
ON THE FUTURE OF HIGH
PERFORMANCE COMPUTING:

HOW TO THINK FOR PETA
AND EXASCALE COMPUTING

JACK DONGARRA

UNIVERSITY OF TENNESSEE
OAK RIDGE NATIONAL LAB

Over Last 20 Years - Performance
Development

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

59.7%GFlop/s%

400%MFlop/s%

1.17%TFlop/s%

16.3%PFlop/s%

60.8%TFlop/s%

123%%PFlop/s%

SUM%

N=1%

N=500%

6-8 years

My Laptop (70 Gflop/s)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

My iPad2 & iPhone 4s (1.02 Gflop/s)

2012

June 2012: The TOP10
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

MFlops
/Watt

1 DOE / NNSA
L Livermore Nat Lab

Sequoia, BlueGene/Q (16c)
+ custom USA 1,572,864 16.3 81 8.6 1895

2 RIKEN Advanced Inst
for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8c) + custom Japan 705,024 10.5 93 12.7 830

3 DOE / OS
Argonne Nat Lab Mira, BlueGene/Q (16c) + custom USA 786,432 8.16 81 3.95 2069

4 Leibniz
Rechenzentrum SuperMUC, Intel (8c) + IB Germany 147,456 2.90 90* 3.52 823

5 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel (6c) + Nvidia GPU (14c)

+ custom
China 186,368 2.57 55 4.04 636

6 DOE / OS
Oak Ridge Nat Lab

Jaguar, Cray
 AMD (16c) + custom USA 298,592 1.94 74 5.14 377

7 CINECA Fermi, BlueGene/Q (16c)
+ custom Italy 163,840 1.73 82 .821 2099

8 Forschungszentrum
Juelich (FZJ)

JuQUEEN, BlueGene/Q (16c)
+ custom Germany 131,072 1.38 82 .657 2099

9
Commissariat a

l'Energie Atomique
(CEA)

Curie, Bull
Intel (8c) + IB France 77,184 1.36 82 2.25 604

10 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning Intel (6)
+ Nvidia GPU (14c) + IB China 120,640 1.27 43 2.58 493

�����������������������������������
��������������������
����������������������������	�� 3

Accelerators (58 systems)

0"

10"

20"

30"

40"

50"

60"

2006" 2007" 2008" 2009" 2010" 2011" 2012"

Sy
st
em

s%

Intel"MIC"(1)"

Clearspeed"CSX600"(0)"

ATI"GPU"(2)"

IBM"PowerXCell"8i"(2)"

NVIDIA"2070"(10)"

NVIDIA"2050(12)"

NVIDIA"2090"(31)"

����

��&'+��
����-�+�
���1//'��

��.�+!#�

��#.*�+5�

��+"'��

��0�)5�

��,)�+"�
	��1/0.�)'��
	��.�6')�
	���+�"��
	��'+%�-,.#�
	��-�'+�
	���'3�+�
	����

Countries Share

Absolute Counts
US: 252
China: 68
Japan: 35
UK: 25
France: 22
Germany: 20

5

Switzerland

Swiss Machines in Top500 (max:12 min:1)

6

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

Jan+93" Oct+95" Jul+98" Apr+01" Jan+04" Oct+06" Jul+09" Apr+12"

High point: 12 systems (6/95) Low points: 1 system (6/02, 11/02, 6/12)

4 5 7 9 12 9 8 9 6 6 5 6 6 5 8 8 6 2 1 1 3 3 2 3 3 4 4 5 5 7 6 4 4 5 5 4 4 3 1

28 Systems at > Pflop/s (Peak)

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

US"""""""""""""""""""
(9)"

"Japan"""""""
(4)"

China"""""""""""""""
(5)"

Germany"""""""""""
(4)"

France""""""""""""
(2)"

UK"""""""""""""""""
(2)"

Italy""""""""""""
(1)"

Russia"""""""
(1)"

41#

16.2#

11.1#

6.9#

2.92# 2.73# 2.1# 1.7#

Pflop/s"Club"

P
flo

p/
s

(Peak)
10/2/12

7

Linpack Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

Linpack Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

Linpack Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500

Li
np

ac
k

Ef
fi
ci
en

cy

Performance Development in Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

N=1%

N=500%

The High Cost of Data Movement

2011 2018

DP FMADD flop 100 pJ 10 pJ

DP DRAM read 4800 pJ 1920 pJ

Local Interconnect 7500 pJ 2500 pJ

Cross System 9000 pJ 3500 pJ

12

�--.,4'*�0#�-,3#.�!,/0/��'+�-'!,�,1)#/��
�

• �),-�/�,.�-#.!#+0�%#�,$�-#�(�$),-�/� #!,*#�
*1!&�)#//�.#)#2�+0�
�

• �)%,.'0&*/����,$03�.#��*'+'*'6#�"�0��
,2##+0��-#.$,.*�*,.#�3,.(�-#.�1+'0�"�0��
,2##+0��

�,1.!#���,&+��&�)$�������

Energy Cost Challenge
�  At ~$1M per MW energy costs are

substantial
! 10 Pflop/s in 2011 uses ~10 MWs
! 1 Eflop/s in 2018 > 100 MWs

! DOE Target: 1 Eflop/s in 2018 at 20 MWs

13

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2012

BG/Q
Computer

2019 Difference
Today & 2019

System peak 20 Pflop/s 1 Eflop/s O(100)

Power 8.6 MW ~20 MW

System memory 1.6 PB
(16*96*1024)

32 - 64 PB O(10)

Node performance 205 GF/s
(16*1.6GHz*8)

1.2 or 15TF/s O(10) – O(100)

Node memory BW 42.6 GB/s 2 - 4TB/s O(1000)

Node concurrency 64
Threads

O(1k) or 10k O(100) – O(1000)

Total Node Interconnect
BW

20 GB/s 200-400GB/s O(10)

System size (nodes) 98,304
(96*1024)

O(100,000) or O(1M) O(100) – O(1000)

Total concurrency 5.97 M O(billion) O(1,000)

MTTI 4 days O(<1 day) - O(10)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2012

BG/Q
Computer

2022 Difference
Today & 2022

System peak 20 Pflop/s 1 Eflop/s O(100)

Power 8.6 MW ~20 MW

System memory 1.6 PB
(16*96*1024)

32 - 64 PB O(10)

Node performance 205 GF/s
(16*1.6GHz*8)

1.2 or 15TF/s O(10) – O(100)

Node memory BW 42.6 GB/s 2 - 4TB/s O(1000)

Node concurrency 64
Threads

O(1k) or 10k O(100) – O(1000)

Total Node Interconnect
BW

20 GB/s 200-400GB/s O(10)

System size (nodes) 98,304
(96*1024)

O(100,000) or O(1M) O(100) – O(1000)

Total concurrency 5.97 M O(billion) O(1,000)

MTTI 4 days O(<1 day) - O(10)

Critical Issues at Peta & Exascale for
Algorithm and Software Design
�  Synchronization-reducing algorithms

!  Break Fork-Join model
�  Communication-reducing algorithms

! Use methods which have lower bound on communication
�  Mixed precision methods

!  2x speed of ops and 2x speed for data movement
�  Autotuning

! Today’s machines are too complicated, build “smarts” into
software to adapt to the hardware

�  Fault resilient algorithms
!  Implement algorithms that can recover from failures/bit

flips
�  Reproducibility of results

! Today we can’t guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this. 16

•  Must rethink the design of our
algorithms and software
! Manycore and Hybrid architectures are

disruptive technology
! Similar to what happened with cluster

computing and message passing

! Rethink and rewrite the applications,
algorithms, and software

! Data movement is expensive
! Flops are cheap

Major Changes to Algorithms/Software

17

Dense Linear Algebra
Software Evolution

LINPACK (70's)
vector operations

LAPACK (80's)
block operations

ScaLAPACK (90's)
block cyclic

data distribution

PLASMA (00's)
tile operations

"  Level 1 BLAS

"  Level 3 BLAS

"  PBLAS

"  BLACS

(message passing)

"  tile layout

"  dataflow scheduling

PLASMA
Principles

"  Tile Algorithms

"  minimize capacity misses

"  Tile Matrix Layout

"  minimize conflict misses

"  Dynamic DAG Scheduling

"  minimizes idle time

"  More overlap

"  Asynchronous ops

CPU

MEM

cache

CPU

MEM

cache

CPU

cache

CPU

cache

CPU

cache

LAPACK

PLASMA

Fork-Join Parallelization of LU and QR.
Parallelize the update:

•  Easy and done in any reasonable software.
•  This is the 2/3n3 term in the FLOPs count.
•  Can be done efficiently with LAPACK+multithreaded BLAS

-
dgemm

Time

C
or

es

� Objectives
! High utilization of each core
! Scaling to large number of cores
! Synchronization reducing algorithms

� Methodology
! Dynamic DAG scheduling (QUARK)
!  Explicit parallelism
!  Implicit communication
!  Fine granularity / block data layout

� Arbitrary DAG with dynamic scheduling

21

Fork-join
parallelism

PLASMA/MAGMA: Parallel Linear Algebra
s/w for Multicore/Hybrid Architectures

DAG scheduled
parallelism

Time

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R!R!

D1!

D2!

D3!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

D0!

D1!

D2!

D3!

D0!

	��
�	
� 22

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R!R!

D1!

D2!

D3!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

D0!

D1!

D2!

D3!

D0!

	��
�	
� 23

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R!R!

D1!

D2!

D3!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

D0!

D1!

D2!

D3!

D0!

	��
�	
� 24

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R!R!

D1!

D2!

D3!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

D0!

D1!

D2!

D3!

D0!

	��
�	
� 25

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0!

R1!

R2!

R3!

R0!

R2!

R0!R!R!

D1!

D2!

D3!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

Domain_Tile_QR!

D0!

D1!

D2!

D3!

D0!

	��
�	
� 26

PowerPack 2.0

27 The PowerPack platform consists of software and hardware instrumentation.
Kirk Cameron, Virginia Tech; http://scape.cs.vt.edu/software/powerpack-2-0/

Power for QR Factorization

28
dual-socket quad-core Intel Xeon E5462 (Harpertown) processor
@ 2.80GHz (8 cores total) w / MLK BLAS
matrix size is very tall and skinny (mxn is 1,152,000 by 288)

PLASMA’s Communication
Reducing QR Factorization
DAG based

PLASMA’s Conventional
QR Factorization
DAG based

MKL’s QR Factorization
Fork-join based

LAPACK’s QR Factorization
Fork-join based

The standard Tridiagonal reduction xSYTRD

 step k: Q A Q* then update # step k+1

$  LAPACK xSYTRD:

1.  Apply left-right transformations Q A Q* to the panel
2.  Update the remaining submatrix A33

�

A22
A32

⎛

⎝
⎜

⎞

⎠
⎟

General Overview: the tiles Eigenproblem algorithms

Divide and Conquer algorithm stage -2-

0

@
T11 T T

21 0
T21 A22 AT

32
0 A32 A33

1

A ⌘

0

@
T11 T T

21 0
T21 A22 AT

32
0 A32 A33

1

A =)

0

@
T11 T T

21 0
T21 T22 T T

23
0 T23 A33

1

A

where A33 = A33 � YW T � WY T

For the symmetric eigenvalue problem:
First stage takes:
•  90% of the time if only eigenvalues
•  50% of the time if eigenvalues and eigenvectors

The standard Tridiagonal reduction xSYTRD

$ Characteristics
1.  Phase 1 requires :

o  4 panel vector multiplications,
o  1 symmetric matrix vector multiplication with A33,
o  Cost 2(n-k)2b Flops.

2.  Phase 2 requires:
o  Symmetric update of A33 using SYRK,
o  Cost 2(n-k)2b Flops.

$  Observations
•  Too many Level 2 BLAS ops,
•  Relies on panel factorization,
•  Total cost 4n3/3
•  #Bulk sync phases,
•  #Memory bound algorithm.

Symmetric Eigenvalue Problem

•  Standard reduction algorithm are very slow on multicore.

•  Step1: Reduce the dense matrix to band.
•  Matrix-matrix operations, high degree of parallelism

•  Step2: Bulge Chasing on the band matrix
•  by group and cache aware

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Matrix size

G
flo

p/
s

PLASMA DSYTRD+DSTEV
MKL−SBR−DSYRDB+DSTEV
SBR−toolkit−DSYRDD+DSTEV
MKL−DSYTRD+DSTEV
LPK−reference−DSYTRD+DSTEV

11X

50X

Symmetric
Eigenvalues

Singular Values singular values only

�  Block DAG based to banded form, then pipelined group
chasing to tridiagaonal form.

�  The reduction to condensed form accounts for the factor
of 50 improvement over LAPACK

�  Execution rates based on 4/3n3 ops

eigenvalues only

 Experiments on eight-socket six-core AMD Opteron 2.4 GHz
processors with MKL V10.3.

Summary
�  These are old ideas (today SMPss, StarPU, Charm++, ParalleX,

Swarm,…)

�  Major Challenges are ahead for extreme
computing
! Power
! Levels of Parallelism
! Communication
! Hybrid
! Fault Tolerance
! … and many others not discussed here

�  Not just a programming assignment.
�  This opens up many new opportunities for

applied mathematicians and computer
scientists

Collaborators / Software / Support

%  PLASMA
http://icl.cs.utk.edu/plasma/

%  MAGMA
http://icl.cs.utk.edu/magma/

%  Quark (RT for Shared Memory)
•  http://icl.cs.utk.edu/quark/

%  PaRSEC(Parallel Runtime Scheduling
and Execution Control)
•  http://icl.cs.utk.edu/parsec/

34

%  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

These tools are being applied to a range of applications beyond dense LA:
 Sparse direct, Sparse iterations methods and Fast Multipole Methods

