Fault Tolerance in Message Passing
and in Action

Jack Dongarra,
Innovative Computing Laboratory
University of Tennessee
and
Computer Science and Mathematics Division
Oak Ridge National Laboratory

N
“* Fault Tolerance in the Computation

+ The next generation systems are
being designed with 100K processors
(IBM Blue Gene L)

+ 10 hours for component MTTF
> sounds like a lot until you divide by
109!
> Failures for such a system
is likely to be just a few minutes /
hours away.

+ Application checkpoint /restart is
today's typical fault tolerance
method.

+ Problem with MPI, no recovery from
faults in the standard

(\
Motivation

¢ Trends in HPC:
> High end systems with thousand of processors
» 6rid Computing

+ Increased probability of a node failure
> Most systems nowadays are robust

¢ Node and communication failure in distributed
environments

¢ MPI widely accepted in scientific computing

Mismatch between hardware and (non fault-
tolerant) programming paradigm of MPI.

N

<~ Related work

A classification of fault tolerant message passing environments considering

Framework

API

Communication

A) level in the software stack where fault tolerance is managed and

B) fault tolerance techniques.

Automatic iNon Automatic
Chs‘:;zg'"t | Log based
Optimistic log .
(sender based) Causal log Pessimistic log
Optimistic recovery Causal logging +
ndeﬁgﬂ%’;ﬁcg wp)' (In distributed systems Coordinated
[Ste96] i \\n faults with coherent checkpoint checkpoint

[SY85]

:
Starfish \!
Enrichment of MPI !
AF99 '

bemi-transparent checkpoin)
LP97 \

Egida FT-MPI
User Faull Trealment
[RAV99] [BNCOI]
. Pruitt 98
2 faults sender based
RU98 PI-FT

MPICH \'

N fault
Layer ender based Mess. Log> \strll?‘u:ed‘\oggm Centralized server
j MPICH'WCL 1 fault sender based NLEOO
' 17287

Level

£Fault Tolerance - Diskless Checkpointing -
Built into Software

¢ Maintain a system checkpoint in memory
> All processors may be rolled back if necessary

> Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored

> No reliance on disk

¢ Other scheme Checksum and Reverse
computation
> Checkpoint less frequently
> Option of reversing the computation of the non-failed
processors to get back to previous checkpoint
¢+ Idea to build into library routines
> System or user can dial it up

> Working prototype for MM, LU, LLT, QR, sparse

solvers using PVM

> Fault Tolerant Matrix Operations for Networks of Workstations Using Diskless
Checkpointing J Plank Y Kim and J Donaarra JPDC 1997

N

< FT-MPI http://icl.cs.utk.edu/ft-mpi/

+ Define the behavior of MPI in case an error
occurs

¢+ FT-MPTI based on MPI 1.3 (plus some MPTI 2
features) with a fault tolerant model similar to
what was done in PVM.

+ Gives the application the possibility to recover
from a node-failure

¢ A regular, non fault-tolerant MPI program will
run using FT-MPI

¢+ What FT-MPI does not do:
> Recover user data (e.g. automatic check-pointing)
> Provide transparent fault-tolerance

N

L

FT-MPI Failure Modes

¢ ABORT: just do as other MPI
implementations

¢+ BLANK: leave hole

¢+ SHRINK: re-order processes
to make a contiguous
communicator
> Some ranks change

¢ REBUILD: re-spawn lost
processes and add them to
MPI_COMM_WORLD

AENTE FI_MFI Vartual Maching Comm sacates latamaien

ALNIES T8 Virisal Marhine Comammn katar inlamatien

 mmm

N

L

Algorithm Based Fault Tolerance Using

Diskless Check Pointing

+ Not transparent, has to be built into the

algorithm

+ N processors will be executing the computation.
> Each processor maintains their own checkpoint locally

(additional memory)

¢ M (M << N) extra processors maintain coding
information so that if 1 or more processors

die, they can be replaced

+ The example looks at M = 1 (parity processor),
can sustain addition failures with Reed-Solomon

coding techniques.

N

<~ How Diskless Check Pointing Works

RAID 4
Block 0, 1,
2, 3 Parity

L}
1>
Block 3 Parity

Generation

Block 0

AO
BO

Block 1

Block 2

o
DO

COPYRIGHT & L9598, 1957, 1958, 1555 ADVANCED COMPUTER E NETWORK CORPORATION

R B then this is true:

N

< Diskless Checkpointing

+ The N application
processors (4 in this
case) each maintain their APPLICATION
own checkpoints locally. PIROCESSORS

¢ M extra processors
maintain coding

PO | P1

P ARSI
PROCES

information so that if 1
or more processors die, =
they can be replaced. P2 | P3

+ Will describe for m=1

(parity)

¢+ If a single processor
fails, then its state may
be restored from the
remaining live processors

P4 =PO3P13P23P3

N

A

Diskless Checkpointing

PO

&

P2

P3

Pa

P1 =PO3P23P3 3P4

PO

P2

P4

N

A

Diskless Checkpointing

P4

Po (&)
P2 | P3
PO

P2

Pa

P4 takes on the identity of P1
and the computation continues

PO
P1

P2 | P3

N

Algorithm Based

¢ Built into the algorithm
> Not transparent
> Allows for heterogeneity
+ Develo ing Kpro'rot pe examples for
icalBA ACK and iterative methods for
X=
+ Not with XOR of the data, just
accumulate sum of the data.
> Clearly there can be problem with loss of
precision
¢+ Could use XOR as Iong as the recovery
didn't involve roundoff errors

N

A Fault-Tolerant Parallel CG Solver

+ Tightly coupled computation
+ Do a "backup” (checkpoint) every k iterations

¢ Requires each process to keep copy of iteration
changing data from checkpoint

+ First example can survive the failure of a single
process

+ Dedicate an additional process for holding data,
which can be used during the recovery
operation

¢ For surviving m process failures (m < np) you
need m additional processes (second example)

N

A

<= CG Data Storage

Think of the data like this

A b 5 vectors
(\
- .
Parallel version
Think of the data like this Think of the data like this
A b 5 vectors on each processor

] A 5 vectors

i

No need to checkpoint
each iteration, say every &
iterations.

N

A

< Diskless version

P2

e [T [0 [+

PO | P1

P4a

P2 | P3

EXTRA STORAGE NERIDEID
FIROM THIE DATA THAT IS

~ ..) N
+ Preconditioned Conjugate Grad Performance

L

1000
5 — BMroH.2.5
— 800 T :
3 BETVA 1. 0. 1
& 600 u e
2 400 T O Fmve
g Checkpoi nt
F 200 - OFwe
0 —— Recovery
bcsst k18 bcsst k17 nasasrb bcsst k35
Natri ces
Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)
Matrix (Size) Mpichl.2.5
(sec)
besstk18.rsa (11948) 9.81
besstk17.rsa (10974) 27.5

nasasrb.rsa (54870) 5717.

besstk35.rsa (30237) 860.

L

1000

800

600 T

400 T

200 T

Tine for Solution

n . . N
> Preconditioned Conjugate Grad Performance

0

besst k18

bcsst k17

nasasrb

Matri ces

bcsst k35

B O 2.5

B ETVA 1. 0. 1

UFmwA
Checkpoi nt

UFmwA
Recovery

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix (Size) Mpich1.2.5 FT-MPI
(sec) (sec)
besstk18.rsa (11948) 9.81 9.78
besstk17.rsa (10974) 27.5 27.2
nasasrb.rsa (54870) 577. 569.
besstk35.rsa (30237) 860. 858.

L

1000
&
= 800 T
=
& 600
S 400 T
g
= 200

bcsst k18 bcsst k17 nasasrb
Matri ces

~ ..) N
+ Preconditioned Conjugate Grad Performance

bcsst k35

BMIOH.2.5

B FTVP 1. 0.1

O Fvel
Checkpoi nt

O Fvel
Recovery

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix (Size) Mpich1.2.5 FT-MPI FT-MPI
(sec) (sec) w/ ckpoint (sec)
besstk18.rsa (11948) 9.81 9.78 10.0
besstk17.rsa (10974) 27.5 27.2 27.5
nasasrb.rsa (54870) 5717. 569. 570.
besstk35.rsa (30237) 860. 858. 859.

-
cL
1000
s — | [BMACOH.2.5
— 800 — S
3 B FTVPE1. 0.1
@ 600 T T
S 400 T O FmvA
e Checkpoi nt
= 200 OFmvA
0 ‘ ‘ Recovery
bcsst k18 bcsst k17 nasasrb bcsst k35
Matri ces

. . . \
Preconditioned Conjugate Grad Performance

Table 1: PCG performance on 25 nodes of a dual Pentium 4 (2.4 GHz).
24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations (diagonal preconditioning)

Matrix (Size) Mpich1.2.5 | FT-MPI FT-MPI FT-MPIw/ | Recovery | CkpointOhead Recovery
(sec) (sec) w/ ckpoint (sec) recovery (sec) (sec) (%) Overhead (%)
besstk18.rsa (11948) 9.81 9.78 10.0 12.9 2.31 2.4 23.7
besstk17.rsa (10974) 27.5 27.2 27.5 30.5 2.48 1.1 9.1
nasasrb.rsa (54870 5717. 569. 570. 577. 4.09 0.23 0.72
besstk35.rsa (30237) 860. 858. 859. 872. 3.17 0.12 0.37

. Protecting for More Than One Failure:

In order to be able to recover from any k (<= # of
checkpomt processes) failures, need a checkpoint encoding
matrix
Say p processes each with P; data
Need a function A such that
C=A*P where P= (Pl,Pz,...P)

» C: Checkpoint data C = (CI,CZ,)" (C, and P, same size)

> A: Checkpoint-Encoding matrix A is k x p (k << p)

» C, = ayP;+ a,P, + ..uv g, P

> Each checkpoint process get one of these

The checkpoint matrix A has to satisfy:

» Any square sub-matrix of A is non-singular

How to find such an A? Vandermonde matrix, Cauchy
matrix, ., random?

When h failures occur, recover the data by taking the
h x h submatrix of A, call it A’ corresponding 'ro the failed
processes and solving A’P’ =

> A’ is the h x h submatrix

» C'is made up of the surviving h checkpoints

£. Checkpoint Encoding to Tolerate m Failures
“" Reed Solomon Encoding

C, is the data on the i ckpt procs
P; is the data on the j* comp procs

= * *
Cl_all P1+...+aln P

n

C,=a, *P,+ ... +ta *P
Computational Procs Checkpoint Procs

The checkpoint are done in m steps: In each step j, every computational processor first prepares its own
data (computational processor i calculates a;,*P,), and then sends its data out. The checkpoint processor j receives
the sum of these data. This is implemented through MPI_Reduce with a MPI_SUM operation.

Suppose the data size in each computational processor is x floating point numbers, then
Computation Overhead: mx multiplications on each processor. Please note MPI_Reduce involve additions. The

number of additions on each processor is dependent on the implementation of the reduce
Communication Overhead: m MPI_Reduce with x numbers in each message.

Memory Overhead: depend on doing local ckpt or reverse comp. The same as tolerate one failure.

L

< Recovery Decoding

C’jl = le— (Zpiisasurvival ajli*Pi)

C’jk = Cjk_ (Zpiisasurvival ajki*Pi)

Restarted Comp Procs Survival Ckpt Procs
How to find out the lost data P’ on restarted processes? Solve a linear system: A’y * P’ = Cry

Suppose there are k comp procs and / ckpt procs dies (k£ + 7 <= m). Assume the data size in each
computational processor is x floating point numbers :

(1). Find any & survival ckpt procs, modify their encodings from C; to C’; (see above formula)
Computation Overhead: kx floating point calculations on each processor.
Communication Overhead: &k MPI_Reduce with x floating point numbers in each message

(2). The k restarted comp procs and the & survival ckpt procs calculate the lost data

(P, Piy, ..., Py)’ on the k restarted comp procs by solving A’ * P’ = Cyy
Computation ~ Overhead: O(k’+kx) floating point calculations on each processor.
Communication Overhead: &k MPI_Reduce with x floating point numbers in each message

(3). Re-encoding the checkpoint data to the 4 restarted ckpt procs.

Computation ~ Overhead: Ax floating point calculations on each processor.
Communication Overhead: & MPI Reduce with x floating point numbers in each message

N

A

< FT PCG Performance

FT PGG Perfornance on BCBA

507
i FT POG Faul t Tol erance Overhead on Boba
45 T
20
ol 18 1]~ checkpol ot —=—recovery]
357 16 1 Ccheckpol n recovery
307 =147
Tinme 25T gn
L 2107 .//'—__"/.
20 5 87
157 S 6l
10 4]
57 - = ——~ >
> 0 ; : t
1 2 3 a4 5 1 2 3 4 5
Nunber of Fail ures Nunber of Fail ures
Num of Procs 10 comp + 1 ckpt | 10 comp + 2 ckpt | 10 comp + 3 ckpt | 10 comp + 4 ckpt | 10 comp + 5 ckpt
T(10 comp procs) 26.08 26.08 26.08 26.08 26.08
T_with_ckpt 26.21 26.27 26.38 26.45 26.51
T_with-recover 28.36 28.50 28.63 28.66 28.54

The test matrix is besstk17.rsa(10974x10974). The pcg uses diagonal as preconditioner, and does checkpoint every 100
iterations (about every 1 seconds).

A fault tolerant pcg which can tolerate multiple failures has been developed. In the fault tolerant scheme, each processor
maintains a copy of the local checkpoint data in memory. At the same time, multiple encodings of these local checkpoint
data are maintained on m dedicated checkpoint processors. A Cauchy matrix is used as the checkpoint matrix. If failures
happen, the lost data can be recovered through solving a linear system.

N

A

< Futures

Investigate ideas for 10K to 100K
processors:

+ Determine the checkpointing interval from
MTMF for the machine

¢+ Local checkpoint and restart algorithm.
> Coordination of local checkpoints.
> Processors hold backups of neighbors.

+ For some algorithms, unwind the
computation to get back to the checkpoint,
eg LU, QR, LLT (clearly more expensive)

+ Development of super-scalable fault-

tolerant MPI implementation with localized
recovery.

N

<= Collaborators / Support

r sl |
- LACSIzz

»6raham Fagg, UTK
»Edgar Gabriel, UTK
> Thara Angskun UTK » For more information:
»George Bosilca, UTK

»>Jelena Pjesivac-6Grbovic, CO Og[e

¢ FT Algorithms |dongarrd

>J‘effer‘y Chen, UTK | Google Search][m Feeling Lucky

Advertise with Us - Business Solutions - Services & Tools - Jobs. Press. & Help

Make Google Your Homepage!

82003 Google - Searching 3,083,324,652 web pages.

