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Super Scalar/Vector/ParallelMooreMoore’’s Laws Law

1941  1 (Floating Point operations / second, Flop/s)
1945  100 
1949  1,000 (1 KiloFlop/s, KFlop/s) 
1951  10,000  
1961  100,000 
1964  1,000,000 (1 MegaFlop/s, MFlop/s) 
1968  10,000,000 
1975  100,000,000 
1987  1,000,000,000 (1 GigaFlop/s, GFlop/s) 
1992  10,000,000,000 
1993  100,000,000,000 
1997  1,000,000,000,000 (1 TeraFlop/s, TFlop/s) 
2000  10,000,000,000,000 
2003  35,000,000,000,000 (35 TFlop/s)
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Linpack (100x100) AnalysisLinpack (100x100) Analysis
♦ Compaq 386/SX20 SX with FPA - .16 Mflop/s
♦ Pentium IV – 2.8 GHz – 1.32 Gflop/s
♦ 12  years  we see a factor of ~ 8231 
♦ Moore’s Law says something about a factor of 2 

every 18 months or a factor of 256 over 12 years

♦ Where is the missing factor of 32 …
Clock speed increase = 128x
External Bus Width & Caching –

16 vs. 64 bits = 4x
Floating Point -

4/8 bits multi vs. 64 bits (1 clock) = 8x
Compiler Technology = 2x

♦ However the theoretical peak for that Pentium 4 
is 5.6 Gflop/s and here we are getting 1.32 
Gflop/s

Still a factor of 4.25 off of peak

Complex set of interaction between 
Users’ applications
Algorithm
Programming language
Compiler
Machine instruction
Hardware

Many layers of translation from 
the application to the hardware
Changing with each generation

Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Care About the Memory Hierarchy?Why Should I Care About the Memory Hierarchy?
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The Memory HierarchyThe Memory Hierarchy

Registers

Level 1 Cache

1cy 3-10 words/cycle compiler managed

1-3cy 1-2 words/cycle hardware managed

5-10cy 1 word/cycle hardware managed

30-100cy 0.5 words/cycle OS managed

106-107cy 0.01 words/cycle OS managed

Level 2 Cache

CPU
Chip

DRAM

Chips

Mech Disk

Tape

♦ By taking advantage of the principle of locality:
Present the user with as much memory as is available in 
the cheapest technology.
Provide access at the speed offered by the fastest 
technology.

Motivation  Self Adapting                                   Motivation  Self Adapting                                   
Numerical Software (SANS) EffortNumerical Software (SANS) Effort

♦ Optimizing software to exploit the features of a 
given system has historically been an exercise in hand 
customization. 

Time consuming and tedious 
Hard to predict performance from source code
Must be redone for every architecture and compiler

Software technology often lags architecture
Best algorithm may depend on input, so some 
tuning may be needed at run-time.

♦There is a need for quick/dynamic deployment 
of optimized routines.
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What is What is Self AdaptingSelf Adapting
Performance Tuning of Software?Performance Tuning of Software?

♦ Two steps:
1.Identify and generate a space of algorithm/software, with 

various based on the architectural features
Instruction mixes and orders
Memory Access Patterns
Data structures
Mathematical Formulations

2.Generate different versions and search for the fastest one, 
by running them

♦ When do we search?
Once per kernel and architecture 
At compile time
At run time
All of the above

♦ Many examples
PHiPAC, ATLAS, Sparsity, FFTW, Spiral,…

Software Generation Software Generation 
Strategy Strategy -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run, 
generates Level 1,2, & 3 BLAS

♦ “New” model of high 
performance programming 
where critical code is machine 
generated using parameter 
optimization.

♦ Designed for modern 
architectures

Need reasonable C compiler
♦ Today ATLAS in used within 

various ASCI and SciDAC
activities and by Matlab, 
Mathematica, Octave, Maple, 
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw 
♦ Generate multiple versions 

of code, w/difference 
values of key performance 
parameters

♦ Run and measure the 
performance for various 
versions

♦ Pick best and generate 
library

♦ Level 1 cache multiply 
optimizes for:

TLB access
L1 cache reuse
FP unit usage
Memory fetch
Register reuse
Loop overhead minimization

♦ Similar to FFTW and Johnsson, 
UH

See: http://icl.cs.utk.edu/atlas/ joint with 
Clint Whaley & Antoine Petitet

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

AMD Athlon-60
0

DEC ev
56-

533

DEC ev
6-5

00

HP90
00

/73
5/1

35

IBM PPC60
4-1

12

IBM Power2
-16

0

IBM Power3
-20

0

Intel
 P-III

 93
3 M

Hz

Intel
 P-4 2.53

 GHz w
/SSE2

SGI R
100

00
ip28-2

00

SGI R
120

00
ip30-2

70

Sun Ultra
Spa

rc2
-20

0

Architectures

M
FL

O
P/

S

Vendor BLAS
ATLAS BLAS
F77 BLAS



5

ATLAS 3.6 (new release)ATLAS 3.6 (new release)
ATLAS 3.6 

AMD Opteron 1.6 GHz
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Self Adapting Numerical Software Self Adapting Numerical Software --
SANS EffortSANS Effort

♦ Provide software technology to aid in high performance on 
commodity processors, clusters, and grids.

♦ Pre-run time (library building stage) and run time 
optimization.

♦ Integrated performance modeling and analysis
♦ Automatic algorithm selection – polyalgorithmic functions
♦ Automated installation process
♦ Can be expanded to areas such as communication software 

and selection of numerical algorithms

TUNING 
SYSTEM

Different 
Algorithms, 

Segment Sizes

Best 
Algorithm, 

Segment Size



6

Self Adapting for Message PassingSelf Adapting for Message Passing
♦ Communication libraries

Optimize for the specifics of one’s configuration.
A specific MPI collective communication algorithm 
implementation may not give best results on all platforms.
Choose collective communication parameters that give best 
results for the system when the system is assembled.

♦ Algorithm layout and implementation
Look at the different ways to express implementation

Root

Sequential                                   Binary                       Binomial
Ring

TUNING 
SYSTEM

Different 
Algorithms, 
Size msgs

Best 
Algorithm, 
Block msgs

Self Adaptive SoftwareSelf Adaptive Software
♦Software can adapt its workings to 
the environment in (at least) 3 
ways

Kernels, optimized for platform 
(Atlas, Sparsity): static determination

Scheduling, taking network conditions 
into account (LFC): dynamic, but data-
independent

Algorithm choice (Salsa): dynamic, 
strongly dependent on user data.
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LFC: LAPACK For Clusters LFC: LAPACK For Clusters 
♦ Want to relieve the user of some of the 

tasks via Cluster Middleware
♦ Make decisions on the number of 

processors to use based on the user’s 
problem and the state of the system

Optimize for the best time to solution
Distribute the data on the processors 
and collections of results
Start the SPMD library routine on all 
the platforms

User 
problem

Resources

hardwaresoftware

Library
Middleware

~ Myrinet Switch, 
(fully connected)

~ Gbit Switch, 
(fully connected)

e.g. 100 Mbit
Users, etc.

Joint with
Piotr Łuszczek & Kenny Roche
http://icl.cs.utk.edu/lfc/

SALSA: Self-Adaptive Linear Solver 
Architecture

♦ Choice between direct/iterative 
solver

Space and runtime considerations
Numerical properties of system

♦ Choice of preconditioner, scaling, 
ordering, decomposition

♦ User steering of decision process
♦ Insertion of performance data in 

database
♦ Metadata on both numerical data 

and algorithms
♦ Heuristics-driven automated 

analysis
♦ Self-adaptivity: tuning of 

heuristics over time through 
experience gained from 
production runs

Run-time adaptation to user data for 
linear system solving

Joint work with 
Victor Eijkhout, Bill Gropp, & David Keyes
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Finding Heuristics By Statistical Pattern Finding Heuristics By Statistical Pattern 
RecognitionRecognition

♦ Use a training set to arrive at a Decision Rule
and Features on which to base it.

♦ Pick the method for best chance of converging 
based on the properties of this matrix. 

♦ The training process gathers the data to 
construct these density functions (probability 
of converging with these features).

Statistical Approach for Numerical Statistical Approach for Numerical 
AlgorithmsAlgorithms

♦ The strategy in determining numerical algorithms by the 
Bayesian statistical technique is globally as follows:
1. We solve a large collection of test problems by every 

available method, that is, every choice of algorithm, and a 
suitable `binning'  of algorithm parameters.

2. Each problem is assigned to a class corresponding to the 
method  that gave the fastest solution.

3. Draw up a list of characteristics of each problem.
4. Compute a probability density function for each class.

♦ As a result of this process we find a function pi(x)
where i ranges over all classes, that is, all methods, 
and x is in the space of the vectors of features of the 
input problems. 

♦ Given a new problem and its feature vector x, we then 
decide to solve the problem with the method i for which 
pi(x) is maximized
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Statistical Pattern RecognitionStatistical Pattern Recognition
♦ Build probability density function for each method
♦ Use Maximum Likelihood rule to predict best 

method for the test set

♦ Classes correspond to different methods
♦ density function states how likely a feature set is 

successfully solved by that method.
Shape of the spectrum: ratio of the x/y size of the enclosing ellipse, and ratio of 
positive to negative eigenvalues.
Element variability in rows and columns (ratio between smallest and largest 
element).

♦ For a value of the feature for a matrix, this is how likely 
that this method is the best

CONIE CONIE –– Cluster Oriented Numerical Intensive Cluster Oriented Numerical Intensive 
Execution (Executing Execution (Executing MatlabMatlab Programs on a Cluster)Programs on a Cluster)

Cluster
server_connect(35000);
A = lfc_fread(…); 
b = lfc_fread(…);
x = A \ b;  % copy A; save factors
r = b – A * x;
z = A \ r; % use factors from above
x = x + z;
norm(b-A*x)/(norm(A)*norm(x)) 

% results printed on laptop

> mpirun -np 128 lfc_server port=35000 &

•Arrays will live on the 
server and execution 
takes place there via LFC / 
ScaLAPACK / SALSA.

• Debug on laptop, run on cluster
Plans for Python, Mathematica, Maple … as well

> Matlab
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Fault Tolerance in the ComputationFault Tolerance in the Computation
♦ The next generation of DOE 

ASCI computers are being 
designed with 131,000 
processors (IBM Blue Gene L)

♦ Failures for such a system           
is likely to be just a few 
minutes away.

♦ Application checkpoint 
/restart is today’s               
typical fault tolerance 
method.

♦ Problem with MPI, no 
recovery from faults in the 
standard

Automatic Semi-automatic

Checkpoint
based

Log based Other

Framework

API

Comms
layer

CoCheck

Starfish

Clip

LAM/MPI

MPICH-V/CL

Optimistic Casual Pessimistic

Pruitt98

Send based
Mesg. logging

Egida

Manetho

MPI/FT

MPI-FT

MPICH-V2 LA-MPI

FT-MPI

MPI Implementations with Fault MPI Implementations with Fault 
Tolerance Tolerance 
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Algorithm Based Fault Tolerance Using Algorithm Based Fault Tolerance Using 
Diskless Check PointingDiskless Check Pointing

♦ Not “automagic”, recovery has to be built into 
the algorithm

♦ N processors will be executing the computation.
Each processor maintains their own checkpoint locally

♦ M (M << N) extra processors maintain coding 
information so that if 1 or more processors 
die, they can be replaced

♦ Look at M = 1 (parity processor)

♦ FT-MPI based on MPI 1.3 but with Fault 
Tolerance available to the programmer.

Similar to what was done in PVM.
http://icl.cs.utk.edu/ft-mpi/

Fault Tolerance Fault Tolerance -- Diskless (RAID) Diskless (RAID) 
CheckpointingCheckpointing -- Built into softwareBuilt into software
(J. Plank, Y. Kim, J. Dongarra)(J. Plank, Y. Kim, J. Dongarra)

♦ Maintain a system checkpoint in memory
All processors may be roll back if necessary
Use m extra processors to encode checkpoints so that 
if up to m processors fail, their checkpoints may be 
restored
No reliance on disk

♦ Checksum and reverse communication
Checkpoint less frequently
Reverse the computation  of the non-failed processors 
back to previous checkpoint

♦ Idea to build into library routines
System or user can dial it up
Working prototype for MM, LU, LLT, QR, sparse 
solvers (built on PVM)
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How Diskless Check How Diskless Check PointingPointing WorksWorks
♦ Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

Diskless Diskless CheckpointingCheckpointing
♦ The N application 

processors (4 in this 
case) each maintain their 
own checkpoints locally.

♦ M extra processors 
maintain coding 
information so that if 1 
or more processors die, 
they can be replaced.

♦ Will describe for m=1 
(parity)

♦ If a single processor 
fails, then its state may 
be restored from the 
remaining live processors

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3 

Parity
processor

Application
processors
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Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P1 = P0 ƒ P2 ƒ P3 ƒ P4 

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues
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A FaultA Fault--Tolerant Parallel CG SolverTolerant Parallel CG Solver
♦ Tightly coupled computation
♦ Do a “backup” (checkpoint) every k iterations

♦ Can survive the failure of a single process
♦ Dedicate an additional process for holding data, 

which can be used during the recovery 
operation

♦ Work-communicator excludes the backup 
process

♦ For surviving m process failures (m < np) you 
need m additional processes

The Checkpoint ProcedureThe Checkpoint Procedure
♦ 4 processes participating in the computation, one for 

checkpointing and recovery
♦ If your application can survive one process failure at a time

or

♦ Implementation: a single reduce operation for a vector
♦ Keep a copy of the vector v which you used for the backup
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The Recovery ProcedureThe Recovery Procedure
♦ Rebuild work-communicator and Recover data 
♦ Say lose process w/rank 1, checkpoint in process 4, then 

use remain processes 0, 2, and 3 along with checkpoint in 
4 to recover data from process 1.

♦ Reset iteration counter
♦ On each process: copy backup of vector v into the 

current version
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Preconditioned Conjugate Grad PerformancePreconditioned Conjugate Grad Performance

Recovery 
Overhead (%)

Ckpoint Ohead
(%)

Recovery  
(sec)

FT-MPI w/ 
recovery (sec)

FT-MPI
w/ ckpoint (sec)

FT-MPI
(sec)

Mpich1.2.5
(sec)

Matrix                    
( Size )

0.370.123.17872.859.858.860.bcsstk35.rsa 
(30237)

0.720.234.09 577.570.569.577. nasasrb.rsa
(54870)

9.11.12.4830.5 27.527.227.5bcsstk17.rsa 
(10974)

23.72.42.3112.910.09.789.81bcsstk18.rsa 
(11948) 

Table 1: PCG performance on 25 nodes of the Boba cluster at UTK. 24 nodes are used for computation. 1 node is used for checkpoint
Checkpoint every 100 iterations, with diagonal preconditioning
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Futures for Numerical Algorithms and SoftwareFutures for Numerical Algorithms and Software
♦ Numerical software will be adaptive, 

exploratory, and intelligent
♦ Determinism in numerical computing will be 

gone.
After all, its not reasonable to ask for exactness in numerical 
computations.

Auditability of the computation, reproducibility 
at a cost

♦ Importance of floating point arithmetic will 
be undiminished.

16, 32, 64, 128 bits and beyond.
♦ Fault tolerance a critical feature of future 

software and hardware systems
♦ Adaptivity is a key so applications can 

effectively use the resources.

Collaborators / SupportCollaborators / Support

For more information:

♦ LFC/SALSA/BeBOP
Victor Eijkhout, UTK
Erika Fuentes, UTK
Kenny Roche, UTK
Piotr Luszczek, UTK
David Keyes, CU
Bill Gropp, ANL
Jim Demmel, UCB
Kathy Yelick, UCB

♦ Python/Matlab Clusters
Piotr Luszczek, UTK


