
1

Fault Tolerance in Message Passing Fault Tolerance in Message Passing
and in Actionand in Action

Jack Dongarra,
Innovative Computing Laboratory

University of Tennessee
and

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Fault Tolerance in the ComputationFault Tolerance in the Computation
♦ The next generation systems are

being designed with 100K processors
(IBM Blue Gene L)

♦ 106 hours for component MTTF
sounds like a lot until you divide by
105!
Failures for such a system
is likely to be just a few minutes /
hours away.

♦ Application checkpoint /restart is
today’s typical fault tolerance
method.

♦ Problem with MPI, no recovery from
faults in the standard

2

MotivationMotivation

♦ Trends in HPC:
High end systems with thousand of processors
Grid Computing

♦ Increased probability of a node failure
Most systems nowadays are robust

♦ Node and communication failure in distributed
environments

♦ MPI widely accepted in scientific computing

Mismatch between hardware and (non fault-
tolerant) programming paradigm of MPI.

Related workRelated work

Manetho
n faults
[EZ92]

Egida

[RAV99]

MPI/FT
Redundance of tasks

[BNC01]

FT-MPI
Modification of MPI routines

User Fault Treatment

[FD00]

MPICH-V
N faults

Distributed logging

MPI-FT
N fault

Centralized server

[LNLE00]

Non AutomaticAutomatic

Pessimistic log

Log basedCheckpoint
based

Causal log
Optimistic log

(sender based)

Level

Framework

API

Communication
Layer

Cocheck
Independent of MPI

[Ste96]

Starfish
Enrichment of MPI

[AF99]
Clip

Semi-transparent checkpoint

[CLP97]

Pruitt 98
2 faults sender based

[PRU98]

Sender based Mess. Log.
1 fault sender based

[JZ87]

Optimistic recovery
In distributed systems

n faults with coherent checkpoint
[SY85]

A classification of fault tolerant message passing environments considering
A) level in the software stack where fault tolerance is managed and
B) fault tolerance techniques.

Causal logging +
Coordinated
checkpoint

LAM/MPI

MPICH-V/CL LA-MPI

3

Fault Tolerance Fault Tolerance -- Diskless Diskless CheckpointingCheckpointing --
Built into SoftwareBuilt into Software
♦ Maintain a system checkpoint in memory

All processors may be rolled back if necessary
Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored
No reliance on disk

♦ Other scheme Checksum and Reverse
computation

Checkpoint less frequently
Option of reversing the computation of the non-failed
processors to get back to previous checkpoint

♦ Idea to build into library routines
System or user can dial it up
Working prototype for MM, LU, LLT, QR, sparse
solvers using PVM
Fault Tolerant Matrix Operations for Networks of Workstations Using Diskless
Checkpointing, J. Plank, Y. Kim, and J. Dongarra, JPDC, 1997.

FTFT--MPI MPI http://icl.cs.utk.edu/fthttp://icl.cs.utk.edu/ft--mpimpi//
♦ Define the behavior of MPI in case an error

occurs
♦ FT-MPI based on MPI 1.3 (plus some MPI 2

features) with a fault tolerant model similar to
what was done in PVM.

♦ Gives the application the possibility to recover
from a node-failure

♦ A regular, non fault-tolerant MPI program will
run using FT-MPI

♦ What FT-MPI does not do:
Recover user data (e.g. automatic check-pointing)
Provide transparent fault-tolerance

4

FTFT--MPI Failure ModesMPI Failure Modes
♦ ABORT: just do as other MPI

implementations

♦ BLANK: leave hole

♦ SHRINK: re-order processes
to make a contiguous
communicator

Some ranks change

♦ REBUILD: re-spawn lost
processes and add them to
MPI_COMM_WORLD

Algorithm Based Fault Tolerance Using Algorithm Based Fault Tolerance Using
Diskless Check PointingDiskless Check Pointing

♦ Not transparent, has to be built into the
algorithm

♦ N processors will be executing the computation.
Each processor maintains their own checkpoint locally
(additional memory)

♦ M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

♦ The example looks at M = 1 (parity processor),
can sustain addition failures with Reed-Solomon
coding techniques.

5

How Diskless Check How Diskless Check PointingPointing WorksWorks

♦ Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

Diskless Diskless CheckpointingCheckpointing
♦ The N application

processors (4 in this
case) each maintain their
own checkpoints locally.

♦ M extra processors
maintain coding
information so that if 1
or more processors die,
they can be replaced.

♦ Will describe for m=1
(parity)

♦ If a single processor
fails, then its state may
be restored from the
remaining live processors

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3

Parity
proces

Application
processors

6

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P1 = P0 ƒ P2 ƒ P3 ƒ P4

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues

7

Algorithm BasedAlgorithm Based

♦ Built into the algorithm
Not transparent
Allows for heterogeneity

♦ Developing prototype examples for
ScaLAPACK and iterative methods for
Ax=b

♦ Not with XOR of the data, just
accumulate sum of the data.

Clearly there can be problem with loss of
precision

♦ Could use XOR as long as the recovery
didn’t involve roundoff errors

A FaultA Fault--Tolerant Parallel CG SolverTolerant Parallel CG Solver
♦ Tightly coupled computation
♦ Do a “backup” (checkpoint) every k iterations
♦ Requires each process to keep copy of iteration

changing data from checkpoint
♦ First example can survive the failure of a single

process
♦ Dedicate an additional process for holding data,

which can be used during the recovery
operation

♦ For surviving m process failures (m < np) you
need m additional processes (second example)

8

CG Data StorageCG Data Storage
Think of the data like this

A b 5 vectors

Parallel versionParallel version
Think of the data like this Think of the data like this

on each processorA b 5 vectors

A b 5 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every k
iterations.

9

Diskless versionDiskless version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

Extra storage needed
from the data that is c

Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery
Overhead (%)

Ckpoint Ohead
(%)

Recovery
(sec)

FT-MPI w/
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix (Size)

0.370.123.17872.859.858.860.bcsstk35.rsa (30237)

0.720.234.09 577.570.569.577. nasasrb.rsa (54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa (10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa (11948)

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint

Checkpoint every 100 iterations (diagonal preconditioning)

0

200

400

600

800

1000

bcsst k18 bcsst k17 nasasr b bcsst k35
Mat r i ces

Ti
me

 f
or

 S
ol

ut
io

n MPI CH1. 2. 5

FTMPI 1. 0. 1

FTMPI
Checkpoi nt
FTMPI
Recover y

10

Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery
Overhead (%)

Ckpoint Ohead
(%)

Recovery
(sec)

FT-MPI w/
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix (Size)

0.370.123.17872.859.858.860.bcsstk35.rsa (30237)

0.720.234.09 577.570.569.577. nasasrb.rsa (54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa (10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa (11948)

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint

Checkpoint every 100 iterations (diagonal preconditioning)

0

200

400

600

800

1000

bcsst k18 bcsst k17 nasasr b bcsst k35
Mat r i ces

Ti
me

 f
or

 S
ol

ut
io

n MPI CH1. 2. 5

FTMPI 1. 0. 1

FTMPI
Checkpoi nt
FTMPI
Recover y

Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery
Overhead (%)

Ckpoint Ohead
(%)

Recovery
(sec)

FT-MPI w/
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix (Size)

0.370.123.17872.859.858.860.bcsstk35.rsa (30237)

0.720.234.09 577.570.569.577. nasasrb.rsa (54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa (10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa (11948)

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint

Checkpoint every 100 iterations (diagonal preconditioning)

0

200

400

600

800

1000

bcsst k18 bcsst k17 nasasr b bcsst k35
Mat r i ces

Ti
me

 f
or

 S
ol

ut
io

n MPI CH1. 2. 5

FTMPI 1. 0. 1

FTMPI
Checkpoi nt
FTMPI
Recover y

11

Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery
Overhead (%)

Ckpoint Ohead
(%)

Recovery
(sec)

FT-MPI w/
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix (Size)

0.370.123.17872.859.858.860.bcsstk35.rsa (30237)

0.720.234.09 577.570.569.577. nasasrb.rsa (54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa (10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa (11948)

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint

Checkpoint every 100 iterations (diagonal preconditioning)

0

200

400

600

800

1000

bcsst k18 bcsst k17 nasasr b bcsst k35
Mat r i ces

Ti
me

 f
or

 S
ol

ut
io

n MPI CH1. 2. 5

FTMPI 1. 0. 1

FTMPI
Checkpoi nt
FTMPI
Recover y

Protecting for More Than One Failure: Protecting for More Than One Failure:
ReedReed--Solomon (Solomon (Checkpoint Encoding Matrices)Checkpoint Encoding Matrices)

♦ In order to be able to recover from any k (<= # of
checkpoint processes) failures, need a checkpoint encoding
matrix

♦ Say p processes each with Pi data
♦ Need a function A such that
♦ C=A*P where P=(P1,P2,…Pp)T;

C: Checkpoint data C = (C1,C2,…Ck)T (Ci and Pi same size)
A: Checkpoint-Encoding matrix A is k x p (k << p)
Ci = ai1P1 + ai2P2 + …+ aip Pp

Each checkpoint process get one of these

♦ The checkpoint matrix A has to satisfy:
Any square sub-matrix of A is non-singular

♦ How to find such an A? Vandermonde matrix, Cauchy
matrix, . . ., random?

♦ When h failures occur, recover the data by taking the
h x h submatrix of A, call it A’, corresponding to the failed
processes and solving A’P’ = C’

A’ is the h x h submatrix
C’ is made up of the surviving h checkpoints

12

Checkpoint Encoding to Tolerate Checkpoint Encoding to Tolerate m m FailuresFailures
Reed Solomon EncodingReed Solomon Encoding

P1

P2

Pn

C1

Cm

C1 = a11 * P1 + . . . + a1n * Pn

Cm = am1 * P1 + . . . + amn * Pn

The checkpoint are done in m steps: In each step j, every computational processor first prepares its own
data (computational processor i calculates aji*Pi), and then sends its data out. The checkpoint processor j receives
the sum of these data. This is implemented through MPI_Reduce with a MPI_SUM operation.

Suppose the data size in each computational processor is x floating point numbers, then
Computation Overhead: mx multiplications on each processor. Please note MPI_Reduce involve additions. The

number of additions on each processor is dependent on the implementation of the reduce
Communication Overhead: m MPI_Reduce with x numbers in each message.
Memory Overhead: depend on doing local ckpt or reverse comp. The same as tolerate one failure.

Computational Procs Checkpoint Procs

Ci is the data on the ith ckpt procs
Pj is the data on the jth comp procs

Recovery DecodingRecovery Decoding
Pi1

Pik

C’j1

C’jk

C’j1 = Cj1 – (∑ pi is a survival aj1 i * Pi)

C’jk = Cjk – (∑ pi is a survival ajk i * Pi)

How to find out the lost data P’ on restarted processes? Solve a linear system: A’kxk * P’kx1 = C’kx1

Suppose there are k comp procs and h ckpt procs dies (k + h <= m). Assume the data size in each
computational processor is x floating point numbers :

(1). Find any k survival ckpt procs, modify their encodings from Cj to C’j (see above formula)
Computation Overhead: kx floating point calculations on each processor.
Communication Overhead: kMPI_Reduce with x floating point numbers in each message

(2). The k restarted comp procs and the k survival ckpt procs calculate the lost data
(Pi1, Pi2, … , Pik)’ on the k restarted comp procs by solving A’kxk * P’kx1 = C’kx1
Computation Overhead: O(k3+kx) floating point calculations on each processor.
Communication Overhead: kMPI_Reduce with x floating point numbers in each message

(3). Re-encoding the checkpoint data to the h restarted ckpt procs.
Computation Overhead: hx floating point calculations on each processor.
Communication Overhead: hMPI_Reduce with x floating point numbers in each message

?

?
Restarted Comp Procs Survival Ckpt Procs

13

FT PCG PerformanceFT PCG Performance

0
5

10
15
20
25
30
35
40
45
50

Ti me

1 2 3 4 5
Number of Fai l ur es

FT PCG Per f or mance on BOBA

NO- f t

FT- ckpt

FT- r ecover

FT PCG Faul t Tol er ance Over head on Boba

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5
Number of Fai l ur es

Ov
er

he
ad

(%
)

checkpoi nt r ecover y

28.5428.6628.6328.5028.36T_with-recover

26.5126.4526.3826.2726.21T_with_ckpt

26.0826.0826.0826.0826.08T(10 comp procs)

10 comp + 5 ckpt10 comp + 4 ckpt10 comp + 3 ckpt10 comp + 2 ckpt10 comp + 1 ckptNum of Procs

The test matrix is besstk17.rsa(10974x10974). The pcg uses diagonal as preconditioner, and does checkpoint every 100
iterations (about every 1 seconds).

A fault tolerant pcg which can tolerate multiple failures has been developed. In the fault tolerant scheme, each processor
maintains a copy of the local checkpoint data in memory. At the same time, multiple encodings of these local checkpoint
data are maintained on m dedicated checkpoint processors. A Cauchy matrix is used as the checkpoint matrix. If failures
happen, the lost data can be recovered through solving a linear system.

FuturesFutures
Investigate ideas for 10K to 100K

processors:
♦ Determine the checkpointing interval from

MTMF for the machine
♦ Local checkpoint and restart algorithm.

Coordination of local checkpoints.
Processors hold backups of neighbors.

♦ For some algorithms, unwind the
computation to get back to the checkpoint,
eg LU, QR, LLT (clearly more expensive)

♦ Development of super-scalable fault-
tolerant MPI implementation with localized
recovery.

14

Collaborators / SupportCollaborators / Support

For more information:

♦ FT-MPI
Graham Fagg, UTK
Edgar Gabriel, UTK
Thara Angskun, UTK
George Bosilca, UTK
Jelena Pjesivac-Grbovic,
UTK

♦ FT Algorithms
Jeffery Chen, UTK

