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< Parallelism in the Top500
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Jn(‘ra,urm CPU Performance:
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We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

- CPU Desktop Trends — Change is Coming

+ Relative processing power will continue to double
every 18 months

+ 256 logical processors per chip in late 2010
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L Commodity Frocessor Irends
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| Bandwidth/Latency is the Critical Issue, not FLOPS

Go
Annual Typical value
increase in 2006
Single-chip
floating-point 59% 4 GFLOP/s
performance
Front-side bus 239 1 6Word/s
bandwidth ° = 0.25 word/flop
3%  Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222 &

pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

£ Parallelism in LAPACK /
~ ScalL APACK

Shared Memory Distributed Memory

LAPACK ScalLAPACK

lolrered
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LAPACK and ScaLAPACK Futures

+ Widely used dense and banded linear algebra
libraries

> Used in vendor libraries from Cray, Fujitsu, HP,
IBM, Intel, NEC, S6I

» In Matlab (thanks to tuning..), NAG, PETSc, ...

> over 56M web hits at www.netlib.org
»>LAPACK, ScaLAPACK, CLAPACK, LAPACK95

+ NSF grant for new, improved releases
» Joint with Jim Demmel, many others
> Community effort (academic and industry)
+ Next major release scheduled in 2007

¢.See Jim Demmel's talk at 2:30 today MS47
Carmel room
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< Goals (highlights)

¢ Putting more of LAPACK into ScaLAPACK
> Lots of routines not yet parallelized

+ New functionality
» Ex: Updating/downdating of factorizations

+ Improving ease of use
> Life after F77?, Binding to other languages
> Callable from Matlab

+ Automatic Performance Tuning

> Over 1300 calls to ILAENV() to get tuning
parameters

+ New Algorithms
35 » Some faster, some more accurate, some new 1
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< Faster: A’s and o’s

+ Nonsymmetric eigenproblem

» Incorporate SIAM Prize winning work of Byers /
Braman / Mathias on faster HQR

> Up to 10x faster for large enough problems

+ Symmetric eigenproblem and SVD

» Reduce from dense to narrow band
» Incorporate work of Bischof/Lang, Howell/Fulton
> Move work from BLAS2 to BLAS3

> Narrow band (tri/bidiagonal) problem
> Incorporate MRRR algorithm of Parlett/Dhillon
> Voemel, Marques, Willems

33 12

L Recursive/Fractal architectures
““ Recursive/Fractal data layout & Recursive algorithms

+ Enable:
> Register blocking
» Llcache bocking
» L2 cache blocking
> Natural layout for parallel algorithm

+ Close to the 2D block
cyclic distribution

+ Proven efficient by experiments
on recursive algorithms and
recursive data layout (see Gustavso
et al.)
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¢ RigNt-LooKing LU Tactorization
“ (LAPACK)

DGETF2 DLSWP DLSWP

7

X

DTRSM DGEMM

DGETF2 — Unblocked LU
DLSWP — row swaps

A %

DTRSM - triangular solve with
many right-hand sides
DGEMM — matrix-matrix multiply

XA
23
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< Steps in the LAPACK LU

DGETE2 ﬂ LAPACK
DLSWP E l LAPACK
DLSWP % ﬂ LAPACK
DTRSM % l l l l BLAS
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<= LU Timing Profile

LAPACK + BLAS threads

Time for each component

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

1D decomposition and SGI Origin

33
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<~ LU Timing Profile

LAPACK + BLAS threads

Time for each component
Threads — no lookahead

O DGETF2
In this case the performance difference comes from Bl DbLAsSwP(L)
parallelizing row exchanges (DLASWP) and threads in the LU = DLASWP(R)
DTRSM
algorithm. @ DGEMM

1D decomposition and SGI Origin
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“ Right-Looking LU Factorization
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Right-Looking LU with a Lookahead
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Left-Looking LU factorization
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£ Pivot Rearrangement and Lookahead
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5e3 Things to Watch: |

¢+ The PlayStation 3's CPU based on a chip codenamed "Cell"
+ Each Cell contains 8 APUs.

» An APU is a self contained vector processor which acts independently from the
others.

> 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

» 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
> IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

» According to IBM, the SPE's double precision unit is fully IEEE854 compliant.

Cell Processor Architecture Cell APU Architecture
b s mog e T v s
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“" 32 and 64 Bit Floating Point Arithmetic

¢ Use 32 bit floating point whenever possible and resort
to 64 bit floating point when needed to refine solution.

+ Iterative refinement for dense systems can work this
way.
Solve Ax = b in lower precision,
save the factorization (L*U = A*P); O(n®)
Compute in higher precision r = b - A*x; O(n?)
Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n?)
Update solution x, = x + z using high precision; O(n)
Iterate until converged.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

In the best case doubles number of digits per iteration
33 Problem if the matrix is ill-conditioned in sp; O(108) 25
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“* Another Look at Iterative Refinement

+ On Cell processor, single precision is at 256 G6flop/s and double
precision is at 25 Gflop/s.

+ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point

operations per cycle.
Cluster w/3.2 GHz Xeons

+ Reduced memory traffic (factor on sp data) wiScaL APACK
25 In Matlab Comparison of 32 and 64 Bit Computation for Ax=b #procs n Speedup #steps
| Single Precision w/iterative refinemer{,t/,/—/—» 2 2000 iH 4
o 2 4000 160 B}
Al _— i | 2 6000 166 4
__— 2 8000 1.65 5
4 4000 166 4
15 7 4 8000 178 6
2 Double Precision 4 12000 169 6
[5 4 16000 169 5
i 8 8000 164 5
8 16000 178 6
sk ] 8 24000 1.83 5
°21/1.9 X speedup Matlab e wow  1es e
33/ 0n my |apt0p| 16 32000 177 18 +
O0 560 10‘00 1560 2060 25‘00 3000 g2 S0 Lo B
¢ Refinement Technique Using
__Single/Double Precision
¢ Linear Systems
> LU (dense and sparse)
» Cholesky
> QR Factorization
+ Eigenvalue
> Symmetric eigenvalue problem
> SVD
> Same idea as with dense systems,
> Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the Tower precision to solve systems and use higher
precision to calculate residual with original data.
» O(n?) per value/vector
¢ Iterative Linear System
> Relaxed GMRES
> Inner/outer scheme
25

23 LAPACK Working Note in progress
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Summary

+ Better / Faster Numerics
> MRRR sym A & SVD
» HQR, QZ, reductions, packed

+ Expanded Content
» ScaLAPACK mirror LAPACK

+ Extended precision version
> Variable precision, user controlled

¢ Callable from Matlab
» From Matlab invoke LAPACK routine

¢ Recursive data structures
> For Performance

Automate Performance Tuning
Improve ease of use
Better Maintenance and Support

Involve the Community
35 » Open source effort

* & o o
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