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« June 2012: The TOP10

. Rmax | 7% of|| Power IMF/ops
Rank Site Computer Country Cores [Pflops] | Peak|| Mw] ||/ Watt
DOE / NNSA Sequoia, BlueGene/Q (16c)
1 L Livermore Nat Lab + custom USA 1,672,864 16.3 81 8.6 || 1895
RIKEN Advanced Inst K computer Fujitsu SPARC64
2 for Comp Sci VIIIfx (8c) + custom Jn e | 23 | IR
3 DOE 7 OS | pira, BlueGene/Q (16¢) + custom  USA | 786,432 | 8.16 | 81 || 3.95 || 2069
Argonne Nat Lab ‘ ‘ . ’
4 LI SuperMUC, Intel (8c) + I8 | Germany | 147,456 | 2.90 | 90*| 3.52 || 823
Rechenzentrum P ’ Y ‘ | ’
5 |Nat. SuperComputer|  p..,, Zighf .Ij;c’ﬁclrv ‘ejgg (14c) 186,368 | 2.57 | 55 || 4.04 || 636
Center in Tianjin + custom ’ ’ ’
DOE / Os Jaguar, Cray
6 | Oak Ridge Nat Lab AMD (16¢) + custom Usd | 296,592 1.54 | 74 |t
Fermi, BlueGene/Q (16c)
7 CINECA + custom 163,840 1.73 82 | .821 || 2099
Forschungszentrum | JuQUEEN, BlueGene/Q (16c)
8 Juelich (FZJ) + custom Germany | 131,072 1.38 82 .657 || 2099
Comm'issar'iaf.a Curie. Bull
9 | I'Energie Atomique Intel (8¢) + IB 77,184 1.36 82 || 2.25 || 604
(CEA) h |
Nat. Supercompute Nebulea, Dawning Intel (6)
10 Center in Shenzhen + Nvidia GPU (14c) + IB 120,640 1.27 43 2.58 || 493
500 Energy Comp IBM Cluster, Intel + IB ltaly 4096 .061 93*




ICL

Accelerators (58 systems)
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“IIntel MIC (1)

il Clearspeed CSX600 (0)
W ATI GPU (2)

il IBM PowerXCell 8i (2)
LI NVIDIA 2070 (10)
_INVIDIA 2050(12)

i NVIDIA 2090 (31)

27 US 2 Poland

7 China 1 Australia
4 Japan 1 Brazil

3 Russia 1 Canada

2 France 1 Singapore
2 Germany 1 Spain

2 India 1 Taiwan

2 ltaly 1 UK
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Absolute Counts

US: 252
China: 68
Japan: 35
UK: 25
France: 22
Germany: 20

Switzerland
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< 28 Systems at > Pflop/s (Peak)
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« Linpack Efficiency
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Performance Development in TopS500

1 Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflop/s

1 Tflop/s
100 Gflop/s

10 Gflop/s

1 Gflop/s

'
__le*xl/‘l‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

PR
1994 1996 1998 2000 2002 2004 2006 2008 20102012 2014 2016 2018 2020




IcLor-

The High Cost of Data Movement

*Flop/s or percentage of peak flop/s become
much less relevant

Approximate power costs (in picoJoules)

DP FMADD flop 100 pJ
DP DRAM read 4800 pJ
Local Interconnect 7500 pJ
Cross System 9000 pJ

Source: John Shalf, LBNL

*Algorithms & Software: minimize data
movement; perform more work per unit data

movement.
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<~ Energy Cost Challenge

" At ~$1M per MW energy costs are
substantial
» 10 Pflop/s in 2011 uses ~10 MWs
> 1 Eflop/s in 2018 > 100 MWs

1000

usual

100 £ scaling
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10 /j —————— apm==m”?T
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> DOE Target: 1 Eflop/s in 2018 at 20 MWs

System Power (MW)
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¢ Potential System Architecture
with a cap of $200M and 20MW

ICL

[
BG/Q
Computer

System peak 20 Pflop/s
Power 8.6 MW
System memory 1.6 PB
(16*96*1024)
Node performance 205 GF/s
(16*1.66Hz*8)
Node memory BW 42.6 GB/s
Node concurrency 64
Threads
Total Node Interconnect 20 GB/s
BW
System size (nodes) 98,304
(96*1024)
Total concurrency 5.97 M

MTTI 4 days




¢ Potential System Architecture
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with a cap of $200M and 20MW

System peak
Power

System memory

Node performance
Node memory BW
Node concurrency

Total Node Interconnect
BW

System size (nodes)

Total concurrency
MTTI

2012 Difference
B6/Q Today & 2022
Computer

20 Pflop/s 1 Eflop/s
8.6 MW ~20 MW

O(100)

16 PB 32-64PB
(16*96*1024)

o

205 GF/s 1.2 or 15TF/s

(16*1.66Hz*8)

42.6 GB/s 2-4TB/s

O(10) - O(100)

O(1000)

64 O(1k) or 10k
Threads

0099000y

0(10)

0(100) - O(1000)

20 GB/s 200-4006B/s
98,304 0(100,000) or O(1M)
(96*1024)
5.97 M O(billion)

0(1,000)

4 days O(<1 day)

- 0(10)




£, Critical Issues at Peta & Exascale for

ICLOr"

Algorithm and Software Design
* Synchronization-reducing algorithms
> Break Fork-Join model
- Communication-reducing algorithms
> Use methods which have lower bound on communication
" Mixed precision methods
> 2x speed of ops and 2x speed for data movement

- Autotuning

» Today's machines are too complicated, build “"smarts” into
software to adapt to the hardware

" Fault resilient algorithms
> Implement algorithms that can recover from failures/bit
flips
" Reproducibility of results

> Today we can’t guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.
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Major Changes to Algorithms/Software

- Must rethink the design of our
algorithms and software

»Manycore and Hybrid architectures are
disruptive technology

»Similar to what happened with cluster
computing and message passing

»Rethink and rewrite the applications,
algorithms, and software

»Data movement is expensive
»Flops are cheap
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:Dense Linear Algebra

Tmswatware Evolution

LINPACK (70's)
vector operations

LAPACK (80's)
block operations

ScaLAPACK (90's)
block cyclic
data distribution

PLASMA (00's)
tile operations

i

Level 1 BLAS

Level 3 BLAS

e PBLAS
e BLACS

(message passing)

e tile layout

e dataflow scheduling
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e Tile Algorithms

e Mminimize capacity misses

e Tile Matrix Layout

e minimize conflict m
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e Dynamic DAG Scheduling

e minimizes idle time

e More overlap

e Asynchronous ops

cPU LAPACK
cache
MEM
PLASMA
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Fork-Join Parallelization of LU and QR.

“ Parallelize the update:
— * Easy and done in any reasonable software.

* This is the 2/3n3 term in the FLOPs count.

emm
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* Can be done efficiently with LAPACK+multithreaded BLAS
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£ PLASMA/MAGMA: Parallel Linear Algebra
for Multicore/Hybrid Architectures

"Objectives s A
g-/pj = ¢ ,-:),”-E-\,-)
> High utilization of each core I s ‘c_j@ﬁ@@gmﬁ.

. ‘x‘_‘: ;/...‘. -—D ¥* ‘ ,‘ 7 \\‘
> Scaling to large number of cores .ZT..la ?@ )
E \C <L gﬁb
QE_D (-Q’L) -

> Synchronization reducing algorithms '~ - *‘t‘ QD b v

“Methodology S ek : - e
CD\ (—-5 &

» Dynamic DAG scheduling (QUARK) [ a@ o

)
ééé

> Explicit parallelism e "\_" e

> Implicit communication T

> Fine granularity / block data layout 3
"Arbitrary DAG with dynamic scheduling -

= T l..e‘-n"'#wr = Sl .

¥ =g = Fork-join

.- % % % % :%"%_P-z ===y parallelism

= -] =

DAG scheduled
parallelism

Time = 21




¢ Communication Avoiding QR
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__Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume Il, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

10/2/12

22




¢ Communication Avoiding QR
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__Example
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A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume Il, Applications,
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¢ Communication Avoiding QR
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__Example
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A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume Il, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.
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__Example

Communication Avoiding QR
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A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume Il, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.
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€ Communication Avoiding QR
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__Example
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¢ PowerPack 2.0

The PowerPack platform consists of software and hardwar:
Kirk Cameron. Virainia Tech: httn://scane.cs. vt .ediu/softwar
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“* Power for QR Factorization

;2= LAPACK’s QR Factorization |

Fork-join based

100 A ,K,‘%. Aty TN W) - A 3
.vmmr L .«}?\‘Aemory . .

Disk .

VIOt

M MKL’s QR Factorization

A, Fork-join based 2122

wiotherboard

sml/ O\ PLASMA's Conventional °

x = QR Factorization TI**°
== . . . DAG based Sy

- °®
fq sssss : PLASMA’'s Communication *
ol Reducing QR Factorization ©

.+« = DAG based

Time (seconds)

dual-socket quad-core Intel Xeon E5462 (Harpertown) processor
@ 2.80GHz (8 cores total) w / MLK BLAS 28
matrix size is very tall and skinny (mxn is 1,152,000 by 288)




cLor The standard Tridiagonal reduction xSYTRD

%* LAPACK xSYTRD:

A22

1.  Apply left-right transformations Q A Q* to the panel A,
2. Update the remainina submatrix A..

Tw T O
Tor A AL
0 Az Ass

Tir T3
= | T21 Ax
0 A

where A33 = A33 —YWT — wyT

20

80

100

0 50 100
nz=1298

step k: Q A Q"

0 Tw T 0
A;-Z — T21 T22 T27(-3

Ass 0 Tu

0

then update = step k+l

For the symmetric eigenvalue problem:

First stage takes:

* 90% of the time if only eigenvalues
* 50% of the time if eigenvalues and eigenvectors




The standard Tridiagonal reduction xSYTRD

1. Phase 1 requires :
O 4 panel vector multiplications,
o 1 symmetric matrix vector multiplication with A,
o Cost 2(n-k)?b flops.
2. Phase 2 requires:
o Symmetric update of A,, using SYRK,
o Cost 2(n-k)?b flops.

°* Too many Level 2 BLAS ops,
* Relies on panel factorization,
* Total cost 4n3/3

 =>Bulk sync phases,

* =»Memory bound algorithm.




= Symmetric Eigenvalue Problem
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Standard reduction algorithm are very slow on multicore.

Stepl: Reduce the dense matrix to band.

* Matrix-matrix operations, high degree of parallelism
Step2: Bulge Chasing on the band matrix

* by group and cache aware

nz = 3600
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Matrix size

Experiments on eight-socket six-core AMD Opteron 2.4 GHz
processors with MKL V10.3.
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DGESVD
48 core AMD system

5000
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LAPACK
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Size

Block DAG based to banded form, then pipelined group

chasing to tridiagaonal form.

The reduction to condensed form accounts for the factor
of 50 improvement over LAPACK

Execution rates based on 4/3n3 ops
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Summary

" These are old ideas (todey swess, starpu, charme+, Parallex,

Swarm,...)

" Major Challenges are ahead for extreme

computing
> Power
> Levels of Parallelism
» Communication
> Hybrid
> Fault Tolerance
> ... and many others not discussed here

" Not just a programming assignment.
" This opens up many new opportunities for

applied mathematicians and computer
scientists
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Collaborators / Software / Support

*

PLASMA < @tﬂ: FUjiTSU

http://icl.cs.utk.edu/plasmal/ #VIDIA. nag@ AMD 1
¢

MAGMA @\ The MathWorks

http://icl.cs.utk.edu/magmal/

U.S. DEPARTMENT QF

VENERGY

Quark (RT for Shared Memory) @
http://icl.cs.utk.edu/quark/ |

Collaborating partners
University of Tennessee, Knoxville

PaRSEC(Parallel Runtime Scheduling ~ niverstyof Caiforia, Berkeley

and Execution Control)

] INRIA, France
http://icl.cs.utk.edu/parsec/ KAUST, Saudi Arabia

These tools are being applied to a range of applications beyond dense LA:

Sparse direct, Sparse iterations methods and Fast Multipole Methods




