
1

2/25/2006 2

Developments with LAPACK and Developments with LAPACK and
ScaLAPACKScaLAPACK on Today's and on Today's and

TomorrowTomorrow’’s Systems s Systems
Jack Dongarra

University of Tennessee
and

Oak Ridge National Laboratory

Also hear Jim Demmel’s talk at 2:30 today MS47 Carmel room

33 3

ParticipantsParticipants
♦ U Tennessee, Knoxville

Jack Dongarra, Julien Langou, Julie Langou, Piotr
Luszczek, Jakub Kurzak, Stan Tomov, Remi Delmas,
Peng Du

♦ UC Berkeley:
Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li,
Osni Marques, Christof Voemel, David Bindel, Yozo Hida, Jason
Riedy, Jianlin Xia, Jiang Zhu, undergrads…

♦ Other Academic Institutions
UT Austin, UC Davis, Florida IT, U Kansas, U Maryland,
North Carolina SU, San Jose SU, UC Santa Barbara
TU Berlin, FU Hagen, U Madrid, U Manchester, U Umeå,
U Wuppertal, U Zagreb

♦ Research Institutions
CERFACS, LBL

♦ Industrial Partners
Cray, HP, Intel, MathWorks, NAG, SGI, Microsoft

2

33 4

Architecture/Systems ContinuumArchitecture/Systems Continuum

♦ Custom processor
with custom interconnect

Cray X1
NEC SX-8
IBM Regatta
IBM Blue Gene/L

♦ Commodity processor
with custom interconnect

SGI Altix
Intel Itanium 2

Cray XT3, XD1
AMD Opteron

♦ Commodity processor
with commodity interconnect

Clusters
Pentium, Itanium,
Opteron, Alpha
GigE, Infiniband,
Myrinet, Quadrics

NEC TX7
IBM eServer
Dawning

Loosely
Coupled

Tightly
Coupled ♦ Best processor performance for

codes that are not “cache
friendly”

♦ Good communication performance
♦ Simpler programming model
♦ Most expensive

♦ Good communication performance
♦ Good scalability

♦ Best price/performance (for
codes that work well with caches
and are latency tolerant)

♦ More complex programming model
0%

20%

40%

60%

80%

100%

Ju
n-

93

D
ec

-9
3

Ju
n-

94

D
ec

-9
4

Ju
n-

95

D
ec

-9
5

Ju
n-

96

D
ec

-9
6

Ju
n-

97

D
ec

-9
7

Ju
n-

98

D
ec

-9
8

Ju
n-

99

D
ec

-9
9

Ju
n-

00

D
ec

-0
0

Ju
n-

01

D
ec

-0
1

Ju
n-

02

D
ec

-0
2

Ju
n-

03

D
ec

-0
3

Ju
n-

04

Custom

Commod

Hybrid

33 5

Parallelism in the Top500Parallelism in the Top500

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

64k-128k
32k-64k
16k-32k
8k-16k
4k-8k
2049-4096
1025-2048
513-1024
257-512
129-256
65-128
33-64
17-32
9-16
5-8
3-4
2
1

3

33 6

Lower Lower
VoltageVoltage

Increase Increase
Clock RateClock Rate
& Transistor & Transistor

DensityDensity

We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

33 7

CPU Desktop Trends CPU Desktop Trends –– Change is ComingChange is Coming

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip
Hardware Threads Per Chip

0

50

100

150

200

250

300

Year

♦ Relative processing power will continue to double
every 18 months

♦ 256 logical processors per chip in late 2010

4

33 8

Commodity Processor TrendsCommodity Processor Trends
Bandwidth/Latency is the Critical Issue, not FLOPSBandwidth/Latency is the Critical Issue, not FLOPS

28 ns
= 94,000 FP ops
= 780 loads

50 ns
= 1600 FP ops
= 170 loads

70 ns
= 280 FP ops
= 70 loads

(5.5%) DRAM latency

27 GWord/s
= 0.008 word/flop

3.5 GWord/s
= 0.11 word/flop

1 GWord/s
= 0.25 word/flop23%Front-side bus

bandwidth

3300 GFLOP/s 32 GFLOP/s 4 GFLOP/s 59%
Single-chip
floating-point
performance

Typical value
in 2020

Typical value
in 2010

Typical value
in 2006

Annual
increase

Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222
pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

Got Bandwidth?

33

ScaLAPACK

PBLASPBLASPBLAS

BLACSBLACSBLACS

MPIMPIMPI

LAPACK

ATLASATLASATLAS Specialized Specialized Specialized
BLASBLASBLAS

threadsthreadsthreads

P
arallel

Parallelism in LAPACK /
ScaLAPACK

Shared Memory Distributed Memory

5

33 10

LAPACK and LAPACK and ScaLAPACKScaLAPACK FuturesFutures
♦ Widely used dense and banded linear algebra

libraries
Used in vendor libraries from Cray, Fujitsu, HP,
IBM, Intel, NEC, SGI
In Matlab (thanks to tuning…), NAG, PETSc,…
over 56M web hits at www.netlib.org

LAPACK, ScaLAPACK, CLAPACK, LAPACK95

♦ NSF grant for new, improved releases
Joint with Jim Demmel, many others
Community effort (academic and industry)

♦ Next major release scheduled in 2007
♦ See Jim Demmel’s talk at 2:30 today MS47

Carmel room

33 11

Goals (highlights)Goals (highlights)

♦ Putting more of LAPACK into ScaLAPACK
Lots of routines not yet parallelized

♦ New functionality
Ex: Updating/downdating of factorizations

♦ Improving ease of use
Life after F77?, Binding to other languages
Callable from Matlab

♦ Automatic Performance Tuning
Over 1300 calls to ILAENV() to get tuning
parameters

♦ New Algorithms
Some faster, some more accurate, some new

6

33 12

Faster: Faster: λλ’’s and s and σσ’’ss

♦ Nonsymmetric eigenproblem
Incorporate SIAM Prize winning work of Byers /
Braman / Mathias on faster HQR
Up to 10x faster for large enough problems

♦ Symmetric eigenproblem and SVD
Reduce from dense to narrow band

Incorporate work of Bischof/Lang, Howell/Fulton
Move work from BLAS2 to BLAS3

Narrow band (tri/bidiagonal) problem
Incorporate MRRR algorithm of Parlett/Dhillon
Voemel, Marques, Willems

33 13

Recursive/Fractal architecturesRecursive/Fractal architectures
Recursive/Fractal Recursive/Fractal data layoutdata layout & Recursive & Recursive algorithmsalgorithms

♦ Enable:
Register blocking
L1cache bocking
L2 cache blocking
Natural layout for parallel algorithm

♦ Close to the 2D block
cyclic distribution

♦ Proven efficient by experiments
on recursive algorithms and
recursive data layout (see Gustavson
et al.)

register

L2 cache

Main memory

Shared memory

L1 cache

L3 cache

Distant memory

7

33 14

DGETF2 DLSWP DLSWP

DTRSM DGEMM

DGETF2 – Unblocked LU

DLSWP – row swaps

DTRSM – triangular solve with

many right-hand sides

DGEMM – matrix-matrix multiply

Right-Looking LU factorization
(LAPACK)

33 15

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

8

33

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

1D decomposition and SGI Origin

LU Timing ProfileLU Timing Profile

Time for each component

33

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

LAPACK + BLAS threads

Threads – no lookahead

In this case the performance difference comes from
parallelizing row exchanges (DLASWP) and threads in the LU

algorithm.

1D decomposition and SGI Origin

LU Timing ProfileLU Timing Profile

Time for each component

9

33 18

Right-Looking LU factorizationRight-Looking LU Factorization

33

Right-Looking LU with a Lookahead

10

33 20

Left-Looking LU factorization

33 21∞

3

2

1

Lookahead = 0

Pivot Rearrangement and Pivot Rearrangement and LookaheadLookahead
4 Processor runs4 Processor runs

11

33 22

Things to Watch:Things to Watch:
PlayStation 3PlayStation 3

♦ The PlayStation 3's CPU based on a chip codenamed "Cell"
♦ Each Cell contains 8 APUs.

An APU is a self contained vector processor which acts independently from the
others.

4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

According to IBM, the SPE’s double precision unit is fully IEEE854 compliant.
Datapaths “lite”

33 23

32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦ Use 32 bit floating point whenever possible and resort

to 64 bit floating point when needed to refine solution.
♦ Iterative refinement for dense systems can work this

way.
Solve Ax = b in lower precision,

save the factorization (L*U = A*P); O(n3)
Compute in higher precision r = b – A*x; O(n2)

Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n2)
Update solution x+ = x + z using high precision; O(n)

Iterate until converged.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
In the best case doubles number of digits per iteration
Problem if the matrix is ill-conditioned in sp; O(108)

12

33 24

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

G
flo

p/
s

In Matlab Comparison of 32 and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On Cell processor, single precision is at 256 Gflop/s and double

precision is at 25 Gflop/s.

♦ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ Reduced memory traffic (factor on sp data)

Double Precision

Single Precision w/iterative refinement

121.843200032

181.773200016

51.921600016

51.83240008

61.78160008

51.6480008

51.69160004

61.69120004

61.7880004

41.6640004

51.6580002

41.6660002

51.6040002

41.5220002

#stepsSpeedupn#procs

Cluster w/3.2 GHz Xeons
w/ScaLAPACK

1.9 X speedup Matlab
on my laptop!

33 25

Refinement Technique Using Refinement Technique Using
Single/Double PrecisionSingle/Double Precision

♦ Linear Systems
LU (dense and sparse)
Cholesky
QR Factorization

♦ Eigenvalue
Symmetric eigenvalue problem
SVD
Same idea as with dense systems,

Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the lower precision to solve systems and use higher
precision to calculate residual with original data.
O(n2) per value/vector

♦ Iterative Linear System
Relaxed GMRES
Inner/outer scheme

LAPACK Working Note in progress

13

33 26

SummarySummary
♦ Better / Faster Numerics

MRRR sym λ & SVD
HQR, QZ, reductions, packed

♦ Expanded Content
ScaLAPACK mirror LAPACK

♦ Extended precision version
Variable precision, user controlled

♦ Callable from Matlab
From Matlab invoke LAPACK routine

♦ Recursive data structures
For Performance

♦ Automate Performance Tuning
♦ Improve ease of use
♦ Better Maintenance and Support
♦ Involve the Community

Open source effort

33 27

Collaborators / SupportCollaborators / Support
♦ U Tennessee, Knoxville

Julien Langou, Julie Langou, Piotr
Luszczek, Jakub Kurzak, Stan
Tomov, Remi Delmas, Peng Du

♦ UC Berkeley:
Jim Demmel, Ming Gu, W. Kahan,
Beresford Parlett, Xiaoye Li, Osni
Marques, Christof Voemel, David
Bindel, Yozo Hida, Jason Riedy,
Jianlin Xia, Jiang Zhu, undergrads…

♦ Other Academic Institutions
UT Austin, UC Davis, Florida IT, U
Kansas, U Maryland, North Carolina
SU, San Jose SU, UC Santa
Barbara, TU Berlin, FU Hagen, U
Madrid, U Manchester, U Umeå,U
Wuppertal, U Zagreb

♦ Research Institutions
CERFACS, LBL

♦ Industrial Partners
Cray, HP, Intel, IBM, MathWorks,
NAG, SGI, Microsoft

