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“* Fault Tolerance in the Computation

+ The next generation systems are
being designed with 100K processors
(IBM Blue Gene L)

+ 10 hours for component MTTF
> sounds like a lot until you divide by
109!
> Failures for such a system
is likely to be just a few minutes /
hours away.

+ Application checkpoint /restart is
today's typical fault tolerance
method.

+ Problem with MPI, no recovery from
faults in the standard




(\
Motivation

¢ Trends in HPC:
> High end systems with thousand of processors
» 6rid Computing

+ Increased probability of a node failure
> Most systems nowadays are robust

¢ Node and communication failure in distributed
environments

¢ MPI widely accepted in scientific computing

Mismatch between hardware and (non fault-
tolerant) programming paradigm of MPI.
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£Fault Tolerance - Diskless Checkpointing -
Built into Software

¢ Maintain a system checkpoint in memory
>  All processors may be rolled back if necessary

> Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored

> No reliance on disk

¢ Other scheme Checksum and Reverse
computation
>  Checkpoint less frequently
> Option of reversing the computation of the non-failed
processors to get back to previous checkpoint
¢+ Idea to build into library routines
> System or user can dial it up

> Working prototype for MM, LU, LLT, QR, sparse

solvers using PVM

> Fault Tolerant Matrix Operations for Networks of Workstations Using Diskless
Checkpointing J Plank Y Kim and J Donaarra JPDC 1997
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< FT-MPI http://icl.cs.utk.edu/ft-mpi/

+ Define the behavior of MPI in case an error
occurs

¢+ FT-MPTI based on MPI 1.3 (plus some MPTI 2
features) with a fault tolerant model similar to
what was done in PVM.

+ Gives the application the possibility to recover
from a node-failure

¢ A regular, non fault-tolerant MPI program will
run using FT-MPI

¢+ What FT-MPI does not do:
> Recover user data (e.g. automatic check-pointing)
> Provide transparent fault-tolerance
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FT-MPI Failure Modes

¢ ABORT: just do as other MPI
implementations

¢+ BLANK: leave hole

¢+ SHRINK: re-order processes
to make a contiguous
communicator
> Some ranks change

¢ REBUILD: re-spawn lost
processes and add them to
MPI_COMM_WORLD
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Algorithm Based Fault Tolerance Using

Diskless Check Pointing

+ Not transparent, has to be built into the

algorithm

+ N processors will be executing the computation.
> Each processor maintains their own checkpoint locally

(additional memory)

¢ M (M << N) extra processors maintain coding
information so that if 1 or more processors

die, they can be replaced

+ The example looks at M = 1 (parity processor),
can sustain addition failures with Reed-Solomon

coding techniques.
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<~ How Diskless Check Pointing Works
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< Diskless Checkpointing

+ The N application
processors (4 in this
case) each maintain their APPLICATION
own checkpoints locally. PIROCESSORS

¢ M extra processors
maintain coding

PO | P1

P ARSI
PROCES

information so that if 1
or more processors die, =
they can be replaced. P2 | P3

+ Will describe for m=1

(parity)

¢+ If a single processor
fails, then its state may
be restored from the
remaining live processors

P4 =PO3P13P23P3
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Diskless Checkpointing
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Diskless Checkpointing
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Algorithm Based

¢ Built into the algorithm
> Not transparent
> Allows for heterogeneity
+ Develo ing Kpro'rot pe examples for
icalBA ACK and iterative methods for
X=
+ Not with XOR of the data, just
accumulate sum of the data.
> Clearly there can be problem with loss of
precision
¢+ Could use XOR as Iong as the recovery
didn't involve roundoff errors
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A Fault-Tolerant Parallel CG Solver

+ Tightly coupled computation
+ Do a "backup” (checkpoint) every k iterations

¢ Requires each process to keep copy of iteration
changing data from checkpoint

+ First example can survive the failure of a single
process

+ Dedicate an additional process for holding data,
which can be used during the recovery
operation

¢ For surviving m process failures (m < np) you
need m additional processes (second example)
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<= CG Data Storage

Think of the data like this

A b 5 vectors
(\
- .
Parallel version
Think of the data like this Think of the data like this
A b 5 vectors on each processor

] A 5 vectors

i

No need to checkpoint
each iteration, say every &
iterations.
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< Diskless version
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+  Preconditioned Conjugate Grad Performance
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Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)
Matrix ( Size) Mpichl.2.5
(sec)
besstk18.rsa (11948) 9.81
besstk17.rsa (10974) 27.5

nasasrb.rsa (54870) 5717.

besstk35.rsa (30237) 860.
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Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix ( Size) Mpich1.2.5 FT-MPI
(sec) (sec)
besstk18.rsa (11948) 9.81 9.78
besstk17.rsa (10974) 27.5 27.2
nasasrb.rsa (54870) 577. 569.
besstk35.rsa (30237) 860. 858.
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+  Preconditioned Conjugate Grad Performance
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Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix ( Size) Mpich1.2.5 FT-MPI FT-MPI
(sec) (sec) w/ ckpoint (sec)
besstk18.rsa (11948) 9.81 9.78 10.0
besstk17.rsa (10974) 27.5 27.2 27.5
nasasrb.rsa (54870) 5717. 569. 570.
besstk35.rsa (30237) 860. 858. 859.
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Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix (Size) Mpich1.2.5 | FT-MPI FT-MPI FT-MPIw/ | Recovery | CkpointOhead Recovery
(sec) (sec) w/ ckpoint (sec) recovery (sec) (sec) (%) Overhead (%)
besstk18.rsa (11948) 9.81 9.78 10.0 12.9 2.31 2.4 23.7
besstk17.rsa (10974) 27.5 27.2 27.5 30.5 2.48 1.1 9.1
nasasrb.rsa (54870 5717. 569. 570. 577. 4.09 0.23 0.72
besstk35.rsa (30237) 860. 858. 859. 872. 3.17 0.12 0.37

. Protecting for More Than One Failure:

In order to be able to recover from any k ( <= # of
checkpomt processes ) failures, need a checkpoint encoding
matrix
Say p processes each with P; data
Need a function A such that
C=A*P where P= (Pl,Pz,...P)

» C: Checkpoint data C = (CI,CZ, )" (C, and P, same size)

> A: Checkpoint-Encoding matrix A is k x p (k << p)

» C, = ayP;+ a,P, + ..uv g, P

> Each checkpoint process get one of these

The checkpoint matrix A has to satisfy:

» Any square sub-matrix of A is non-singular

How to find such an A? Vandermonde matrix, Cauchy
matrix, ., random?

When h failures occur, recover the data by taking the
h x h submatrix of A, call it A’ corresponding 'ro the failed
processes and solving A’P’ =

> A’ is the h x h submatrix

» C'is made up of the surviving h checkpoints




£. Checkpoint Encoding to Tolerate m Failures
“" Reed Solomon Encoding

C, is the data on the i ckpt procs
P; is the data on the j* comp procs

= * *
Cl_all P1+...+aln P

n

C,=a, *P,+ ... +ta *P
Computational Procs Checkpoint Procs

The checkpoint are done in m steps: In each step j, every computational processor first prepares its own
data (computational processor i calculates a;,*P,), and then sends its data out. The checkpoint processor j receives
the sum of these data. This is implemented through MPI_Reduce with a MPI_SUM operation.

Suppose the data size in each computational processor is x floating point numbers, then
Computation  Overhead: mx multiplications on each processor. Please note MPI_Reduce involve additions. The

number of additions on each processor is dependent on the implementation of the reduce
Communication Overhead: m MPI_Reduce with x numbers in each message.

Memory Overhead: depend on doing local ckpt or reverse comp. The same as tolerate one failure.
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< Recovery Decoding

C’jl = le— ( Zpiisasurvival ajli*Pi )

C’jk = Cjk_ ( Zpiisasurvival ajki*Pi )

Restarted Comp Procs Survival Ckpt Procs
How to find out the lost data P’ on restarted processes?  Solve a linear system: A’y * P’ = Cry

Suppose there are k comp procs and / ckpt procs dies ( k£ + 7 <= m). Assume the data size in each
computational processor is x floating point numbers :

(1). Find any & survival ckpt procs, modify their encodings from C; to C’; (see above formula)
Computation  Overhead: kx floating point calculations on each processor.
Communication Overhead: &k MPI_Reduce with x floating point numbers in each message

(2). The k restarted comp procs and the & survival ckpt procs calculate the lost data

(P, Piy, ..., Py )’ on the k restarted comp procs by solving A’ * P’ = Cyy
Computation ~ Overhead: O(k’+kx) floating point calculations on each processor.
Communication Overhead: &k MPI_Reduce with x floating point numbers in each message

(3). Re-encoding the checkpoint data to the 4 restarted ckpt procs.

Computation ~ Overhead: Ax floating point calculations on each processor.
Communication Overhead: & MPI Reduce with x floating point numbers in each message
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< FT PCG Performance

FT PGG Perfornance on BCBA
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Nunber of Fail ures Nunber of Fail ures
Num of Procs 10 comp + 1 ckpt | 10 comp + 2 ckpt | 10 comp + 3 ckpt | 10 comp + 4 ckpt | 10 comp + 5 ckpt
T(10 comp procs) 26.08 26.08 26.08 26.08 26.08
T_with_ckpt 26.21 26.27 26.38 26.45 26.51
T_with-recover 28.36 28.50 28.63 28.66 28.54

The test matrix is besstk17.rsa(10974x10974). The pcg uses diagonal as preconditioner, and does checkpoint every 100
iterations (about every 1 seconds).

A fault tolerant pcg which can tolerate multiple failures has been developed. In the fault tolerant scheme, each processor
maintains a copy of the local checkpoint data in memory. At the same time, multiple encodings of these local checkpoint
data are maintained on m dedicated checkpoint processors. A Cauchy matrix is used as the checkpoint matrix. If failures
happen, the lost data can be recovered through solving a linear system.
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< Futures

Investigate ideas for 10K to 100K
processors:

+ Determine the checkpointing interval from
MTMF for the machine

¢+ Local checkpoint and restart algorithm.
> Coordination of local checkpoints.
> Processors hold backups of neighbors.

+ For some algorithms, unwind the
computation to get back to the checkpoint,
eg LU, QR, LLT (clearly more expensive)

+ Development of super-scalable fault-

tolerant MPI implementation with localized
recovery.
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