matrix are distributed into a 2 by 2 processor grid with a 2D block cyclic distribution,
where both the row block size and the column block size are 1.

Encode matrices into 3 by 3 processor grid:

=
=

AINN

ANN

LN
LN
[}
o o

100 100 | 200 200 | 300 300

Cf= 100 100] 200 200 | 300 300 PDGEMM operates on A, B, and C
300 300|400 400 | 700 700
300 300 1 400 400 1700 700 FT-PDGEMM operates on Ac, B and Cf

400 400 | 600 600 | 1000 1000
400 400 | 600 600 | 1000 1000

20 84

42

. Japanese:
~ Tightly-Coupled Heterogeneous System

+ Would like to get to 10 PetaFlop/s by 2011

¢ Scalable, fits any computer center
> Size, cost, ratio of components

¢ Easy and low-cost to develop new component

+ Scale merit of components

Present g Future system
lower connection

Faster Faste Faster

¢ in cor.meqt i ercc.)nn¢ct ! MD
Vector Scalar MD ‘ A Node
Node Node Node /

-PGA Node g5

n

< How Big Is Big?

+ Every 10X brings new challenges
> 64 processors was once considered large

> it hasn't been “large” for quite a while
> 1024 processors is today's "medium” size

> 8096 processors is today's “large”
> we're struggling even here

20042014 System Sire Trends

|||||||||

+ 100K processor systems

uuuuu

> are in construction

:::::

> we have fundamental ;
challenges in dealing with |

machines of this size
/

> .. and little in the way = —

20 of programming support

43

N

<= Interconnects / Systems

500 -

] O Cray Interconnect
400 ~ .

1 O SP Switch

] @ Crossbar
300 A

1 O Others

] O Infiniband
200 A .

1 @ Quadrics

1 B Gigabit Ethernet
100 | g

] B Myrinet

1 O N/A

O T T T T T T T T T

[82] < o (o] N~ [ce] (] o — N ™ < Lo

(2} (2} (o2} (o2} (2] (o2} (o2} o o o o o o

(e} (e} (e} (e} (o2} (e} (o)} o o o o o o

— — — — — - - N N N N N N

Myrinet and GigE > 50% of market

24%

87

£ Real Crisis With HPC Is With The
Software

¢ Programming is stuck
> Arguably hasn't changed since the 60's
¢ It's time for a change
» Complexity is rising dramatically
> highly parallel and distributed systems
> From 10 to 100 to 1000 to 10000 to 100000 of processors!!
> multidisciplinary applications
¢+ A supercomputer application and software are usually
much more long-lived than a hardware
» Hardware life typically five years at most.
» Fortran and C are the main programming models
+ Software is a major cost component of modern
technologies.
> The tradition in HPC system procurement is to assume that
the software is free.
¢+ We have too few ideas about how to solve this
,, problem.

88

44

N
«-PCG: Performance with Different MPI Implementations

64 dual-processor 2.4 GHz AMD Opteron nodes

besstk17: bcw Nodes are connected with a Gigabit Ethernet.
The size is: .,
10974 x 10974 N
Non-zeros: DCS’S‘{
428650
Sparsity: :
39 non-zeros per row
on average :
Source: N
Linear equation from bessi1T
elevated pressure
vessel

N Procs | LAM- MPICH2- | FT-MPI
7.0.4 1.0

165K 15 |[522.5 536.3 517.8
329K 30 |532.9 542.9 532.2
658K 60 |545.5 553.0 546.5
1317K | 120 | 674.3 624 .4 622.9

http://icl.cs.utk.edu/ft-mpi/ 7

N
“Self Adapting Numerical Software

+ Optimizing software to exploit the features of a
given system has historically been an exercise in
hand customization.

» Time consuming and tedious
> Hard to predict performance from source code
> Must be redone for every architecture and compiler
> Software technology lags hardware/architecture

> Best algorithm may depend on input, so some tuning may be
needed at run-time.

+ With good reason scientists expect their computing
tools to serve them and not the other way around.
¢ There is a need for quick/dynamic deployment of

optimized routines.
20 » ATLAS, PhiPAC, BeBoP, Spiral, FFTW, GCO, .. 90

45

£ An Example: Matrix Multiplication

leLwr

Br

L

FT-PDGEMM operates A€
on A, B" and Cf :

At the j* iteration:

¢ Therefore:
At the end of each iteration, the checksum relationship
in A", B¢, and C* will be maintained
+ Conclusion:
20 Single failure during computation can be recovered from 91
the checksum relationship

¢ KFlop/s per Capita (Flops/Pop)

e

| Based on the June 2005 - Top500only

4000
3500 1]
000 L || Hint: Peter Jackson had something to do with this
2500 H — —
2000 + . . .
< \WETA Digital (Lord of the Rings)
1500 +H 1 1
1000 +H 1 1 —
500 | | | | | ﬂ_H_W
o LI EL I HHHOOA0 e e~
P SIS AP E S PSS ESE D P
sF g0 TS F (O Q&‘O@& & T I
& o &S AL w2 &L
R VA N
20 92

Has nothing to do with the 47.2 million sheep in NZ

46

N

LS

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,
Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

dy G, a3 8y E G
Ay Ay Ay Ay pz - Q
Ay 8 A)R \G

; is the data on the / ckpt procs
P, is the data on the /* comp procs

P

20

93

N

LS

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,
Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

W % % AR (G
& A A A |y |G
8y 8, 8y 8y)R) \G

Say 2 processors fail, P, and P5

20

94

a7

N

< Reed-Solomon Approach

A*P = C, where A is k x p made up of random numbers,
Pispxn,Ciskxn
Here using 4 processors and 3 Ckpt processors:

&; a, s A (R (G
Ay 2 3 Sy || |7 G
Ay s 8y)R) G

Say 2 processors fail, P, and P4
Take a subset of A’s (colunm 2 and 3) and solve for P, and P,.
Could use GF(2). Signal processing aps
a, a5 P2 C1 do this. In that case, A is Vandermonde
= or Cauchy matrix. (Need to have any
Ay Ay P3 Cz subset of A be non singular.) 95
We use A as a random matrix.

1

-
PG

(55

0

r. PCG: Impact of Round-Off Errors in
“" Recovery

¢ If no failure occurs

» PCG computation is not affected by the round-off errors of
checkpoint

¢+ Whenever there is a failure

> The recovered data is not exactly the same as original data due
to round-off errors in the recovery, however...

of Iters | O proc 1 proc 2 proc 3 proc 4 proc 5 proc
1.0e-10 2917 2918 2918 2915 2917 2917
1.0e-12 3141 3136 3142 3138 3140 3147
1.0e-14 3383 3385 3387 3384 3385 3393
1.0e-16 3599 3596 3595 3590 3601 3599
1.0e-18 3806 3809 3814 3802 3806 3802

Run PCG with 120 computation processors until the relative residual ||r|] /7 ||b]] < 10 —.

Simulate some process failures at the 2000t iteration by exiting some processes.
The above table reports the number of iterations for different number of processes failures.

20

96

48

N

L

97

r. PCG: Impact of Round-Off Errors in
“" Recovery

¢ If no failure occurs

» PCG computation is not affected by the round-off errors of
checkpoint

¢+ Whenever there is a failure

> The recovered data is not exactly the same as original data due
to round-off errors in the recovery, however...

of Iters | O proc 1 proc 2 proc 3 proc 4 proc 5 proc
1.0e-10 2917 2918 2918 2915 2917 2917
1.0e-12 3141 3136 3142 3138 3140 3147
1.0e-14 3383 3385 3387 3384 3385 3393
1.0e-16 3599 3596 3595 3590 3601 3599
1.0e-18 3806 3809 3814 3802 3806 3802

Run PCG with 120 computation processors until the relative residual ||r|] /7 ||b]] < 10 —.
Simulate some process failures at the 2000t iteration by exiting some processes.
The above table reports the number of iterations for different number of processes failures.

20 98

49

N

< Next Steps

Investigate ideas for 1K to 10K processors, then to BG/L.

*

20

Software to determine the checkpointing interval and number of
checkpoint processors from the machine characteristics.

> Perhaps use historical information.

Local checkpoint and restart algorithm.

» Coordination of local checkpoints.

» Processors hold backups of neighbors.

Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.

> Use p processors for the computation and have k of them hold
checkpoint.

Generalize the ideas to provide a library of routines to do the
diskless check pointing.

Look at “real applications” and investigate “Lossy” algorithms.

FT-MPI available today and one of the contributions to Open
MPT.

N

L

FT-MPI Failure Recovery Modes

20

¢ ABORT: Just do as other MPI T——
implementations.
[
¢+ BLANK: Leave hole in
communicator. S ——
) e m
¢+ SHRINK: Re-order processes to |.. - -
make a contiguous communicator.
> Some ranks change T
¢ REBUILD: Re-spawn lost o
processes and add them to o

MPI_COMM_WORLD.

100

50

N
A
cL

FT-MPI http://icl.cs.utk.edu/ft-mpi/

+ Define the behavior of MPI in case an error
occurs.

¢+ FT-MPTI based on MPI 1.3 (plus some MPI 2
features) with a fault tolerant model similar to
what was done in PVM.
> Complete reimplementation, not based on other

implementations.

+ Gives the application the possibility to recover
from a process-failure.

+ A regular, non fault-tolerant MPI program will
run using FT-MPI.

¢ What FT-MPI does not do:

> Recover user data (e.g. automatic check-pointing)
> Provide transparent fault-tolerance

20

101

N

A
L

Sum Computed; Not XOR

Ci+Co+ .. C=Cyy

To recover from a lose of C, :
CZ = CK+] - C1 - C3 = e CK

+ For a single failure XOR is fine.
+ For more than one failure will require GF(2) arithmetic

> OK for the XOR but need to solve a system of equations in
GF(2), will need +, *, / over GF(2)

+ Starting to think of reversing the computation to get back
to checkpoint state.

+ Think of running the program backwards until reaching the
checkpoint state.

Yi= Y+ a¥x;
> Undo computation by:
Yi= Yi- o*x

20 > Round off errors generated getting back to ckpt

102

51

N
A
cL

__.1000
» ——T_ckpt
-g T data
b= —=—T_revr_da
g 100 +— —&—T_rcvr_ftmpi —
& /
o
o 10 = ’ — ’
o
>
° : : :
60 120 240 480

PCG: Preliminary Performance

PCG Perforamce Overhead for Checkpoint and Recovery

IBM RS/6000 SP w/176
Winterhawk Il thin nodes
(each with four 375 MHz

Power3-1l processors)

Number of Computation Processors

Run PCG for 5000 iterations and take checkpoint every 1000 iterations (about 5 minutes)
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M

Time T_pcg_comp T_ckpt T_rcvr_dat | T_rcvr_ftmpi T_tot
(Sec) a
60 procs 1399.1 8.0 9.8 24.8 1441.7
120 procs | 1429.3 9.2 9.9 42.1 1490.5
20 240 procs | 1461.1 9.2 10.0 77.2 1557.5 103
480 procs | 1531.1 9.7 10.1 146.1 1697.0
n =000 TEVerdo RS
£. Software Generation iyl
Strategy - ATLAS BLAS -
+ Parameter study of the hw
¢+ Generate multiple versions
of code, w/difference e
values of key performance o e
parameters
¢ Run and measure the ¢+ Takes ~ 20 minutes to run,
performance for various generates Level 1,2, & 3 BLAS
versions . New model of hlgh
+ Pick best and generate performance programming
library where cr'mcarcode is machine
+ Level 1 cache multiply generm‘ed using parameter
optimizes for: optimization.
> TLB access + Designed for modern
> L1 cache reuse architectures
> FP unit usage > Need reasonable C compiler
> Memory fetch + Today ATLAS in used within
> Regisfgr reuse VOI"I:O}IS. ASCI and SciDAC
> Loop overhead minimization %:;_‘ag:z 1_3:‘" b " mellal;/'\a le
* lsjm“lar to FFTW and Johnsson, Debian, Scylc'i Beowulf, Sur.’SE',
20

See: http://icl.cs.utk.edu/atlas/ joint with 104

Clint Whalev & Antoine Petitet

52

i

A
oL

< Processor Types

500

M SIMD

400 O Sparc

i H MIPS
300 1
1 O Intel

1 O HP PA-Risc
200 1
O HP Alpha

100 1 M IBM Power

M Other scalar

0 O Vector

20 105

n
< Today’s Processors

+ pipelining (superscalar, OO0, VLIW,
branch prediction, predication)

+ simultaneous multithreading (SMT,
Hyper-Threading, multi-core)

¢+ SIMD vector instructions (VIS,
MMX/SSE, AltiVec)

+ caches and the memory hierarchy

+ Intel added 36 instructions per year to
IA-32, or 3 instructions per month!

20 106

53

o Motivation Self Adapting
Numerical Software (SANS) Effort

+ Optimizing software to exploit the features of a
given system has historically been an exercise in hand
customization.

> Time consuming and tedious

»>Hard to predict performance from source code

> Must be redone for every architecture and compiler
»>Software technology lags architecture

>Best algorithm may depend on input, so some
tuning may be needed at run-time.

¢ There is a need for quick/dynamic deployment
of optimized routines.

20 107

N

=
-

Linpack (100x100) Analysis

Compaq 386/5X20 SX with FPA - .16 Mflop/s
Pentium IV - 2.8 GHz - 1.3 6flop/s
12 years =>» we see a factor of ~ 8125

Moore's Law says something about a factor of 2
every 18 months or a factor of 256 over 12 years

* & o o

.. Complex set of interaction betwi
+ Seem to be missing a factor of 32 .. " Users applications "
» Clock speed increase = 128x QEZ:_';':‘ming .
» External Bus Width & Caching - Compiler
> 16 vs. 64 bits = 4. Machine instruction
> Flocn'invgS Point o Hardware

. . . Many layers of translation from
> 4/8 bits multi vs. 64 bits (1 clock) = 8x the application to the hardware

» Compiler Technology = 2x Changing with each generation
¢ However the theoretical peak for that Pentium 4
is 5.6 Gflop/s and here we are only getting
1.3 Gflop/s
2 Still a factor of 4.25 off of peak 108

54

L&

<= Performance Tuning Methodology

Software Installation

Software Generation
Strategy - ATLAS BLAS
http://www.netlib.org/atlas/

Parameter study of the hw
Generate multiple versions of
code, w/difference values of
key performance parameters
Run and measure the
performance for various versions
Pick best and generate library
Optimize over 8 parameters

» Cache blocking
Register blocking (2)
FP unit latency
Memory fetch
Interleaving loads & computation
Loop unrolling
Loop overhead minimization
Similar to FFTW

YV YV VYV

\4

109

¢ Self Adapting Numerical Software -

IcLw

_ SANS FEffort

* & o o

20

Provide software technology to aid in high performance on
commodity processors, clusters, and grids.

Pre-run time (library building stage) and run time

optimization.

Integrated performance modeling and analysis
Automatic algorithm selection - polyalgorithmic functions

Automated installation process

Can be expanded to areas such as communication software
and selection of numerical algorithms

Different
SW segment

“Best”
SW segment

Size msgs

Block msgs

55

£ Performance Tuning Methodology

Software Installation Software Execution
(done dynamically for each problem)

r R
)\ 4
L)

T
==

Run-time

111

56

o KFlop/s per Capita (Flops/Pop)
“" Based on the November 2004 Top500 only

1600
1400 | ‘Q "
1200 Hint: Peter Jackson had something to do with this
1000 - — H
igital (Lord or the RiNngs
800 -
600 -
400 .
200 | H H
N e I:l I_I
& D & \g\\ * RS Qe> RN
R g gt & & & F
GRS A C &
& 3
20
N

< Today’s CPU Architecture

1000
Chip Maximum

Power in watts/cm? Not too leng to reach
Nuclear Reacfor‘/
€_~ Ttanium - 130 Wwatts

100
Pentium 4 - 75 watts
Pentium III - 35 watts
f-lur-pas.szdpl S entium IT - 35 watts
eating Plate Pentium Pro - 30 watts
10

lum - 14 watts

@ 1486 - 2 watts
1386 -]i waTt 1 1 L L L L

15p jm 07p O06p 038 0260 O0d8p 043p Ol 007
1985 1995 2001 Yean

Moore’s Law for Power Consumption
Heat is becoming an unmanageable problem
20

114

57

. NASA Ames: SGI Altix Columbia

10,240 Processor System (#3)

¢ Architecture: Hybrid Technical Server Cluster

+ Vendor: SGI based on Altix systems

+ Deployment: 2004

+ Node:
» 1.5 GHz Itanium-2 Processor
> 512 procs/node (20 cabinets)
» Dual FPU's / processor

¢+ System:
> 20 Altix NUMA systems @ 512 procs/node = 10240 procs
> 320 cabinets (estimate 16 per node)
> Peak: 61.4 Tflop/s ; LINPACK: 52 Tflop/s

¢ Interconnect:
» FastNumaFlex (custom hypercube) within node
» Infiniband between nodes

¢ Pluses:
> Large and powerful DSM nodes

., ¢ Potential problems (Gotchas): 115
» Power consumption - 100 kw per node (2 Mw total)
n

leLwr

(Japanese) Earth Simulator (#4)

¢ Architecture: Custom Vector Cluster
Vendor: NEC

Deployment Date: 2002

Node:

» 500 MHz/1GHz SX-6 vector processor

> 8 pe's/node :‘T _

* & o

> 8 vector pipes/ pe
> 8 Gflops/processor peak
¢+ System:
» 5120 processors / 640 cabinets
» Peak: 41.1 Tflop/s
+ Interconnect:
> Custom 640x640 crossbar
¢ Pluses:
> High fraction of peak (30% typical)
+ Gotchas:
> No internet access (currently)
> Cost (estimated $350 M)

116

58

(- ‘ qt i
~Toc 12Y/s | Architecture:
& S - -
b - 1 F [=)
Fleart bacorning an unmanagsable oroblarn
Increasmg the number of gates into a t|ght knot and decreasing the cycle time of the processor
10’000 Sun's Surface
= —T
g Rocket Nozzle
= 1,000 —T
=
> Nuclear Reactor
= —l
2 100 Pentium®
[}
Q 8086 Hot Plate
© 10 {004 8085 —r
g 8008 286 386
o 8080 486
1
‘70 ‘80 ‘90 ‘00 ‘10
i
Intel Dey@loper Forum, Spring 2004 - Pat Gelsinger Square relationship between the cycle time and power
(Pentium at 90 W)

“Increasing CPU Performancé:

— D

—

g SUILEIEE EAgilic] Mol g i s

‘,.,.1._,,._—:1 petiatralily ,—i_,_,

lplefezise

EoWwer ClockaiRE

/olizige & TreNSisioN

DeRSIIy;

We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

Intel Yonah will double the processing power or48
per watt basis.

N . _ .

< C'L_\ . u,_ ,/C [
= Lnange Is Lonnin
|
Nagnge Is CLoming
I e =t
o ' 1 Core
E ©
1O
s |BE = No Free Lunch For Traditional
o
8 |®Es Software
-g c }'% (Without highly concurrent software it won't get any faster!)
5 o|2¢:
S |5ss
2 CE e 2 Cores
g8 |H—8g:8 ’
| 586 ¢ ’
. |£228 it
% é 25 e ’ 4 Cores
>3 - -
S | 3% g , - 8 Cores
—= e 36, -7 = — - - _—
) 2Cores s 3GH1:C$es¢_ BEHzﬁco_r'es_ —
9 Eg 7 - - ——— -
L 183’//4:::——‘—“
20 ==)) 119
Additional operations per second if code can take advantage of concurrency
n
A
«- CPU Desktop Trends 2004-2010
+ Relative processing power will continue to double
every 18 months
+ 256 logical processors per chip in late 2010
300W
250+ |
200
1507/
100
50
0 2004 Hardware Threads Per Chip
2005 2006 Cores Per Processor Chip
Year 2008 2009 2010
120

60

IC

£ commodity Frocessor |rends
B Bandwidth/Latency is the Critical Issue, not FLOPS

20 Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222

Annual Typical value
increase in 2005
Single-chip
floating-point 59% 4 GFLOP/s
performance
Front-side bus 239 1 6Word/s
bandwidth ° = 0.25 word/flop

Go

pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

121

61

