
1

SelfSelf--Adapting Adapting
Numerical Software Numerical Software
(SANS(SANS--Effort)Effort)

Jack Dongarra,
Innovative Computing Laboratory

University of Tennessee
and

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Earth
Simulator

ASCI White
Pacific

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600

IBM 360/195CDC 7600

Cray 1

Cray X-MP
Cray 2

TMC CM-2

TMC CM-5 Cray T3D

ASCI Red

1950 1960 1970 1980 1990 2000 2010

1 KFlop/s

1 MFlop/s

1 GFlop/s

1 TFlop/s

1 PFlop/s

Scalar

Super Scalar

Vector

Parallel

Super Scalar/Vector/ParallelMooreMoore’’s Laws Law

1941 1 (Floating Point operations / second, Flop/s)
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)
1951 10,000
1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)
1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)
1992 10,000,000,000
1993 100,000,000,000
1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)
2000 10,000,000,000,000
2003 35,000,000,000,000 (35 TFlop/s)

2

Linpack (100x100) AnalysisLinpack (100x100) Analysis
♦ Compaq 386/SX20 SX with FPA - .16 Mflop/s
♦ Pentium IV – 2.8 GHz – 1.32 Gflop/s
♦ 12 years we see a factor of ~ 8231
♦ Moore’s Law says something about a factor of 2

every 18 months or a factor of 256 over 12 years

♦ Where is the missing factor of 32 …
Clock speed increase = 128x
External Bus Width & Caching –

16 vs. 64 bits = 4x
Floating Point -

4/8 bits multi vs. 64 bits (1 clock) = 8x
Compiler Technology = 2x

♦ However the theoretical peak for that Pentium 4
is 5.6 Gflop/s and here we are getting 1.32
Gflop/s

Still a factor of 4.25 off of peak

Complex set of interaction between
Users’ applications
Algorithm
Programming language
Compiler
Machine instruction
Hardware

Many layers of translation from
the application to the hardware
Changing with each generation

Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Care About the Memory Hierarchy?Why Should I Care About the Memory Hierarchy?

1

100

10000

1000000

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Year

Pe
rf

or
m

an
ce

Processor-DRAM Memory Gap (latency) µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% / year)

CPU

DRAM

3

The Memory HierarchyThe Memory Hierarchy

Registers

Level 1 Cache

1cy 3-10 words/cycle compiler managed

1-3cy 1-2 words/cycle hardware managed

5-10cy 1 word/cycle hardware managed

30-100cy 0.5 words/cycle OS managed

106-107cy 0.01 words/cycle OS managed

Level 2 Cache

CPU
Chip

DRAM

Chips

Mech Disk

Tape

♦ By taking advantage of the principle of locality:
Present the user with as much memory as is available in
the cheapest technology.
Provide access at the speed offered by the fastest
technology.

Motivation Self Adapting Motivation Self Adapting
Numerical Software (SANS) EffortNumerical Software (SANS) Effort

♦ Optimizing software to exploit the features of a
given system has historically been an exercise in hand
customization.

Time consuming and tedious
Hard to predict performance from source code
Must be redone for every architecture and compiler

Software technology often lags architecture
Best algorithm may depend on input, so some
tuning may be needed at run-time.

♦There is a need for quick/dynamic deployment
of optimized routines.

4

What is What is Self AdaptingSelf Adapting
Performance Tuning of Software?Performance Tuning of Software?

♦ Two steps:
1.Identify and generate a space of algorithm/software, with

various based on the architectural features
Instruction mixes and orders
Memory Access Patterns
Data structures
Mathematical Formulations

2.Generate different versions and search for the fastest one,
by running them

♦ When do we search?
Once per kernel and architecture
At compile time
At run time
All of the above

♦ Many examples
PHiPAC, ATLAS, Sparsity, FFTW, Spiral,…

Software Generation Software Generation
Strategy Strategy -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run,
generates Level 1,2, & 3 BLAS

♦ “New” model of high
performance programming
where critical code is machine
generated using parameter
optimization.

♦ Designed for modern
architectures

Need reasonable C compiler
♦ Today ATLAS in used within

various ASCI and SciDAC
activities and by Matlab,
Mathematica, Octave, Maple,
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw
♦ Generate multiple versions

of code, w/difference
values of key performance
parameters

♦ Run and measure the
performance for various
versions

♦ Pick best and generate
library

♦ Level 1 cache multiply
optimizes for:

TLB access
L1 cache reuse
FP unit usage
Memory fetch
Register reuse
Loop overhead minimization

♦ Similar to FFTW and Johnsson,
UH

See: http://icl.cs.utk.edu/atlas/ joint with
Clint Whaley & Antoine Petitet

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

AMD Athlon-60
0

DEC ev
56-

533

DEC ev
6-5

00

HP90
00

/73
5/1

35

IBM PPC60
4-1

12

IBM Power2
-16

0

IBM Power3
-20

0

Intel
 P-III

 93
3 M

Hz

Intel
 P-4 2.53

 GHz w
/SSE2

SGI R
100

00
ip28-2

00

SGI R
120

00
ip30-2

70

Sun Ultra
Spa

rc2
-20

0

Architectures

M
FL

O
P/

S

Vendor BLAS
ATLAS BLAS
F77 BLAS

5

ATLAS 3.6 (new release)ATLAS 3.6 (new release)
ATLAS 3.6

AMD Opteron 1.6 GHz

0

500

1000

1500

2000

2500

3000

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Order

M
Fl

op
/s DGEMM

DGETRF
DPOTRF

ATLAS 3.6
Intel Itanium-2 900 MHz

0

500

1000

1500

2000

2500

3000

3500

100 200 300 400 500 600 700 800 900 1000

Order

M
flo

p/
s

DGEMM

DGETRF

http://www.netlib.org/atlas/

Self Adapting Numerical Software Self Adapting Numerical Software --
SANS EffortSANS Effort

♦ Provide software technology to aid in high performance on
commodity processors, clusters, and grids.

♦ Pre-run time (library building stage) and run time
optimization.

♦ Integrated performance modeling and analysis
♦ Automatic algorithm selection – polyalgorithmic functions
♦ Automated installation process
♦ Can be expanded to areas such as communication software

and selection of numerical algorithms

TUNING
SYSTEM

Different
Algorithms,

Segment Sizes

Best
Algorithm,

Segment Size

6

Self Adapting for Message PassingSelf Adapting for Message Passing
♦ Communication libraries

Optimize for the specifics of one’s configuration.
A specific MPI collective communication algorithm
implementation may not give best results on all platforms.
Choose collective communication parameters that give best
results for the system when the system is assembled.

♦ Algorithm layout and implementation
Look at the different ways to express implementation

Root

Sequential Binary Binomial
Ring

TUNING
SYSTEM

Different
Algorithms,
Size msgs

Best
Algorithm,
Block msgs

Self Adaptive SoftwareSelf Adaptive Software
♦Software can adapt its workings to
the environment in (at least) 3
ways

Kernels, optimized for platform
(Atlas, Sparsity): static determination

Scheduling, taking network conditions
into account (LFC): dynamic, but data-
independent

Algorithm choice (Salsa): dynamic,
strongly dependent on user data.

7

m
n mb

nb

Data Layout Critical for Data Layout Critical for
PerformancePerformance

Number of processors
Aspect ratio of processes
Block size

Needs An “Expert” To
Do The Tuning

Time to solution of Ax=b (n=60k)

0

5000

10000

15000

20000

25000

32 34 36 39 42 45 47 49 51 54 56 58 62 64

Number of processors

Ti
m

e
(s

ec
on

ds
)

Naive
LFC

LFC Performance ResultsLFC Performance Results

Increasing
margin

of potential
user error

Using up to 64 of
AMD 1.4 GHz

processors
at Ohio

Supercomputer
Center

8

LFC: LAPACK For Clusters LFC: LAPACK For Clusters
♦ Want to relieve the user of some of the

tasks via Cluster Middleware
♦ Make decisions on the number of

processors to use based on the user’s
problem and the state of the system

Optimize for the best time to solution
Distribute the data on the processors
and collections of results
Start the SPMD library routine on all
the platforms

User
problem

Resources

hardwaresoftware

Library
Middleware

~ Myrinet Switch,
(fully connected)

~ Gbit Switch,
(fully connected)

e.g. 100 Mbit
Users, etc.

Joint with
Piotr Łuszczek & Kenny Roche
http://icl.cs.utk.edu/lfc/

SALSA: Self-Adaptive Linear Solver
Architecture

♦ Choice between direct/iterative
solver

Space and runtime considerations
Numerical properties of system

♦ Choice of preconditioner, scaling,
ordering, decomposition

♦ User steering of decision process
♦ Insertion of performance data in

database
♦ Metadata on both numerical data

and algorithms
♦ Heuristics-driven automated

analysis
♦ Self-adaptivity: tuning of

heuristics over time through
experience gained from
production runs

Run-time adaptation to user data for
linear system solving

Joint work with
Victor Eijkhout, Bill Gropp, & David Keyes

9

Finding Heuristics By Statistical Pattern Finding Heuristics By Statistical Pattern
RecognitionRecognition

♦ Use a training set to arrive at a Decision Rule
and Features on which to base it.

♦ Pick the method for best chance of converging
based on the properties of this matrix.

♦ The training process gathers the data to
construct these density functions (probability
of converging with these features).

Statistical Approach for Numerical Statistical Approach for Numerical
AlgorithmsAlgorithms

♦ The strategy in determining numerical algorithms by the
Bayesian statistical technique is globally as follows:
1. We solve a large collection of test problems by every

available method, that is, every choice of algorithm, and a
suitable `binning' of algorithm parameters.

2. Each problem is assigned to a class corresponding to the
method that gave the fastest solution.

3. Draw up a list of characteristics of each problem.
4. Compute a probability density function for each class.

♦ As a result of this process we find a function pi(x)
where i ranges over all classes, that is, all methods,
and x is in the space of the vectors of features of the
input problems.

♦ Given a new problem and its feature vector x, we then
decide to solve the problem with the method i for which
pi(x) is maximized

10

Statistical Pattern RecognitionStatistical Pattern Recognition
♦ Build probability density function for each method
♦ Use Maximum Likelihood rule to predict best

method for the test set

♦ Classes correspond to different methods
♦ density function states how likely a feature set is

successfully solved by that method.
Shape of the spectrum: ratio of the x/y size of the enclosing ellipse, and ratio of
positive to negative eigenvalues.
Element variability in rows and columns (ratio between smallest and largest
element).

♦ For a value of the feature for a matrix, this is how likely
that this method is the best

CONIE CONIE –– Cluster Oriented Numerical Intensive Cluster Oriented Numerical Intensive
Execution (Executing Execution (Executing MatlabMatlab Programs on a Cluster)Programs on a Cluster)

Cluster
server_connect(35000);
A = lfc_fread(…);
b = lfc_fread(…);
x = A \ b; % copy A; save factors
r = b – A * x;
z = A \ r; % use factors from above
x = x + z;
norm(b-A*x)/(norm(A)*norm(x))

% results printed on laptop

> mpirun -np 128 lfc_server port=35000 &

•Arrays will live on the
server and execution
takes place there via LFC /
ScaLAPACK / SALSA.

• Debug on laptop, run on cluster
Plans for Python, Mathematica, Maple … as well

> Matlab

11

Fault Tolerance in the ComputationFault Tolerance in the Computation
♦ The next generation of DOE

ASCI computers are being
designed with 131,000
processors (IBM Blue Gene L)

♦ Failures for such a system
is likely to be just a few
minutes away.

♦ Application checkpoint
/restart is today’s
typical fault tolerance
method.

♦ Problem with MPI, no
recovery from faults in the
standard

Automatic Semi-automatic

Checkpoint
based

Log based Other

Framework

API

Comms
layer

CoCheck

Starfish

Clip

LAM/MPI

MPICH-V/CL

Optimistic Casual Pessimistic

Pruitt98

Send based
Mesg. logging

Egida

Manetho

MPI/FT

MPI-FT

MPICH-V2 LA-MPI

FT-MPI

MPI Implementations with Fault MPI Implementations with Fault
Tolerance Tolerance

12

Algorithm Based Fault Tolerance Using Algorithm Based Fault Tolerance Using
Diskless Check PointingDiskless Check Pointing

♦ Not “automagic”, recovery has to be built into
the algorithm

♦ N processors will be executing the computation.
Each processor maintains their own checkpoint locally

♦ M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

♦ Look at M = 1 (parity processor)

♦ FT-MPI based on MPI 1.3 but with Fault
Tolerance available to the programmer.

Similar to what was done in PVM.
http://icl.cs.utk.edu/ft-mpi/

Fault Tolerance Fault Tolerance -- Diskless (RAID) Diskless (RAID)
CheckpointingCheckpointing -- Built into softwareBuilt into software
(J. Plank, Y. Kim, J. Dongarra)(J. Plank, Y. Kim, J. Dongarra)

♦ Maintain a system checkpoint in memory
All processors may be roll back if necessary
Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored
No reliance on disk

♦ Checksum and reverse communication
Checkpoint less frequently
Reverse the computation of the non-failed processors
back to previous checkpoint

♦ Idea to build into library routines
System or user can dial it up
Working prototype for MM, LU, LLT, QR, sparse
solvers (built on PVM)

13

How Diskless Check How Diskless Check PointingPointing WorksWorks
♦ Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

Diskless Diskless CheckpointingCheckpointing
♦ The N application

processors (4 in this
case) each maintain their
own checkpoints locally.

♦ M extra processors
maintain coding
information so that if 1
or more processors die,
they can be replaced.

♦ Will describe for m=1
(parity)

♦ If a single processor
fails, then its state may
be restored from the
remaining live processors

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3

Parity
processor

Application
processors

14

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P1 = P0 ƒ P2 ƒ P3 ƒ P4

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues

15

A FaultA Fault--Tolerant Parallel CG SolverTolerant Parallel CG Solver
♦ Tightly coupled computation
♦ Do a “backup” (checkpoint) every k iterations

♦ Can survive the failure of a single process
♦ Dedicate an additional process for holding data,

which can be used during the recovery
operation

♦ Work-communicator excludes the backup
process

♦ For surviving m process failures (m < np) you
need m additional processes

The Checkpoint ProcedureThe Checkpoint Procedure
♦ 4 processes participating in the computation, one for

checkpointing and recovery
♦ If your application can survive one process failure at a time

or

♦ Implementation: a single reduce operation for a vector
♦ Keep a copy of the vector v which you used for the backup

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

Rank 0 Rank 1 Rank 2 Rank 4

10

14

18

22

26

Rank 3

+ + + =

∑
=

=
np

j
ii jvb

1
)(

16

The Recovery ProcedureThe Recovery Procedure
♦ Rebuild work-communicator and Recover data
♦ Say lose process w/rank 1, checkpoint in process 4, then

use remain processes 0, 2, and 3 along with checkpoint in
4 to recover data from process 1.

♦ Reset iteration counter
♦ On each process: copy backup of vector v into the

current version

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

Rank 0Rank 1 Rank 2Rank 4

10

14

18

22

26

Rank 3

+- +=

Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery
Overhead (%)

Ckpoint Ohead
(%)

Recovery
(sec)

FT-MPI w/
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix
(Size)

0.370.123.17872.859.858.860.bcsstk35.rsa
(30237)

0.720.234.09 577.570.569.577. nasasrb.rsa
(54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa
(10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa
(11948)

Table 1: PCG performance on 25 nodes of the Boba cluster at UTK. 24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations, with diagonal preconditioning

0

200

400

600

800

1000

bcsstk18 bcsstk17 nasasrb bcsstk35

Matrices

T
i
m
e

f
o
r

S
o
l
u
t
i
o
n MPICH1.2.5

FTMPI1.0.1

FTMPI
Checkpoint

FTMPI
Recovery

17

Futures for Numerical Algorithms and SoftwareFutures for Numerical Algorithms and Software
♦ Numerical software will be adaptive,

exploratory, and intelligent
♦ Determinism in numerical computing will be

gone.
After all, its not reasonable to ask for exactness in numerical
computations.

Auditability of the computation, reproducibility
at a cost

♦ Importance of floating point arithmetic will
be undiminished.

16, 32, 64, 128 bits and beyond.
♦ Fault tolerance a critical feature of future

software and hardware systems
♦ Adaptivity is a key so applications can

effectively use the resources.

Collaborators / SupportCollaborators / Support

For more information:

♦ LFC/SALSA/BeBOP
Victor Eijkhout, UTK
Erika Fuentes, UTK
Kenny Roche, UTK
Piotr Luszczek, UTK
David Keyes, CU
Bill Gropp, ANL
Jim Demmel, UCB
Kathy Yelick, UCB

♦ Python/Matlab Clusters
Piotr Luszczek, UTK

