
1

9/16/2006 1

Self Adapting Numerical Software Self Adapting Numerical Software
(SANS) (SANS) –– Effort and Fault Tolerance in Effort and Fault Tolerance in

Linear Algebra AlgorithmsLinear Algebra Algorithms
Jack Dongarra

University of Tennessee
and

Oak Ridge National Laboratory

20 2

Self Adapting Numerical SoftwareSelf Adapting Numerical Software

♦ The process of arriving at an efficient
solution involves many decisions by an
expert.

Algorithm decisions
Data decisions
Management of the computing
environment
Processor specific tuning

Proceedings of the IEEE,
V: 93 #: 2 Feb. 2005

Issue on Program
Generation,

Optimization, and
Platform Adaptation

Complex set of interaction between
Users’ applications
Algorithm
Programming language
Compiler
Machine instruction
Hardware

Many layers of translation from the application
to the hardware. Changing with each generation
of hardware.

2

20 3

Self Adapting Numerical SoftwareSelf Adapting Numerical Software
♦ Optimizing software to exploit the features of a

given system has historically been an exercise in
hand customization.

Time consuming and tedious
Hard to predict performance from source code
Must be redone for every architecture and compiler

Software technology often lags hardware/architecture
Best algorithm may depend on input, so some tuning may be
needed at run-time.

♦ With good reason scientists expect their computing
tools to serve them and not the other way around.

♦ There is a need for quick/dynamic deployment of
optimized routines.

ATLAS, PhiPAC, BeBoP, Spiral, FFTW, GCO, …

20 4

Fault Tolerance: Failure is an OptionFault Tolerance: Failure is an Option
♦ Trends in HPC:

High end systems with thousand of
processors
Move to multicore nodes

♦ Increased probability of a node
failure

However, most systems today are robust

♦ MPI widely accepted in scientific computing
Process faults not tolerated in MPI standard

Mismatch between potential hardware problems
and (non fault-tolerant) programming paradigm
of MPI.

Minimum

Average

Maximum

1

10

100

1,000

10,000

100,000

1,000,000

Ju
n-9

3

Ju
n-9

4

Ju
n-9

5

Ju
n-9

6

Ju
n-9

7

Ju
n-9

8

Ju
n-9

9

Ju
n-0

0

Ju
n-0

1

Ju
n-0

2

Ju
n-0

3

Ju
n-0

4

Ju
n-0

5

pr

oc
es

so
rs

Top500 Data

3

20 5

Reliability of Large SystemsReliability of Large Systems
(Source: Daniel Reed, UNC)(Source: Daniel Reed, UNC)

MTBI 14 days. MTTR 3.3 hr
Availability 98.74%. SW is main outage
source. ***

6,656 NERSC
Seaborg

MTBI 9.7 hr
Availability 98.33% ****

3,016 PSC
Lemieux

20 reboots/day. 2-3% machines
replaced/year.
HW outage sources: storage, memory

~150,000Google

MTBF 5 hr (’01) and 40 hr (’03)
HW outage sources: storage, CPU, 3rd party
hardware **

8,192ASCI
White

MTBI 6.5 hr. 114 unplanned outages/month.
HW outage sources: storage, CPU, memory *

8,192ASCI Q

Reliability# CPUMachine

20 6

Related workRelated work

Manetho
n faults
[EZ92]

Egida

[RAV99]

MPI/FT
Redundance of tasks

[BNC01]

FT-MPI
Modification of MPI routines

User Fault Treatment

[FD00]

MPICH-V
N faults

Distributed logging

MPI-FT
N fault

Centralized server

[LNLE00]

Non AutomaticAutomatic

Pessimistic log

Log basedCheckpoint
based

Causal log
Optimistic log

(sender based)

Framework

API

Communication
Layer

Cocheck
Independent of MPI

[Ste96]

Starfish
Enrichment of MPI

[AF99]
Clip

Semi-transparent checkpoint

[CLP97]

Pruitt 98
2 faults sender based

[PRU98]

Sender based Mess. Log.
1 fault sender based

[JZ87]

Optimistic recovery
In distributed systems

n faults with coherent checkpoint
[SY85]

A classification of fault tolerant message passing environments considering
A) level in the software stack where fault tolerance is managed and
B) fault tolerance techniques.

Causal logging +
Coordinated
checkpoint

LAM/MPI

MPICH-V/CL
LA-MPI

New community MPI effort OPEN-MPI
U of Tennessee, LANL, Indiana U

C^3
Compiler generated chkpt

[Pingali, SC04]

4

20 7

OpenOpen--MPI: Fault Tolerance Models OverviewMPI: Fault Tolerance Models Overview

♦Frameworks planned to be
supported, depending on the user
involvement level

Automatic (no user involvement)
Check-point/restart (coordinated)
Log Based (uncoordinated)

Optimistic, Pessimistic, Casual

User driven
The environment recover depending on the
user specifications, then the user recover
the algorithmic requirements

20 8

FTFT--MPI MPI http://icl.cs.utk.edu/fthttp://icl.cs.utk.edu/ft--mpimpi//
♦ Define the behavior of MPI in case a process

failure occurs.
♦ FT-MPI based on MPI 1.3 (plus some MPI 2

features) with a fault tolerant model similar to
what was done in PVM.

Complete reimplementation, not based on other
implementations.

♦ A regular, non fault-tolerant MPI program will
run using FT-MPI.

♦ Gives the application the possibility to recover
from a process-failure.

♦ What FT-MPI does not do:
Recover user data (e.g. automatic check-pointing)
Provide transparent fault-tolerance

Part of the DOE Harness (ORNL, UTK, Emory) Project

5

20 9

Assumptions and Basic IdeasAssumptions and Basic Ideas

♦ Assume
Only a small number (or percentage) of processes will fail
The failed processes stop working (fail-stop model)
It is possible to detect such failures with the help of the execution
environment (such as PVM, FT-MPI, Open MPI, …)

♦ The basic idea of our work
Keep all surviving processes (DO NOT ABORT)
Maintain redundancy locally by coding approaches
Eliminate periodical I/O access to stable storage which is the bottle
neck for performance and scalability
Restart only the failed processes (same number to resume i.e. no
data redistribution)
Reconstruct the global consistent states from the local redundancy

♦ Two approaches
Scalable in-memory (or local disk) checkpointing
Scalable algorithm-based checkpoint-free fault tolerance

20 10

FTFT--MPI Failure ModesMPI Failure Modes
♦ ABORT: just do as other

implementations

♦ BLANK: leave hole

♦ SHRINK: re-order processes
to make a contiguous
communicator

Some ranks change

♦ REBUILD: re-spawn lost
processes and add them to
MPI_COMM_WORLD

6

20 11

Three Ideas for Fault Tolerant Three Ideas for Fault Tolerant
Linear Algebra AlgorithmsLinear Algebra Algorithms

♦ Lossless diskless check-pointing
for iterative methods

Checksum maintained in active processors
On failure, roll back to checkpoint and continue
No lost data

♦ Lossy approach for iterative methods
No checkpoint maintained
On failure, approximate missing data and carry on
Lost data but use approximation to recover

♦ Check-pointless methods for
dense algorithms

Checksum maintained as part of
computation
No roll back needed; No lost data

20 12

DiskDisk--less less CheckpointingCheckpointing
♦Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

7

20 13

Checkpoint/RestartCheckpoint/Restart

♦ Checkpoint/restart is today’s typical fault tolerance approach in HPC
Periodically write process states into stable-storage
If one process fails, abort all processes
Good to tolerate the failure of the whole system
But the overhead is high : T = # of procs * size_ckpt / bandwidth

Comp Proc 1 Comp Proc k

Process State
P1

Process State
Pk

Stable
Storage

20 14

First Approach: Diskless CheckpointingFirst Approach: Diskless Checkpointing
(K. Li & J. Plank, et. el.)(K. Li & J. Plank, et. el.)

Comp Proc 1 Comp Proc k Ckpt Proc

Process State
P1

Local
Checkpoint

C1

Process State
Pk

Local
Checkpoint

Ck

Checkpoint
Encoding

C

• Each computational processor saves a copy of its state locally in memory
• Dedicate an additional processor to save the encoding of these states

• The checkpoint overhead is (binary tree encoding):

T = log (# of procs) *size_ckpt / bandwidth + log (# of procs)*latency

Stable
Storage

∑

8

20 15

Diskless CheckpointingDiskless Checkpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues.

♦ When failure occurs:
control passes to user
supplied handler
“subtraction” performed
to recover missing data
P4 takes on role of P1
Execution continue

20 16

CG Parallel VersionCG Parallel Version
Think of the data like this Think of the data like this

on each processorA b 3 vectors

A b 3 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every j
iterations.
Need a copy of the 3 vectors
from checkpt in each processor
to maintain state.

9

20 17

FT PCG Algorithm AnalysisFT PCG Algorithm Analysis

Global Operations

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.

20 18

FT PCG Algorithm AnalysisFT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.
Global operation in checkpoint can be localized by sub-group.

Global Operations

Checkpoint x, r, and p
every k iterations

10

20 19

PCG Perforamce Overhead for Checkpoint and Recovery

1

10

100

1000

60 120 240 480
Number of Computation Processors

O
ve

rh
ea

d
(S

ec
on

ds
)

T_ckpt

T_rcvr_data

T_rcvr_f tmpi

PCG: PerformancePCG: Performance

Run PCG for 5000 iterations and take checkpoint every 1000 iterations
Cause a failure at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M

146.1

77.2

42.1

24.8

System
Recovery time

1697.0

1557.5

1490.5

1441.7

Total time to
recover from

fault

1531.1

1461.1

1429.3

1399.1

Time w/o
checkpoint

9.7

9.2

9.2

8.0

Checkpoint
time

10.1

10.0

9.9

9.8

Data
Recovery

time

Time (Sec)

480 procs

240 procs

120 procs

60 procs

IBM RS/6000 SP w/176
Winterhawk II thin nodes
(each with four 375 MHz
Power3-II processors)

20 20

Coding to Survive Multiple Failures: Basic Scheme Coding to Survive Multiple Failures: Basic Scheme
(Reed(Reed--Solomon Encoding)Solomon Encoding)

P1

P2

Pn

C1

Cm

C1 = a11 * P1 + . . . + a1n * Pn

Cm = am1 * P1 + . . . + amn * Pn

If there are k (<= m) processes failed, then the m equalities become

m equations with k unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assume pipelined encoding):

T = m * { (1 + O(1/size_ckpt^0.5)) * size_ckpt / bandwidth + #of procs * latency }

Compute Procs Checkpoint Procs
Cm

Pj is the checkpoint data on the jth comp procs
Ci is the encoded data on the ith ckpt procs
A = (a i j)m x n is a encoding matrix

Key idea: establish m equalities by m encodings

.

.

.

RS

RS

{

11

20 21

ReedReed--Solomon ApproachSolomon Approach
A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

20 22

A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

Say 2 processors fail, P2 and P3.

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X
X

ReedReed--Solomon ApproachSolomon Approach

12

20 23

A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

Say 2 processors fail, P2 and P3.
Take a subset of A’s (columns 2 and 3) and solve for P2 and P3.

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X
X

12 13 2 1

22 23 3 2

a a P C
a a P C
⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

ReedReed--Solomon ApproachSolomon Approach

20 24

FloatingFloating--Point Coding to Tolerate Multiple FailuresPoint Coding to Tolerate Multiple Failures

⎪
⎩

⎪
⎨

⎧

++++++=

++++++=

++

++

nmnmjmjmjmjmm

nnmjmjjj

PaPaPaPaC

PaPaPaPaC

)(11

1)(111111

LLL

M

LLL

♦ In order to be able to recover from any k (k <= m) failures, the
checkpoint encoding matrix A has to satisfy

Any square sub-matrix of A is non-singular

♦ How to find such an A ?
Vandermonde matrix, Cauchy matrix,

♦ To maintain the checksum relationship
Floating-point arithmetic has to be used in calculating encodings

♦ Due to round-off errors in floating-point computations
Require any square sub-matrix of A is well-conditioned

13

20 25

Condition Numbers of Gaussian Random Condition Numbers of Gaussian Random
Matrices: TheoryMatrices: Theory

()

() .981.0
1||

log)(log

1||
414.6

2
1)(Pr1||

245.0

2
1

10210

1||

2

1||

+
+−

<

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
+−<><

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
+−

×

+−

×

+−

mn
nGE

x
mn
n

xG
x

mn
n

nm

mn

nm

mn

κ

π
κ

π

In our fault tolerant applications:

n: is the number of redundant processor used.
m: is the number of processor failures actually occurred.
Gm x n: is the coefficient matrix of the recovery equation.

Example: Assume you are running an application on a 100K-processor system, and
tolerating 20 concurrent failures. If there are 10 concurrent failures actually
occurred, then m=10, n=20

E (log10 k) < 1.25 : On average, you will loss about 1 digit in recovery
Pr(k >102) < 3.1*10 – 11: The probability to loss 2 digits is less than 10 - 10

Condition Numbers of Gaussian Random Matrices, Z. Chen & J. Dongarra,
SIAM Matrix Analysis and Applications, Volume 27, Number 3, pp 603-620, 2005.

20 26

PCG: Performance Overhead of RecoveryPCG: Performance Overhead of Recovery

638.0 (12.0)
555.7 (8.2)
538.5 (5.7)
522.9 (3.7)
4 failures

637.1 (10.5)
554.2 (6.9)
537.5 (4.5)
521.7 (2.8)
1 failures

637.2 (11.1)
554.8 (7.4)
537.7 (4.9)
522.1 (3.2)
2 failures

637.7 (11.5)
555.2 (7.6)
538.1 (5.3)
522.8 (3.3)
3 failures 5 failures0 failuresT (ckpt T)

638.5 (12.5)622.9120 comp
556.1 (8.7)546.560 comp
538.6 (6.1)532.230 comp
523.1 (3.9)517.815 comp

Run PCG for 20000 iterations and take checkpoint every 2000 iterations
Cause a failure by exiting some processes at the 10000-th iteration

PCG Performance Overhead for Performaning Recovery

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

15 30 60 120

Number of Computation Processors

R
ec

ov
er

y
O

ve
rh

ea
d

(%
) 1 failed proc

2 failed proc

3 failed proc

4 failed proc

5 failed proc

64 dual processor 2.4 GHz Opteron
Nodes are connected with GigE

14

20 27

Second ApproachSecond Approach

♦ Lossy approach for iterative methods
Here there is only a checkpoint of the
primary data

Continuous checkpointing is not done during the
iteration.

When the failure occurs we will approximate
the missing data and continue

No guarantee here; may or may not work

20 28

LossyLossy Algorithm : Basic IdeaAlgorithm : Basic Idea
♦ Let us assume that the exact solution of

the system Ax=b is stored on different
processors by rows

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

15

20 29

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

» Processor 2 (e.g.) fails, all its data is lost.

» How to recover the lost part of x in this case?

LossyLossy Algorithm : Basic IdeaAlgorithm : Basic Idea
♦ Let us assume that the exact solution of

the system Ax=b is stored on different
processors by rows

20 30

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

LossyLossy Algorithm : Basic IdeaAlgorithm : Basic Idea
♦ Let us assume that the exact solution of

the system Ax=b is stored on different
processors by rows

16

20 31

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: revover a processor and a

running parallel environement (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

LossyLossy Algorithm : Basic IdeaAlgorithm : Basic Idea
♦ Let us assume that the exact solution of

the system Ax=b is stored on different
processors by rows

20 32

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

» Step 3: Notice that
» A21 x1 + A22 x2 + … + A2n xn = b2⇒

» x2 = A
22

-1 (b
2

– ∑i≠2A2i x
i
)

LossyLossy Algorithm : Basic IdeaAlgorithm : Basic Idea
♦ Let us assume that the exact solution of

the system Ax=b is stored on different
processors by rows

17

20 33

Using GMRES(30) Non Using GMRES(30) Non SymetricSymetric MatrixMatrix

3.910.331.035.381.5642.38372100lossy

0.200.321.021.682.401.9245.49395100chkptR

stomach; n=213,360; nnz=3,021,648; tol=10-10; #procs=16; nf=13,335; nnz=185,541

1.9241.04385nochkptR

38.89385nolossy
TIIITII,a,bTITRecovTRollTChkptTWall#iteriterfrecovery

1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01

1.00E+00

0 100 200 300

chkpt_R
lossy
no failure

1.00E-05

1.00E-04

90 100 110

Last checkpoint

Time are given in seconds
Intel Xeon at 2.40 GHz with
Myrinet interconnect

20 34

Third Approach: MatrixThird Approach: Matrix--Vector Multiplication Vector Multiplication
with Checksum Matrixwith Checksum Matrix

Then

1 2

1 21

1 1

1

1

1

2 1

p p p
p p p

q

i i iqi i i

r

qM M M

M

M M

M

M M

M

= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠∑ ∑ ∑

L

M M L M

L

L

1

...

i

q

q

v

v v
v

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑

11

1

1

1

p q
i j

q
j jj

r

j

q

i j

p j jj

M v

v
v

M

M v

b
M

=

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠∑

∑
∑

∑
M

Let

11 +=++ pp bbb L

Conclusion: Any singular failure in the result b can be corrected
Matrix and vectors stored by rows on processors.

K.-H. Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations," IEEE Transactions on Computers, vol. C-33, June 1984, pp. 518--528.

18

20 35

Fault Tolerant Dense Matrix ComputationsFault Tolerant Dense Matrix Computations
♦ Assume the original matrix M is distributed into a p by q processor grid with a

2D block cyclic distribution. Then from processor point of view, the distributed
matrix is

, where is the local
matrix on processor (i , j).

♦ Define the full distributed checksum matrix of M as:

♦ For p x q processors need extra p + q + 1 processors to maintain the checksum.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

pqp

q

MM

MM
M

L

MLM

L

1

111

ijM

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑ ∑∑∑
∑

∑

= ===

=

=

p

i

q

j ij
p

k iq
p

i i

q

j pjpqp

q

j jq

f

MMM

MMM

MMM

M

1 111 1

11

1 1111

L

L

MMLM

L

20 36

An Example: An Example: ScaLAPACKScaLAPACK/PBLAS Matrix Multiplication/PBLAS Matrix Multiplication

♦ Single failure during computation can be recovered from the checksum
relationship

♦ By using a floating-point version Reed-Solomon code, multiple failures can
be tolerated

1 1 1

1

11 1

q

p p q
p p

i i qi i

A A

A A

A A
= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠∑ ∑

L

M L M

L

L

1 1 1 11

1 1

*

p
p jj

p
q q p q jj

B B B

B B B

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

L

M L M M

L

1 1 1 11

1 1

11 1 1 1

p
p jj

p
p p p p jj

p p p p
i i p i ji k i j

C C C

C C C

C C C

=

=

= = = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
∑ ∑ ∑ ∑

L

M L M M

L

L

19

20 37

PDGEMM: the Overhead for Fault Tolerance PDGEMM: the Overhead for Fault Tolerance

♦ Note that the overhead (%) for fault tolerance is

O (1 / (p*n)) 0, as p ∞

Overhead of Fault Tolerance (Time)

0

1000

2000

3000

4000

5000

4 9 16 25 36 49 64 81 100

Number of Processors (on Original Data)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

T_without_ft

T_with_ft

T_with_recover

Overhead of Fault Tolerance (Percentage)

0

5

10

15

20

25

30

35

40

45

50

4 9 16 25 36 49 64 81 100

Number of Processors (on Original Data)

O
ve

rh
ea

d
(%

)

Overhead_without_recover

Overhead_with_recover

♦ Size of local matrices on each process: 6,400 by 6,400
♦ Platform: 128 processors, Intel EM64T, 64bit w/Myrinet

20 38

Predictive Adaptive Fault Predictive Adaptive Fault TolerenceTolerence

♦ Large-scale fault tolerance
adaptation: resilience and recovery
predictive techniques for probability of failure

resource classes and capabilities
coupled to application usage modes

resilience implementation mechanisms
adaptive checkpoint frequency
in memory checkpoints

♦ By monitoring, one can identify
performance problems
failure probability

♦ When potential of failure
Migrate process to another
processor

20

20 39

Next StepsNext Steps
♦ Software to determine the checkpointing interval and number of

checkpoint processors from the machine characteristics.
Perhaps use historical information.
Monitoring
Migration of task if potential problem

♦ Local checkpoint and restart algorithm.
Coordination of local checkpoints.
Processors hold backups of neighbors.

♦ Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.

Use p processors for the computation and have k of them hold
checkpoint.

♦ Generalize the ideas to provide a library of routines to do the
diskless check pointing.

20 40

PAPI 4.0PAPI 4.0
♦ PAPI is software layer that aims to provide the tool

designer and application engineer with a consistent
interface and methodology for use of the performance
counter hardware found in most major
microprocessors.

♦ PAPI has historically targeted on on-processor
performance counters

Ops, cycles, memory traffic
Extending to look at other features of system

Communication and power issues
♦ Substrates available for

ACPI (Advanced Configuration and Power Interface)
Myrinet MX

♦ Substrates under development for
Infiniband
GigE

♦ PAPI 4.0 Beta release expected Q2, 2006

21

20 41

Temperature SensorTemperature Sensor
♦ AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
♦ This diode can be read by an external temperature sensor to

determine the processors temperature.

20 42

Temperature SensorTemperature Sensor
♦ AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
♦ This diode can be read by an external temperature sensor to

determine the processors temperature.

22

20 43

Summary of Current Unmet NeedsSummary of Current Unmet Needs
♦ Performance / Portability
♦ Fault tolerance
♦ Memory bandwidth/Latency
♦ Adaptability: Some degree of autonomy to self optimize,

test, or monitor.
Able to change mode of operation: static or dynamic

♦ Better programming models
Global shared address space
Visible locality

♦ Maybe coming soon (incremental, yet offering real benefits):
Global Address Space (GAS) languages: UPC, Co-Array Fortran,
Titanium, Chapel, X10, Fortress)

“Minor” extensions to existing languages
More convenient than MPI
Have performance transparency via explicit remote memory
references

♦ What’s needed is a long-term, balanced investment in
hardware, software, algorithms and applications in the HPC
Ecosystem.

20 44

Collaborators / SupportCollaborators / Support
♦ Top500 Team

Erich Strohmaier, NERSC
Hans Meuer, Mannheim
Horst Simon, NERSC

♦ Fault Tolerant Work
Julien Langou, UTK
Jeffery Chen, UTK

♦ FT-MPI

Graham Fagg, UTK
Edgar Gabriel, UH
Thara Angskun, UTK
George Bosilca, UTK
Jelena Pjesivac-Grbovic, UTK

http://icl.cs.utk.edu/ft-mpi/

23

20 45

20 46

26th List: The TOP1026th List: The TOP10

9
6

51202002
customJapanEarth Simulator Center35.86

Earth-Simulator
SX-6

NEC7
4

52002005
hybridUSAOak Ridge National Lab20.53Jaguar

Cray XT3 AMDCray10

122882005
customNetherlandsASTRON

University Groningen27.45eServer Blue GeneIBM

48002005
commodSpainBarcelona Supercomputer

Center27.91MareNostrum
PPC 970/MyrinetIBM8

5

108802005
hybridUSASandia36.19Red Storm

Cray XT3 AMDCray6
10

80002005
commodUSASandia38.27

Thunderbird
Pentium/Infiniband

Dell5

101602004
hybridUSANASA Ames51.87Columbia

Altix, Itanium/InfinibandSGI4
3

102402005
customUSADOE/NNSA/LLNL63.39ASC Purple

Power5 p575IBM3

409602005
customUSAIBM Thomas Watson91.29BGW

eServer Blue GeneIBM2

1310722005
customUSADOE/NNSA/LLNL280.6BlueGene/L

eServer Blue GeneIBM1

#ProcYearCountryInstallation SiteRmax
[TF/s]ComputerManufacturer

24

20 47

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

4 processors

Node Board
(32 chips, 4x4x2)

16 Compute Cards
64 processors

(64 racks, 64x32x32)
131,072 procsRack

(32 Node boards, 8x8x16)
2048 processors

2.8/5.6 GF/s
4 MB (cache)

5.6/11.2 GF/s
1 GB DDR

90/180 GF/s
16 GB DDR

2.9/5.7 TF/s
0.5 TB DDR

180/360 TF/s
32 TB DDR

IBM IBM BlueGeneBlueGene/L /L #1#1 131,072 Processors 131,072 Processors
Total of 18 systems all in the Top100Total of 18 systems all in the Top100

“Fastest Computer”
BG/L 700 MHz 131K proc
64 racks
Peak: 367 Tflop/s
Linpack: 281 Tflop/s
77% of peak

BlueGene/L Compute ASIC

Full system total of
131,072 processors

The compute node ASICs include all networking and processor functionality.
Each compute ASIC includes two 32-bit superscalar PowerPC 440 embedded
cores (note that L1 cache coherence is not maintained between these cores).
(13K sec about 3.6 hours; n=1.8M)

1.6 MWatts (1600 homes)
43,000 ops/s/person

20 48

FTFT--MPI Approach for Dealing with FaultsMPI Approach for Dealing with Faults
• Application checkpointing, MP API+Fault management,

automatic.

• Application ckpt: application store intermediate results and restart form them

• MP API+FM: message passing API returns errors to be handled by the programmer

• Automatic: runtime detects faults and handle recovery

25

20 49

OpenOpen--MPI Approach for Dealing with FaultsMPI Approach for Dealing with Faults
• Application checkpointing, MP API+Fault management,

automatic.

• Application ckpt: application store intermediate results and restart form them

• MP API+FM: message passing API returns errors to be handled by the programmer

• Automatic: runtime detects faults and handle recovery

• Checkpoint coordination: no, coordinated, uncoordinated.

• Coordinated: all processes are synchronized, network is flushed before ckpt;

• all processes rollback from the same snapshot

• Uncoordinated: each process checkpoint independently of the others
• each process is restarted independently of the other

• Message logging: no, pessimistic, optimistic, causal.

• Pessimistic: all messages are logged on reliable media and used for replay

• Optimistic: all messages are logged on non reliable media. If 1 node fails, replay is
done according to other nodes logs. If >1 node fail, rollback to last
coherent checkpoint

• Causal: optimistic+Antecedence Graph, reduces the recovery time

20 50

FT MM: FT MM:
Perform Computation with Encoded DataPerform Computation with Encoded Data

♦ Assume the original matrix M is distributed into a p by q processor grid with a
2D block cyclic distribution. Then from processor point of view, the distributed
matrix is

, where is the local
matrix on processor (i , j).

♦ Define the row distributed checksum matrix of M as

♦ Define the column distributed checksum matrix of M as

♦ Define the full distributed checksum matrix of M as

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

pqp

q

MM

MM
M

L

MLM

L

1

111

ijM

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑∑ ==

p

i iq
p

i i

pqp

q

r

MM
MM

MM

M

11 1

1

111

L

L

MLM

L

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

∑

∑

=

=

q

j pjpqp

q

j jq
c

MMM

MMM
M

11

1 1111

L

MMLM

L

1 1 1 11

1 1

11 1 1 1

q
q jj

f
q

p p q p jj

p p p q
i i q i ji k i j

M M M

M
M M M

M M M

=

=

= = = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
∑ ∑ ∑ ∑

L

M L M M

L

L

= Ar

= Bc

= Cf

26

20 51

Real Crisis With HPC Is With The SoftwareReal Crisis With HPC Is With The Software
♦ Our ability to configure a hardware system capable of

1 PetaFlop (1015 ops/s) is without question just a matter of time
and $$.

♦ A supercomputer application and software are usually much more
long-lived than a hardware

Hardware life typically five years at most…. Apps 20-30 years
Fortran and C are the main programming models (still!!)

♦ The REAL CHALLENGE is Software
Programming hasn’t changed since the 70’s
HUGE manpower investment

MPI… is that all there is?
Often requires HERO programming
Investments in the entire software stack is required (OS, libs, etc.)

♦ Software is a major cost component of modern technologies.
The tradition in HPC system procurement is to assume that the
software is free… SOFTWARE COSTS (over and over)

20 52

““Last MileLast Mile”” Problem With SoftwareProblem With Software
♦ Expected to be innovative

Proof of concept software generated

♦ Message Passing Interface (MPI)
“assembly language” of parallel computing
lowest common denominator

portable across architectures and systems
♦ High-Performance Fortran (HPF)

higher level data parallel specification
limited to regular data structures

we expected too much too soon
see Earth System Simulator

♦ Costs and implications
Software productivity is low
Next generation of machine will have increased levels of
parallelism
human productivity

low-level programming model
software innovation

limited development of alternatives

27

20 53

Basic IdeaBasic Idea

♦ Assume
we are running a parallel program where Pi(t) denotes the data on
the ith processor at time t
P1(t)+ P2(t)+ … + Pn(t) = Pn+1(t)

♦ If the first processor failed, how can we recover the lost data P1(t)
?

Answer: P1(t) = - P2(t) - … - Pn(t) + Pn+1(t)

♦ In this special case, we are lucky enough to be able to recover the
lost data without maintaining any checkpoint due to the relationship

P1(t)+ P2(t)+ … + Pn(t) = Pn+1(t)

♦ Question: can we create this kind of special relationship on purpose ?
The answer is YES for many programs doing matrix computations
How ?

Perform computation with encoded data

20 54

Overhead and Scalability AnalysisOverhead and Scalability Analysis

♦ Assume a p by p processor grid and a n by n local matrix per processor

♦ Without fault tolerance, the number of calculations on each processor is
2*p*n^3. (because 2*(p*n)^3 calculations by p*p processors)

♦ With fault tolerance, the number of calculations on each processor is still
2*p*n^3. (the # of calculations per processor does not increase !)

♦ Overhead for fault tolerance
Calculate encoding at the beginning: O (1 / (p*n))
Increased communication (due to larger processor grid): O (1 / (
p*n))
Recover decoding : O (1 / (p*n))

♦ Note that
O (1 / (p*n)) 0, as n, p

∞

28

20 55

Example Matrices from Example Matrices from DiscretizingDiscretizing Boltzmann Equation in Boltzmann Equation in
the TSI project at ORNLthe TSI project at ORNL

D_i is dense: m by m.

B_i and C_i are diagonal.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−

nn

nnn

DB
CDB

CDB
CD

111

222

11

OOO

G, Q, m, and n are
parameters used to
discretize the problem

20 56

Prototype Example II: Fault Tolerant Matrix MultiplicationPrototype Example II: Fault Tolerant Matrix Multiplication
(PDGEMM in (PDGEMM in ScaLAPACKScaLAPACK/PBLAS)/PBLAS)

♦ Demonstrate how to survive (adapt to) partial process failures in parallel
matrix multiplication

Based on FT-MPI library
Adapt to failures rather than restart the whole application
Can be used in heterogeneous environments

♦ Use checkpoint-free technique
No periodical checkpoint is involved
Perform computation with encoded matrices

♦ Answer four questions
what is the overhead of calculating encodings ?
what is the overhead of performing computation with encoded
matrices?
what is the overhead of recovering FT-MPI environment ?
what is the overhead of recovering application data ?

29

20 57

PDGEMM: Experiment ConfigurationsPDGEMM: Experiment Configurations

♦ Size of local matrices on each process: 6,400 by 6,400

♦ Platform (Grig @ UTK):
64 nodes, 128 processors, Intel EM64T, 64bit
Myrinet
FT-MPI + Debian Linux

64,00057,60010 by 109 by 9
70,40064,00011 by 1110 by 10

57,60051,2009 by 98 by 8
51,20044,8008 by 87 by 7
44,80038,4007 by 76 by 6
38,40032,0006 by 65 by 5
32,00025,6005 by 54 by 4
25,60019,2004 by 43 by 3
19,20012,8003 by 32 by 2

Size of the
checksum matrix

Size of the
original matrix

Process grid
w/ FT

Process grid
w/out FT

20 58

PDGEMM: The Overhead (%) for Calculating EncodingsPDGEMM: The Overhead (%) for Calculating Encodings

♦ Note that the overhead for encoding is

O (1 / (p*n)) 0, as p ∞

Over head f or Const r uct i ng Checksum Mat r i ces

0

5

10

15

20

25

4 9 16 25 36 49 64 81 100

Number of Pr ocessor s (on Or i gi nal Dat a)

Ov
er

he
ad

 (
%)

30

20 59

PDGEMM: The Overhead for Performing Computation PDGEMM: The Overhead for Performing Computation
with Encoded Matriceswith Encoded Matrices

♦ Note that the overhead for performing computation with encoded
matrices is

O (1 / (p*n)) 0, as p ∞

Over head f or Per f or mi ng Comput at i ons on Encoded
Mat r i ces

0

1

2

3

4

5

6

7

4 9 16 25 36 49 64 81 100

Number of Pr ocessor s (on Or i gi nal Dat a)

Ov
er

he
ad

 (
%)

20 60

PDGEMM: The Overhead for Recovering PDGEMM: The Overhead for Recovering
FTFT--MPI EnvironmentMPI Environment

♦ Note that the time to recover FT-MPI
is currently O (p2)
will be improved to O(log p) soon
is negligible compared with the time to recover application
data

Over head f or Recover i ng FT- MPI

0

0. 02

0. 04

0. 06

0. 08

0. 1

0. 12

0. 14

0. 16

0. 18

0. 2

4 9 16 25 36 49 64 81 100

Number of Pr ocessor s (on Or i gi nal Dat a)

Ov
er

he
ad

 (
%)

31

20 61

PDGEMM: The Overhead for Recovering PDGEMM: The Overhead for Recovering
Application DataApplication Data

♦ Note that the overhead for recovering the application data is

O (1 / (p*n)) 0, as p ∞

Over head f or Recover i ng Lost Dat a

0

2

4

6

8

10

12

14

16

18

4 9 16 25 36 49 64 81 100

Number of Pr ocessor s (on Or i gi nal Dat a)

Ov
er

he
ad

 (
%)

20 62

Coding to Survive Multiple Failures: Subgroup SchemeCoding to Survive Multiple Failures: Subgroup Scheme

P1

P2

Pg

C1

Cm
Sub-group 1 Sub-group s

Cm

Divide the computational processors into s sub-groups (with g procs per group), dedicate m
checkpoint processors for each sub-group to holding the encodings of the local checkpoint.

The checkpoint overhead (assume pipelined encoding within each sub-group):

T = m * { (1 + O(1/size_ckpt^0.5)) * size_ckpt / bandwidth + g * latency }

Note that g (g << # of total procs) is a constant independent of # of total procs,
therefore, the checkpoint overhead is independent of # of total procs.

RS

RS

P1

P2

Pg

C1

CmCm

RS

RS

32

20 63

Diskless VersionDiskless Version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

Extra storage needed on each process
from the data that is changing.
Actually don’t do XOR, add the information.

20 64

PCG: Performance Overhead of Taking PCG: Performance Overhead of Taking
CheckpointsCheckpoints

627.5 (4.2)
549.7 (3.2)
535.1 (3.0)
520.4 (2.8)
4 ckpt

624.4 (1.5)
547.8 (1.2)
533.3 (1.1)
518.9 (1.0)
1 ckpt

625.5 (2.3)
548.0 (2.0)
533.7 (1.8)
519.6 (1.7)
2 ckpt

626.7 (3.6)
548.8 (2.7)
534.5 (2.3)
519.8 (2.1)
3 ckpt 5 ckpt0 ckptT (ckpt T)

628.6 (4.5)622.9120 comp
550.1 (3.7)546.560 comp
535.6 (3.5)532.230 comp
521.0 (3.2)517.815 comp

Run PCG for 20000 iterations and take checkpoint every 2000 iterations (about 1 minute)

PCG Performance Overhead for Taking Checkpoints

0.00%

0.20%

0.40%
0.60%

0.80%

1.00%

1.20%

15 30 60 120

Number of Computation Processors

C
he

ck
po

in
t O

ve
rh

ea
d

(%
) 1 ckpt proc

2 ckpt proc
3 ckpt proc
4 ckpt proc
5 ckpt proc

33

20 65

PCG: Performance with Different MPI ImplementationsPCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

20 66

PCG: Performance with Different MPI ImplementationsPCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

34

20 67

PCG: Performance with Different MPI ImplementationsPCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

20 68

Reliability of Large SystemsReliability of Large Systems
(Source: Daniel Reed, UNC)(Source: Daniel Reed, UNC)

MTBI 14 days. MTTR 3.3 hr
Availability 98.74%. SW is main outage
source. ***

6,656 NERSC
Seaborg

MTBI 9.7 hr
Availability 98.33% ****

3,016 PSC
Lemieux

20 reboots/day. 2-3% machines
replaced/year.
HW outage sources: storage, memory

~15,000Google

MTBF 5 hr (’01) and 40 hr (’03)
HW outage sources: storage, CPU, 3rd party
hardware **

8,192ASCI
White

MTBI 6.5 hr. 114 unplanned outages/month.
HW outage sources: storage, CPU, memory *

8,192ASCI Q

Reliability# CPUMachine

35

20 69

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

4 processors

Node Board
(32 chips, 4x4x2)

16 Compute Cards
64 processors

(64 racks, 64x32x32)
131,072 procsRack

(32 Node boards, 8x8x16)
2048 processors

2.8/5.6 GF/s
4 MB (cache)

5.6/11.2 GF/s
1 GB DDR

90/180 GF/s
16 GB DDR

2.9/5.7 TF/s
0.5 TB DDR

180/360 TF/s
32 TB DDR

IBM IBM BlueGeneBlueGene/L /L #1#1 131,072 Processors 131,072 Processors
Total of 18 systems all in the Top100Total of 18 systems all in the Top100

“Fastest Computer”
BG/L 700 MHz 131K proc
64 racks
Peak: 367 Tflop/s
Linpack: 281 Tflop/s
77% of peak

BlueGene/L Compute ASIC

Full system total of
131,072 processors

The compute node ASICs include all networking and processor functionality.
Each compute ASIC includes two 32-bit superscalar PowerPC 440 embedded
cores (note that L1 cache coherence is not maintained between these cores).
(13K sec about 3.6 hours; n=1.8M)

1.6 MWatts (1600 homes)
43,000 ops/s/person

20 70

Commodity ProcessorsCommodity Processors

♦ Intel Pentium Nocona
3.6 GHz, peak = 7.2 Gflop/s
Linpack 100 = 1.8 Gflop/s
Linpack 1000 = 4.2 Gflop/s

♦ Intel Itanium 2
1.6 GHz, peak = 6.4 Gflop/s
Linpack 100 = 1.7 Gflop/s
Linpack 1000 = 5.7 Gflop/s

♦ AMD Opteron
2.6 GHz, peak = 5.2 Gflop/s
Linpack 100 = 1.6 Gflop/s
Linpack 1000 = 3.9 Gflop/s

36

20 71

Architectures / SystemsArchitectures / Systems

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

SIMD

Single Proc.

Cluster

Constellations

SMP

MPP

Cluster: Commodity processors & Commodity interconnect

Constellation: # of procs/node nodes in the system

(360)

20 72

Customer Segments / PerformanceCustomer Segments / Performance

Research

Industry

Academic

Vendor
Classified

Government

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

50%

37

20 73

A A PetaFlopPetaFlop Computer by the End of the Computer by the End of the
DecadeDecade

♦ 10 Companies working on a building a
Petaflop system by the end of the
decade.

Cray
IBM
Sun
Dawning
Galactic
Lenovo
Hitachi
NEC
Fujitsu
Bull

Japanese Japanese
““Life SimulatorLife Simulator”” (10 (10 Pflop/sPflop/s))

} Chinese Chinese
CompaniesCompanies

}

}

20 74

Fuel Efficiency: Fuel Efficiency: GFlopsGFlops/Watt/Watt

Top 20 systems
Based on processor power rating only (3,>100,>800)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BlueG
ene

/L
Blue G

ene

ASC P
ur

ple
 p

5
1.9

GHz

Colum
bia

- S
GI A

ltix
 1.

5 G
Hz

Thu
nde

rb
ird

 - P
en

tiu
m 3.

6 G
Hz

Red
 Sto

rm
 C

ray
 XT3,

2.0
 G

Hz
Ear

th-S
im

ulat
or

Mar
eN

os
tru

m PPC 97
0,

2.2
 G

Hz
Blue G

ene

Ja
guar

- C
ray

 X
T3

, 2
.4

GHz

Thu
nde

r -
 In

tel
 Ita

nium2 1.
4G

Hz
Blue G

ene

Blue G
ene

Cray
 X

T3,
2.6

 G
Hz

Apple
 XSer

ve
, 2

.0
GHz

Cray
 X

1E
 (4

GB)
Cray

 X
1E

 (2
GB)

ASCI Q
 - A

lph
a 1

.25 G
Hz

IB
M p5 5

75
 1.

9 G
Hz

Sys
tem

 X
 2.

3 G
Hz A

pple
 XSer

ve
/

G
Fl

op
s/

W
at

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

38

20 75

Future Challenge: Future Challenge:
Developing the Ecosystem for HPCDeveloping the Ecosystem for HPC

From the NRC Report on “The Future of Supercomputing”:
♦ Hardware, software, algorithms, tools, networks, institutions,

applications, and people who solve supercomputing applications
can be thought of collectively as a multifaceted ecosystem

♦ Research investment in HPC should be informed by the
ecosystem point of view - progress must come on a broad front
of interrelated technologies, rather than in the form of
individual breakthroughs.

A supercomputer ecosystem is a

continuum of computing platforms,

system software, algorithms, tools,

networks, and the people who know

how to exploit them to solve

computational science applications.

20 76

CPU Desktop Trends 2004CPU Desktop Trends 2004--20102010

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip
Hardware Threads Per Chip

0

20

40

60

80

100

120

140

Year

♦ Relative processing power will continue to double
every 18 months

♦ 256 logical processors per chip in late 2010

39

20 77

Third ApproachThird Approach

♦Checkpointless methods for dense
algorithms

We need extra processors to
participate in the computation

The extra processors carry the active
checksum

No roll back needed; just compute
what’s missing and carry on.

20 78

FT FT ScaLAPACKScaLAPACK: Perform Computation with Encoded Data: Perform Computation with Encoded Data

♦ Assume the original matrix M is distributed into a p by q processor grid with a
2D block cyclic distribution. Then from processor point of view, the distributed
matrix is , where is the local matrix on processor (i,j).

♦ Define the row distributed checksum matrix of M as

♦ Define the column distributed checksum matrix of M as

♦ Define the full distributed checksum matrix of M as

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

pqp

q

MM

MM
M

L

MLM

L

1

111 ijM

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑∑ ==

p

i iq
p

i i

pqp

q

r

MM
MM

MM

M

11 1

1

111

L

L

MLM

L

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

∑

∑

=

=

q

j pjpqp

q

j jq
c

MMM

MMM
M

11

1 1111

L

MMLM

L

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑ ∑∑∑
∑

∑

= ===

=

=

p

i

q

j ij
p

k iq
p

i i

q

j pjpqp

q

j jq

f

MMM

MMM

MMM

M

1 111 1

11

1 1111

L

L

MMLM

L

40

20 79

An Example: An Example: ScaLAPACKScaLAPACK Matrix MultiplicationMatrix Multiplication

= CBA

20 80

An Example: An Example: ScaLAPACKScaLAPACK Matrix MultiplicationMatrix Multiplication

= CBA

41

20 81

An Example: An Example: ScaLAPACKScaLAPACK Matrix MultiplicationMatrix Multiplication

♦ Theorem:
At the end of each iteration, the checksum relationship
in A r, B c, and C f are still maintained

♦ Conclusion
Single failure during computation can be recovered from the checksum
relationship
By using a floating-point version Reed-Solomon code, multiple failures can be

l d

Ac
j B r j T

b

b
Ac

B r

= +C f (j+1) C f (j) Ac
j B r j

TAt the jth iteration:

FT-PDGEMM operates
on Ac, Br and Cf

20 82

An Example: An Example: ScaLAPACKScaLAPACK Matrix MultiplicationMatrix Multiplication

♦ Theorem:
At the end of each iteration, the checksum relationship
in A r, B c, and C f are still maintained

♦ Conclusion
Single failure during computation can be recovered from the checksum
relationship
By using a floating-point version Reed-Solomon code, multiple failures can be

l d

Ac
j B r j T

b

b
Ac

B r

= +C f (j+1) C f (j) Ac
j B r j

TAt the jth iteration:

FT-PDGEMM operates
on Ac, Br and Cf

42

20 83

Overhead for RecoveryOverhead for Recovery

965.3699.1453.9Execution time w/o FT

3.64.87.0Overhead for Recovery
34.933.431.6Time for Recovery
1078.4800.6543.4Execution time w/ Recvr

5 by 54 by 43 by 3Process Grid w/ FT
4 by 43 by 32 by 2Process Grid w/o FT
25,60019,20012,800Size of Matrix

Recovery Overhead on Boba Cluster

0
2
4
6
8

10

12800 19200 25600

Problem Size

O
ve

rh
ea

d(
%

)

Recovery Overhead on Boba Clucter

-100

400

900

1400

12800 19200 25600
Problem Size

MM

FT-MM

20 84

An Example: An Example: ScaLAPACKScaLAPACK Matrix MultiplicationMatrix Multiplication

1 1 2 2 10 10 20 20 100 100 200 200
A = 1 1 2 2 B = 10 10 20 20 C = 100 100 200 200

3 3 4 4 30 30 40 40 300 300 400 400
3 3 4 4 30 30 40 40 300 300 400 400

Assume the original matrix are distributed into a 2 by 2 processor grid with a 2D block cyclic distribution,
where both the row block size and the column block size are 1.

Encode matrices into 3 by 3 processor grid:
1 1 2 2 10 10 20 20 30 30
1 1 2 2 10 10 20 20 30 30

A r = 3 3 4 4 B c = 30 30 40 40 70 70
3 3 4 4 30 30 40 40 70 70
4 4 6 6
4 4 6 6

100 100 200 200 300 300
C f = 100 100 200 200 300 300

300 300 400 400 700 700
300 300 400 400 700 700
400 400 600 600 1000 1000
400 400 600 600 1000 1000

PDGEMM operates on A, B, and C

FT-PDGEMM operates on Ac, Br and Cf

43

20 85

Japanese:Japanese:
TightlyTightly--Coupled Heterogeneous SystemCoupled Heterogeneous System

♦ Would like to get to 10 PetaFlop/s by 2011
♦ Scalable, fits any computer center

Size, cost, ratio of components
♦ Easy and low-cost to develop new component
♦ Scale merit of components

SwitchPresentPresent

Faster
interconnect

Vector
Node

Scalar
Node

MD
Node

Slower connection
Faster
interconnect

Faster
interconnect

Future systemFuture system

Vector
Node

Scalar
Node

FPGA Node

MD
Node

Faster
interconnect

20 86

How Big Is Big?How Big Is Big?
♦ Every 10X brings new challenges

64 processors was once considered large
it hasn’t been “large” for quite a while

1024 processors is today’s “medium” size
8096 processors is today’s “large”

we’re struggling even here

♦ 100K processor systems
are in construction
we have fundamental
challenges in dealing with
machines of this size
… and little in the way
of programming support

44

20 87

Interconnects / SystemsInterconnects / Systems

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Cray Interconnect

SP Switch

Crossbar

Others

Infiniband

Quadrics

Gigabit Ethernet

Myrinet

N/A

28%

24%

Myrinet and GigE > 50% of market

20 88

Real Crisis With HPC Is With The Real Crisis With HPC Is With The
Software Software

♦ Programming is stuck
Arguably hasn’t changed since the 60’s

♦ It’s time for a change
Complexity is rising dramatically

highly parallel and distributed systems
From 10 to 100 to 1000 to 10000 to 100000 of processors!!

multidisciplinary applications
♦ A supercomputer application and software are usually

much more long-lived than a hardware
Hardware life typically five years at most.
Fortran and C are the main programming models

♦ Software is a major cost component of modern
technologies.

The tradition in HPC system procurement is to assume that
the software is free.

♦ We have too few ideas about how to solve this
problem.

45

20 89
http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

PCG: Performance with Different MPI ImplementationsPCG: Performance with Different MPI Implementations

20 90

Self Adapting Numerical SoftwareSelf Adapting Numerical Software
♦ Optimizing software to exploit the features of a

given system has historically been an exercise in
hand customization.

Time consuming and tedious
Hard to predict performance from source code
Must be redone for every architecture and compiler

Software technology often lags hardware/architecture
Best algorithm may depend on input, so some tuning may be
needed at run-time.

♦ With good reason scientists expect their computing
tools to serve them and not the other way around.

♦ There is a need for quick/dynamic deployment of
optimized routines.

ATLAS, PhiPAC, BeBoP, Spiral, FFTW, GCO, …

46

20 91

An Example: Matrix MultiplicationAn Example: Matrix Multiplication

♦ Therefore:
At the end of each iteration, the checksum relationship
in A r, B c, and C f will be maintained

♦ Conclusion:
Single failure during computation can be recovered from
the checksum relationship

A rj B c j T

b

bAc

B r

= +C f (j+1) C f (j) A rj B c j
TAt the jth iteration:

FT-PDGEMM operates
on Ac, Br and Cf :

It’s an Outer Product whose
result is a full checksum matrix

20 92

0

500

1000

1500

2000

2500

3000

3500

4000

Unite
d Stat

es

Switz
erl

an
d

Isr
ael

Netherl
an

ds

New Zea
lan

d

Unite
d King

dom
Ja

pa
n

Aus
tra

lia

Germ
an

y

Swed
en

Spa
in

Cana
da

Kore
a,

Sou
th

Sau
dia

 Arab
ia

Ita
ly

Franc
e

Taiw
an

Mex
ico

Braz
il

Russ
ia

China Ind
ia

KFlop/sKFlop/s per Capita (Flops/Pop)per Capita (Flops/Pop)
Based on the June 2005 Based on the June 2005 -- Top500 onlyTop500 only

WETA Digital (Lord of the Rings)

Hint: Peter Jackson had something to do with this

Has nothing to do with the 47.2 million sheep in NZ

47

20 93

ReedReed--Solomon ApproachSolomon Approach
A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

20 94

A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

Say 2 processors fail, P2 and P3.

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X
X

ReedReed--Solomon ApproachSolomon Approach

48

20 95

A*P = C, where A is k x p made up of random numbers,
P is p x n, C is k x n
Here using 4 processors and 3 Ckpt processors:

Say 2 processors fail, P2 and P3.
Take a subset of A’s (colunm 2 and 3) and solve for P2 and P3.

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

P
P
P
P

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

3

C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X
X

12 13 2 1

22 23 3 2

a a P C
a a P C
⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

ReedReed--Solomon ApproachSolomon Approach

Could use GF(2). Signal processing aps
do this. In that case, A is Vandermonde
or Cauchy matrix. (Need to have any
subset of A be non singular.)
We use A as a random matrix.

20 96

PCG: Impact of RoundPCG: Impact of Round--Off Errors in Off Errors in
RecoveryRecovery

♦ If no failure occurs
PCG computation is not affected by the round-off errors of
checkpoint

♦ Whenever there is a failure
The recovered data is not exactly the same as original data due
to round-off errors in the recovery, however…

of Iters 0 proc 1 proc 2 proc 3 proc 4 proc
2918 2917

3140
3385

1.0e-16 3599 3596 3595 3590 3601 3599
3806

3136

5 proc

3385

3809

2918
3142
3387

3814

2915
3138
3384

3802

1.0e-10 2917 2917
1.0e-12 3141 3147
1.0e-14 3383 3393

1.0e-18 3806 3802

Run PCG with 120 computation processors until the relative residual ||r|| / ||b|| < 10 – i.
Simulate some process failures at the 2000th iteration by exiting some processes.
The above table reports the number of iterations for different number of processes failures.

49

20 97

20 98

PCG: Impact of RoundPCG: Impact of Round--Off Errors in Off Errors in
RecoveryRecovery

♦ If no failure occurs
PCG computation is not affected by the round-off errors of
checkpoint

♦ Whenever there is a failure
The recovered data is not exactly the same as original data due
to round-off errors in the recovery, however…

of Iters 0 proc 1 proc 2 proc 3 proc 4 proc
2918 2917

3140
3385

1.0e-16 3599 3596 3595 3590 3601 3599
3806

3136

5 proc

3385

3809

2918
3142
3387

3814

2915
3138
3384

3802

1.0e-10 2917 2917
1.0e-12 3141 3147
1.0e-14 3383 3393

1.0e-18 3806 3802

Run PCG with 120 computation processors until the relative residual ||r|| / ||b|| < 10 – i.
Simulate some process failures at the 2000th iteration by exiting some processes.
The above table reports the number of iterations for different number of processes failures.

50

20 99

Next StepsNext Steps
Investigate ideas for 1K to 10K processors, then to BG/L.
♦ Software to determine the checkpointing interval and number of

checkpoint processors from the machine characteristics.
Perhaps use historical information.

♦ Local checkpoint and restart algorithm.
Coordination of local checkpoints.
Processors hold backups of neighbors.

♦ Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.

Use p processors for the computation and have k of them hold
checkpoint.

♦ Generalize the ideas to provide a library of routines to do the
diskless check pointing.

♦ Look at “real applications” and investigate “Lossy” algorithms.
♦ FT-MPI available today and one of the contributions to Open

MPI.

20 100

FTFT--MPI Failure Recovery ModesMPI Failure Recovery Modes

♦ ABORT: Just do as other MPI
implementations.

♦ BLANK: Leave hole in
communicator.

♦ SHRINK: Re-order processes to
make a contiguous communicator.

Some ranks change

♦ REBUILD: Re-spawn lost
processes and add them to
MPI_COMM_WORLD.

51

20 101

FTFT--MPI MPI http://icl.cs.utk.edu/fthttp://icl.cs.utk.edu/ft--mpimpi//
♦ Define the behavior of MPI in case an error

occurs.
♦ FT-MPI based on MPI 1.3 (plus some MPI 2

features) with a fault tolerant model similar to
what was done in PVM.

Complete reimplementation, not based on other
implementations.

♦ Gives the application the possibility to recover
from a process-failure.

♦ A regular, non fault-tolerant MPI program will
run using FT-MPI.

♦ What FT-MPI does not do:
Recover user data (e.g. automatic check-pointing)
Provide transparent fault-tolerance

20 102

Sum Computed; Not XORSum Computed; Not XOR
C1 + C2 + … CK = CK+1

To recover from a lose of C2 :
C2 = CK+1 - C1 – C3 - … CK

♦ For a single failure XOR is fine.
♦ For more than one failure will require GF(2) arithmetic

OK for the XOR but need to solve a system of equations in
GF(2), will need +, *, / over GF(2)

♦ Starting to think of reversing the computation to get back
to checkpoint state.

♦ Think of running the program backwards until reaching the
checkpoint state.
yi = yi + a*xi

Undo computation by:
yi = yi - a*xi

Round off errors generated getting back to ckpt

52

20 103

PCG Perforamce Overhead for Checkpoint and Recovery

1

10

100

1000

60 120 240 480
Number of Computation Processors

O
ve

rh
ea

d
(S

ec
on

ds
)

T_ckpt

T_rcvr_data

T_rcvr_f tmpi

PCG: Preliminary PerformancePCG: Preliminary Performance

Run PCG for 5000 iterations and take checkpoint every 1000 iterations (about 5 minutes)
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M

146.1
77.2
42.1
24.8

T_rcvr_ftmpi

1697.0
1557.5
1490.5
1441.7

T_tot

1531.1
1461.1
1429.3
1399.1

T_pcg_comp

9.7
9.2
9.2
8.0

T_ckpt

10.1
10.0
9.9
9.8

T_rcvr_dat
a

Time
(Sec)

480 procs
240 procs
120 procs
60 procs

IBM RS/6000 SP w/176
Winterhawk II thin nodes
(each with four 375 MHz
Power3-II processors)

20 104

Software Generation Software Generation
Strategy Strategy -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run,
generates Level 1,2, & 3 BLAS

♦ “New” model of high
performance programming
where critical code is machine
generated using parameter
optimization.

♦ Designed for modern
architectures

Need reasonable C compiler
♦ Today ATLAS in used within

various ASCI and SciDAC
activities and by Matlab,
Mathematica, Octave, Maple,
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw
♦ Generate multiple versions

of code, w/difference
values of key performance
parameters

♦ Run and measure the
performance for various
versions

♦ Pick best and generate
library

♦ Level 1 cache multiply
optimizes for:

TLB access
L1 cache reuse
FP unit usage
Memory fetch
Register reuse
Loop overhead minimization

♦ Similar to FFTW and Johnsson,
UH

See: http://icl.cs.utk.edu/atlas/ joint with
Clint Whaley & Antoine Petitet

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

AMD Athlon-60
0

DEC ev
56-

533

DEC ev
6-5

00

HP90
00

/73
5/1

35

IBM PPC60
4-1

12

IBM Power2
-16

0

IBM Power3
-20

0

Intel
 P-III

 93
3 M

Hz

Intel
 P-4 2.53

 GHz w
/SSE2

SGI R
100

00
ip28-2

00

SGI R
120

00
ip30-2

70

Sun Ultra
Spa

rc2
-20

0

Architectures

M
FL

O
P/

S

Vendor BLAS
ATLAS BLAS
F77 BLAS

53

20 105

Processor TypesProcessor Types

0

100

200

300

400

500
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

SIMD

Sparc

MIPS

Intel

HP PA-Risc

HP Alpha

IBM Power

Other scalar

Vector

20 106

TodayToday’’s Processorss Processors

♦ pipelining (superscalar, OOO, VLIW,
branch prediction, predication)

♦ simultaneous multithreading (SMT,
Hyper-Threading, multi-core)

♦ SIMD vector instructions (VIS,
MMX/SSE, AltiVec)

♦ caches and the memory hierarchy
♦ Intel added 36 instructions per year to

IA-32, or 3 instructions per month!

54

20 107

Motivation Self Adapting Motivation Self Adapting
Numerical Software (SANS) EffortNumerical Software (SANS) Effort

♦ Optimizing software to exploit the features of a
given system has historically been an exercise in hand
customization.

Time consuming and tedious
Hard to predict performance from source code
Must be redone for every architecture and compiler

Software technology often lags architecture
Best algorithm may depend on input, so some
tuning may be needed at run-time.

♦There is a need for quick/dynamic deployment
of optimized routines.

20 108

Linpack (100x100) AnalysisLinpack (100x100) Analysis
♦ Compaq 386/SX20 SX with FPA - .16 Mflop/s
♦ Pentium IV – 2.8 GHz – 1.3 Gflop/s
♦ 12 years we see a factor of ~ 8125
♦ Moore’s Law says something about a factor of 2

every 18 months or a factor of 256 over 12 years

♦ Seem to be missing a factor of 32 …
Clock speed increase = 128x
External Bus Width & Caching –

16 vs. 64 bits = 4x
Floating Point -

4/8 bits multi vs. 64 bits (1 clock) = 8x
Compiler Technology = 2x

♦ However the theoretical peak for that Pentium 4
is 5.6 Gflop/s and here we are only getting
1.3 Gflop/s

Still a factor of 4.25 off of peak

Complex set of interaction between
Users’ applications
Algorithm
Programming language
Compiler
Machine instruction
Hardware

Many layers of translation from
the application to the hardware
Changing with each generation

55

20 109

Performance Tuning MethodologyPerformance Tuning Methodology

Input Parameters
System specifics

Hardware
Probe

Parameter study
of code versions

Code Generation
Performance

database

User options

Installation

Software Installation
(done once per system)

♦ Parameter study of the hw
♦ Generate multiple versions of

code, w/difference values of
key performance parameters

♦ Run and measure the
performance for various versions

♦ Pick best and generate library
♦ Optimize over 8 parameters

Cache blocking
Register blocking (2)
FP unit latency
Memory fetch
Interleaving loads & computation
Loop unrolling
Loop overhead minimization

♦ Similar to FFTW

Software Generation Software Generation
Strategy Strategy -- ATLAS BLASATLAS BLAS
http://http://www.netlib.orgwww.netlib.org/atlas//atlas/

20 110

Self Adapting Numerical Software Self Adapting Numerical Software --
SANS Effort SANS Effort

♦ Provide software technology to aid in high performance on
commodity processors, clusters, and grids.

♦ Pre-run time (library building stage) and run time
optimization.

♦ Integrated performance modeling and analysis
♦ Automatic algorithm selection – polyalgorithmic functions
♦ Automated installation process
♦ Can be expanded to areas such as communication software

and selection of numerical algorithms

TUNING
SYSTEM

Different
SW segment

Size msgs

“Best”
SW segment
Block msgs

56

20 111

Performance Tuning MethodologyPerformance Tuning Methodology

Input Parameters
System specifics

Hardware
Probe

Parameter study
of code versions

Code Generation
Performance

database

User options

Installation

Software Installation
(done once per system)

Input Parameters
Size, dim., …

Select best algorithm
Based on input data,

State of hardware
Cluster, etc

Execution
Data placement

Calculate

Run-time

Performance
Monitoring

Database update
Fault Tolerance

Software Execution
(done dynamically for each problem)

20 112

57

20 113

0

200

400

600

800

1000

1200

1400

1600

Chin
a

Braz
il

Ita
ly

Mex
ico

Franc
e

Kore
a,

Sou
th

Sau
dia

 A
rab

ia

Germ
an

y

Bela
rus

Switz
erl

an
d

Can
ad

a
Spa

in
Ja

pa
n

Isr
ae

l

Unit
ed

 King
do

m

New
 Zea

lan
d

Unit
ed

 Stat
es

KFlop/sKFlop/s per Capita (Flops/Pop)per Capita (Flops/Pop)
Based on the November 2004 Top500 onlyBased on the November 2004 Top500 only

WETA Digital (Lord of the Rings)

Hint: Peter Jackson had something to do with this

Has nothing to do with the 47.2 million sheep in NZ

20 114

TodayToday’’s CPU Architectures CPU Architecture

Moore’s Law for Power Consumption

Heat is becoming an unmanageable problem

58

20 115

NASA Ames: SGI NASA Ames: SGI AltixAltix Columbia Columbia
10,240 Processor System (#3)10,240 Processor System (#3)
♦ Architecture: Hybrid Technical Server Cluster
♦ Vendor: SGI based on Altix systems
♦ Deployment: 2004
♦ Node:

1.5 GHz Itanium-2 Processor
512 procs/node (20 cabinets)
Dual FPU’s / processor

♦ System:
20 Altix NUMA systems @ 512 procs/node = 10240 procs
320 cabinets (estimate 16 per node)
Peak: 61.4 Tflop/s ; LINPACK: 52 Tflop/s

♦ Interconnect:
FastNumaFlex (custom hypercube) within node
Infiniband between nodes

♦ Pluses:
Large and powerful DSM nodes

♦ Potential problems (Gotchas):
Power consumption - 100 kw per node (2 Mw total)

20 116

(Japanese) Earth Simulator (#4)(Japanese) Earth Simulator (#4)
♦ Architecture: Custom Vector Cluster
♦ Vendor: NEC
♦ Deployment Date: 2002
♦ Node:

500 MHz/1GHz SX-6 vector processor
8 pe’s/node
8 vector pipes/ pe
8 Gflops/processor peak

♦ System:
5120 processors / 640 cabinets
Peak: 41.1 Tflop/s

♦ Interconnect:
Custom 640x640 crossbar

♦ Pluses:
High fraction of peak (30% typical)

♦ Gotchas:
No internet access (currently)
Cost (estimated $350 M)

59

20 117

10,00010,000

1,0001,000

100100

1010

11

‘‘7070 ‘‘8080 ‘‘9090 ‘‘0000 ‘‘1010

P
ow

er
 D

en
si

ty
 (W

/c
m

P
ow

er
 D

en
si

ty
 (W

/c
m

22))

40044004
80088008

80808080

80858085
80868086

286286 386386

486486

PentiumPentium®®

Hot PlateHot Plate

Nuclear ReactorNuclear Reactor

Rocket NozzleRocket Nozzle

SunSun’’s Surfaces Surface

Intel Developer Forum, Spring 2004 - Pat Gelsinger
(Pentium at 90 W)

Square relationship between the cycle time and power.

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

20 118

Lower Lower
VoltageVoltage

Increase Increase
Clock RateClock Rate
& Transistor & Transistor

DensityDensity

We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

Intel Yonah will double the processing power on a
per watt basis.

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

60

20 119

3 GHz, 8 Cores3 GHz, 4 Cores

2 Cores2 Cores

4 Cores4 Cores

8 Cores8 Cores

1 Core1 Core

Fr
ee

 L
un

ch
 F

or
 T

ra
di

tio
na

l S
of

tw
ar

e
(It

 ju
st

 ru
ns

 tw
ic

e
as

 fa
st

 e
ve

ry
 1

8
m

on
th

s
w

ith
 n

o
ch

an
ge

 to
 th

e
co

de
!)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d
fo

r s
er

ia
l c

od
e No Free Lunch For Traditional

Software
(Without highly concurrent software it won’t get any faster!)

Additional operations per second if code can take advantage of concurrency

24
 G

H
z,

 1
 C

or
e

12
 G

H
z,

 1
 C

or
e

6
G

H
z

1
C

or
e

3 GHz
2 Cores

3G
H

z
1

C
or

e

20 120

CPU Desktop Trends 2004CPU Desktop Trends 2004--20102010

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip
Hardware Threads Per Chip

0

50

100

150

200

250

300

Year

♦ Relative processing power will continue to double
every 18 months

♦ 256 logical processors per chip in late 2010

61

20 121

Commodity Processor TrendsCommodity Processor Trends
Bandwidth/Latency is the Critical Issue, not FLOPSBandwidth/Latency is the Critical Issue, not FLOPS

28 ns
= 94,000 FP ops
= 780 loads

50 ns
= 1600 FP ops
= 170 loads

70 ns
= 280 FP ops
= 70 loads

(5.5%) DRAM latency

27 GWord/s
= 0.008 word/flop

3.5 GWord/s
= 0.11 word/flop

1 GWord/s
= 0.25 word/flop23%Front-side bus

bandwidth

3300 GFLOP/s 32 GFLOP/s 4 GFLOP/s 59%
Single-chip
floating-point
performance

Typical value
in 2020

Typical value
in 2010

Typical value
in 2005

Annual
increase

Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222
pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

Got Bandwidth?

