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Over Last 20 Years - Performance 
Development 
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June 2012: The TOP10 
Rank      Site Computer Country Cores Rmax 

[Pflops] 
% of 
Peak 

Power 
[MW] 

MFlops
/Watt 

1 DOE / NNSA                 
L Livermore Nat Lab 

Sequoia, BlueGene/Q (16c)       
+ custom  USA 1,572,864 16.3 81 8.6 1895 

2 RIKEN Advanced Inst 
for Comp Sci 

K computer Fujitsu SPARC64 
VIIIfx (8c) + custom Japan 705,024 10.5 93 12.7 830 

3 DOE / OS                 
Argonne Nat Lab Mira, BlueGene/Q (16c) + custom USA 786,432 8.16 81 3.95 2069 

4 Leibniz 
Rechenzentrum SuperMUC, Intel (8c) + IB Germany 147,456 2.90 90* 3.52 823 

5 Nat. SuperComputer 
Center in Tianjin 

Tianhe-1A, NUDT  
Intel (6c) + Nvidia GPU (14c)    

+ custom 
China 186,368 2.57 55 4.04 636 

6 DOE / OS                 
Oak Ridge Nat Lab 

Jaguar,  Cray  
 AMD (16c) + custom USA 298,592 1.94 74 5.14 377 

7 CINECA Fermi, BlueGene/Q (16c)         
+ custom Italy 163,840 1.73 82 .821 2099 

8 Forschungszentrum 
Juelich (FZJ) 

JuQUEEN, BlueGene/Q (16c)    
+ custom Germany 131,072 1.38 82 .657 2099 

9 
Commissariat a 

l'Energie Atomique 
(CEA) 

Curie, Bull  
Intel (8c) + IB France 77,184 1.36 82 2.25 604 

10 Nat. Supercomputer 
Center in Shenzhen 

Nebulea, Dawning Intel (6)        
+ Nvidia GPU (14c) + IB China 120,640 1.27 43 2.58 493 
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Accelerators (58 systems) 
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Countries Share 

Absolute Counts 
US:  252 
China:    68 
Japan:    35 
UK:    25 
France:    22 
Germany:   20 
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Swiss Machines in Top500 (max:12 min:1) 
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28 Systems at > Pflop/s (Peak)  
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Linpack Efficiency 
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Performance Development in Top500 
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The High Cost of Data Movement 

2011 2018 

DP FMADD flop   100 pJ     10 pJ 

DP DRAM read 4800 pJ 1920 pJ 

Local Interconnect 7500 pJ 2500 pJ 

Cross System 9000 pJ 3500 pJ 
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Energy Cost Challenge  
�  At ~$1M per MW energy costs are 

substantial 
! 10 Pflop/s in 2011 uses ~10 MWs 
! 1 Eflop/s in 2018 > 100 MWs 

! DOE Target: 1 Eflop/s in 2018 at 20 MWs 
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Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2012 

BG/Q 
Computer 

2019  Difference 
Today & 2019 

System peak 20 Pflop/s 1 Eflop/s O(100) 

Power 8.6 MW ~20 MW 

System memory 1.6 PB 
(16*96*1024)  

32 - 64 PB O(10) 

Node performance   205 GF/s 
(16*1.6GHz*8) 

1.2  or 15TF/s O(10) – O(100) 

Node memory BW 42.6 GB/s 2 - 4TB/s O(1000) 

Node concurrency 64 
Threads 

O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect 
BW 

20 GB/s 200-400GB/s O(10) 

System size (nodes) 98,304 
(96*1024) 

O(100,000) or O(1M) O(100) – O(1000) 

Total concurrency 5.97 M O(billion) O(1,000) 

MTTI 4 days O(<1 day) - O(10) 



Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2012 

BG/Q 
Computer 

2022  Difference 
Today & 2022 

System peak 20 Pflop/s 1 Eflop/s O(100) 

Power 8.6 MW ~20 MW 

System memory 1.6 PB 
(16*96*1024)  

32 - 64 PB O(10) 

Node performance   205 GF/s 
(16*1.6GHz*8) 

1.2  or 15TF/s O(10) – O(100) 

Node memory BW 42.6 GB/s 2 - 4TB/s O(1000) 

Node concurrency 64 
Threads 

O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect 
BW 

20 GB/s 200-400GB/s O(10) 

System size (nodes) 98,304 
(96*1024) 

O(100,000) or O(1M) O(100) – O(1000) 

Total concurrency 5.97 M O(billion) O(1,000) 

MTTI 4 days O(<1 day) - O(10) 



Critical Issues at Peta & Exascale for 
Algorithm and Software Design 
�  Synchronization-reducing algorithms 

!  Break Fork-Join model 
�  Communication-reducing algorithms 

! Use methods which have lower bound on communication 
�  Mixed precision methods 

!  2x speed of ops and 2x speed for data movement 
�  Autotuning 

! Today’s machines are too complicated, build “smarts” into 
software to adapt to the hardware 

�  Fault resilient algorithms 
!  Implement algorithms that can recover from failures/bit 

flips 
�  Reproducibility of results 

! Today we can’t guarantee this. We understand the issues, 
but some of our “colleagues” have a hard time with this. 16 



•  Must rethink the design of our 
algorithms and software 
! Manycore and Hybrid architectures are 

disruptive technology 
! Similar to what happened with cluster 

computing and message passing 

! Rethink and rewrite the applications, 
algorithms, and software 

! Data movement is expensive 
! Flops are cheap 
 
 

Major Changes to Algorithms/Software  

17 



Dense Linear Algebra 
Software Evolution 

LINPACK (70's) 
vector operations 

 

LAPACK (80's) 
block operations 

 

ScaLAPACK (90's) 
block cyclic 

data distribution 
 

PLASMA (00's) 
tile operations 

 

"  Level 1 BLAS 

"  Level 3 BLAS 

"  PBLAS 

"  BLACS 

(message passing) 

"  tile layout 

"  dataflow scheduling 



PLASMA 
Principles 

"  Tile Algorithms 

"  minimize capacity misses 

 

 

"  Tile Matrix Layout 

"  minimize conflict misses 

 

"  Dynamic DAG Scheduling 

"  minimizes idle time 

"  More overlap 

"  Asynchronous ops 
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Fork-Join Parallelization of LU and QR. 
Parallelize the update: 

•  Easy and done in any reasonable software. 
•  This is the 2/3n3 term in the FLOPs count. 
•  Can be done efficiently with LAPACK+multithreaded BLAS 
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� Objectives 
! High utilization of each core 
! Scaling to large number of cores 
! Synchronization reducing algorithms 

� Methodology 
! Dynamic DAG scheduling (QUARK) 
!  Explicit parallelism 
!  Implicit communication 
!  Fine granularity / block data layout 

� Arbitrary DAG with dynamic scheduling 

21 

Fork-join 
parallelism 

PLASMA/MAGMA: Parallel Linear Algebra 
s/w for Multicore/Hybrid Architectures 

DAG scheduled 
parallelism 

Time 



Communication Avoiding QR  
Example 

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd 
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications, 
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State. 
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PowerPack 2.0 
 

27 The PowerPack platform consists of software and hardware instrumentation. 
Kirk Cameron, Virginia Tech; http://scape.cs.vt.edu/software/powerpack-2-0/  



Power for QR Factorization 

28 
dual-socket quad-core Intel Xeon E5462 (Harpertown) processor  
@ 2.80GHz (8 cores total) w / MLK BLAS 
matrix size is very tall and skinny (mxn is 1,152,000 by 288) 

PLASMA’s Communication 
Reducing QR Factorization 
DAG based 

PLASMA’s Conventional 
QR Factorization 
DAG based 

MKL’s QR Factorization 
Fork-join based 

LAPACK’s QR Factorization 
Fork-join based 



The standard Tridiagonal reduction xSYTRD 

        step k:        Q A Q*   then update #  step k+1 

$  LAPACK xSYTRD: 

1.   Apply left-right transformations Q A Q* to the panel  
2.   Update the remaining submatrix A33 
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General Overview: the tiles Eigenproblem algorithms

Divide and Conquer algorithm stage -2-
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where A33 = A33 � YW T � WY T

For the symmetric eigenvalue problem: 
First stage takes:  
•  90% of the time if only eigenvalues 
•  50% of the time if eigenvalues and eigenvectors 



The standard Tridiagonal reduction xSYTRD 

$ Characteristics 
1.  Phase 1 requires : 

o  4 panel vector multiplications, 
o  1 symmetric matrix vector multiplication with A33, 
o  Cost 2(n-k)2b Flops. 

2.  Phase 2 requires: 
o  Symmetric update of A33 using SYRK, 
o  Cost 2(n-k)2b Flops. 

$  Observations 
•  Too many Level 2 BLAS ops, 
•  Relies on panel factorization, 
•  Total cost 4n3/3 
•  #Bulk sync phases, 
•  #Memory bound algorithm. 



Symmetric Eigenvalue Problem 

•  Standard reduction algorithm are very slow on multicore. 
 

•  Step1: Reduce the dense matrix to band.  
•  Matrix-matrix operations, high degree of parallelism 

•  Step2: Bulge Chasing on the band matrix 
•  by group and cache aware 
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PLASMA DSYTRD+DSTEV
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Singular Values singular values  only 

�  Block DAG based to banded form, then pipelined group 
chasing to tridiagaonal form. 

�  The reduction to condensed form accounts for the factor 
of 50 improvement over LAPACK 

�  Execution rates based on 4/3n3 ops 

eigenvalues only 

 Experiments on eight-socket six-core AMD Opteron 2.4 GHz 
processors with MKL V10.3. 



Summary 
�  These are old ideas (today SMPss, StarPU, Charm++, ParalleX, 

Swarm,…) 

�  Major Challenges are ahead for extreme 
computing 
! Power  
! Levels of Parallelism   
! Communication  
! Hybrid 
! Fault Tolerance  
! … and many others not discussed here 

�  Not just a programming assignment. 
�  This opens up many new opportunities for 

applied mathematicians and computer 
scientists 



Collaborators / Software / Support 

%  PLASMA 
http://icl.cs.utk.edu/plasma/ 
 

%  MAGMA 
http://icl.cs.utk.edu/magma/  
 

%  Quark (RT for Shared Memory) 
•  http://icl.cs.utk.edu/quark/ 

 
%  PaRSEC(Parallel Runtime Scheduling  
and Execution Control) 
•  http://icl.cs.utk.edu/parsec/ 
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%  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 
 
INRIA, France 
KAUST, Saudi Arabia 
 

These tools are being applied to a range of applications beyond dense LA:  
 Sparse direct, Sparse iterations methods and Fast Multipole Methods 


