Self-Adapting
Numerical Software
(SANS-Effort)

Jack Dongarra,
Innovative Computing Laboratory
University of Tennessee
and
Computer Science and Mathematics Division
Oak Ridge National Laboratory

£

L

Moore’s Law

Super Scalar/Vector/Parallel

1 PFlop/s

Earth
Simulator

/Y
ASCI Red ASCI V_Vhlte
Pacific

1 TFlop/s

TMC CM-54% Cray T3D

Vector R

1 GFlop/s

1 MFlop/s

1 KFlop/s
4

1941 1 (Floating Point operations / second, Flop/s)
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)
1951 10,000
1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)

BV 7090~ ¥ 1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)
1992 10,000,000,000
1993 100,000,000,000

1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)

#UNIVAC 1 2000 10,000,000,000,000

Scalar

» EDSAC 1 2003 35,000,000,000,000 (35 TFlop/s)
T T

1950 1960 1970 1980 1990 2000 2010

5 Linpack (100x100) Analysis

¢ Compaq 386/5X20 SX with FPA - .16 Mflop/s
¢ Pentium IV - 2.8 6Hz - 1.32 6flop/s
¢+ 12 years => we see a factor of ~ 8231

¢ Moore's Law says something about a factor of 2
every 18 months or a factor of 256 over 12 years

. e . Complex set of interaction between
¢ Where is the missing factor of 32 .. Users’ applications
> Clock speed increase = 128x ;\'rggrrgm‘mng A
» External Bus Width & Caching - Compiler
> 16 vs. 64 bits = 4x Machine instruction
» Floating Point - Hardware

. . . Many layers of translation from
> 4/8 bits multi vs. 64 bits (1 clock) = 8X the application to the hardware

> Compiler Techn°|°gy = 2X Changing with each generation
+ However the theoretical peak for that Pentium 4
is 5.6 Gflop/s and here we are getting 1.32
Gflop/s
> Still a factor of 4.25 off of peak

£ \Where Does the Performance Go? or
" Why Should | Care About the Memory Hierarchy?

Processor-DRAM Memory Gap (latency) uProc

60%!yr.
(2X/1.5yr)

CPU

1000000 -

“Moore’s Law”

10000 -

Processor-Memoryj,
Performance Gap:
(grows 50% / year)
DRAM
— PRV 9oy,
DS T (2X/10 yrs)
< L

Performance

o
s}

< The Memory Hierarchy

+ By taking advantage of the principle of locality:
> Present the user with as much memory as is available in
the cheapest technology.
> Provide access at the speed offered by the fastest

technology.
Registers 1cy 3-10 words/cycle compiler managed
CPU l
Chip
Level 1 Cache 1-3cy 1-2 words/cycle hardware managed
Level 2 Cache 5-10cy 1 word/cycle hardware managed
Chips I
DRAM 30-100cy 0.5 words/cycle OS managed
R — 6_ 7
Mech 10%-107cy 0.01 words/cycle OS managed
Tape

Motivation Self Adapting
Numerical Software (SANS) Effort

+ Optimizing software to exploit the features of a
given system has historically been an exercise in hand
customization.
> Time consuming and tedious
»>Hard to predict performance from source code
> Must be redone for every architecture and compiler

»>Software technology lags architecture

>Best algorithm may depend on input, so some
tuning may be needed at run-time.

¢ There is a need for quick/dynamic deployment
of optimized routines.

¢ What is Self Adapting
~_Performance Tuning of Software?

¢+ Two steps:

1.Identify and generate a space of algorithm/software, with
various based on the architectural features
> Instruction mixes and orders
» Memory Access Patterns
» Data structures
> Mathematical Formulations

2.Generate different versions and search for the fastest one,
by running them

¢+ When do we search?
» Once per kernel and architecture
> At compile time
> At run time
> All of the above
+ Many examples
» PHIPAC, ATLAS, Sparsity, FFTW, Spiradl, ...

35000 THVendor BLAS

£. Software Generation S|

" Strategy - ATLAS BLAS

+ Parameter study of the hw
+ Generate multiple versions

of code, w/difference PR
values of key performance IR
parameters wores
¢ Run and measure the + Takes ~ 20 minutes to run,
performance for various generates Level 1,2, & 3 BLAS
versions . New model of high
+ Pick best and generate performance rrogrammmg
library where critical code is machine
+ Level 1 cache multiply generated using parameter
optimizes for: OPTImIZGTIOH
> TLB access + Designed for modern
» L1 cache reuse ar‘ChITeCTur‘eS
> FP unit usage > Need reasonable C compiler
> Memory fetch + Today ATLAS in used within
> Regisfep reuse Var'l:oys. ASCI and SciDAC
> Loop overhead minimization %J;_‘a;::ztﬁ:’f b " mella%\aple
Simil T d Joh H . ; 3
¢ ooner to FFTW and Johnsson, Debian, Scyld Beowulf, SuSE,..

See: http://icl.cs.utk.edu/atlas/ joint with
Clint Whalev & Antoine Petitet

H
-
IcL

ATLAS 3.6 (new release)

ATLAS 3.6
AMD Opteron 1.6 GHz

3000

2500 -

2000 -

—e— DGEMM
—=— DGETRF
DPOTRF

MFlop/s

1500

1000
ATLAS 3.6

500 Intel Itanium-2 900 MHz

DGEMM

DGETRF

/

P

http://www.netlib.org/atlas/

100 200 300 400 500 600 700 800 900 1000
Order

(K

-

Selt Adapting Numerical Software -
SANS Effort

¢ Provide software technology to aid in high performance on
commodity processors, clusters, and grids.

Pre-run time (library building stage) and run time
optimization.

Integrated performance modeling and analysis
Automatic algorithm selection - polyalgorithmic functions
Automated installation process

Can be expanded to areas such as communication software
and selection of numerical algorithms

* & o o

Different Best
Algorithms, 1 TUNING Algorithm,
Segment Sizes— SYSTEM Segment Size

///—V

H
-
IcL

Self Adapting for Message Passing

+ Communication libraries
> Optimize for the specifics of one's configuration.

> A specific MPTI collective communication algorithm
implementation may not give best results on all platforms.

> Choose collective communication parameters that give best
results for the system when the system is assembled.

A § AT

Sequential Binary Binomial
Ring

¢+ Algorithm layout and implementation
> Look at the different ways to express implementation

Different i TUNING Best
Algorithms, SYSTEM Algorithm,
Sizemsgs — | Block msgs

(‘\

< Self Adaptive Software

¢ Software can adapt its workings to
the environment in (at least) 3
ways
»>Kernels, optimized for platform
(Atlas, Sparsity): static determination

»Scheduling, taking network conditions
into account (LFC): dynamic, but data-
independent

> Algorithm choice (Salsa): dynamic,
strongly dependent on user data.

¢ Data Layout Critical for

IcL

Performance
Number of processors
Aspect ratio of processes
Block size
i i POESV 210
PGESV: 4x5 ——
ﬁ ﬁ $ Performance [Gflop/s]
B E
LT 10
m 8
n m b ¥
nb 4r
2 |
| Fi
Needs An “Expert” To oo
Do The Tuning oo Ve O

70
Bluck%?ze W10 Mo g

H
“ LFC Performance Results

Time to solution of Ax=b (n=60k) USing up to 64 of
AMD 1.4 GHz
25000
processors
at Ohio
| O Naive
20000 mLFC Supercomputer
R Center
s 15000
3 Increasing
£ 10000 margin
of potential
5000 user error
o
32 34 36 39 42 45 47 49 51 54 56 58 62 64
Number of processors

o

< LFC: LAPACK For Clusters

¢+ Want to relieve the user of some of the
tasks via Cluster Middleware

+ Make decisions on the number of
processors to use based on the user's
problem and the state of the system

> Optimize for the best time to solution :
> Distribute the data on the processors lerary

and collections of results .
» Start the SPMD library routine on all Middleware

the platforms

n Users, etc.
€.0. 100 Mbit
+ Resources

~ Myriet Switch,
(fully connected)
hardware

Joint with
Piotr tuszczek & Kenny Roche
http://icl.cs.utk.edu/Ifc/

~ Ghit Switch,
(fully connected)

£ SALSA: Self-Adaptive Linear Solver
__Architecture

Run-time adaptation to user data for
linear system solving
¢ Choice between direct/iterative
solver
> Space and runtime considerations
> Numerical properties of system (2D
+ Choice of preconditioner, scaling, ’
ordering, decomposition
¢ User steering of decision process
+ Insertion of performance data in
database
¢ Metadata on both numerical data
and algorithms

+ Heuristics-driven automated B.cHb
analysis ’ .

¢ Self-adaptivity: tuning of LIB LIB LIB
heuristics over time through _ . =y 25 o
experience gained from Joint work with

production runs Victor Eijkhout, Bill Gropp, & David Keyes

£. Finding Heuristics By Statistical Pattern
Recognition

¢ Use a training set to arrive at a Decision Rule
and Features on which to base it.

Decision rule

deriV \ppl\;

Training et .

Known Linknown
classification classification

¢ Pick the method for best chance of converging
based on the properties of this matrix.

¢ The training process gathers the data to

construct these density functions (probability
of converging with these features).

. Statistical Approach for Numerical
“" Algorithms

¢+ The strategy in determining numerical algorithms by the

Bayesian statistical technique is globally as follows:

1. We solve a large collection of test problems by every
available method, that is, every choice of algorithm, and a
suitable "binning' of algorithm parameters.

2. Each problem is assigned to a class corresponding to the
method that gave the fastest solution.

3. Draw up a list of characteristics of each problem.

4. Compute a probability density function for each class.

¢ As a result of this process we find a function p(x)
where / ranges over all classes, that is, all methods,
and x is in the space of the vectors of features of the
input problems.

¢+ Given a new problem and its feature vector x, we then
decide to solve the problem with the method 7 for which
pA{x) is maximized

H
< Statistical Pattern Recognition

+ Build probability density function for each method

¢ Use Maximum Likelihood rule to predict best
method for the test set

+ Classes correspond to different methods

¢+ density function states how likely a feature set is
successfully solved by that method.

» Shape of the spectrum: ratio of the x/y size of the enclosing ellipse, and ratio of
positive to negative eigenvalues.

> Element variability in rows and columns (ratio between smallest and largest
element).

+ For a value of the feature for a matrix, this is how likely
is method is the best

£, CONIE - Cluster Oriented Numerical Intensive
" Execution (Executing Matlab Programs on a Cluster)

> mpirun -np 128 Ifc_server port=35000 &
> Matlab

Cluster
server_connect(35000); I
A= ,fc—fread(___)(;) *Arrays will live on the
b = Ifc_fread(...); server and execution
Xz bA\X?*"fz.COPV A; save factors takes place there via LFC /
Z=A\r,% u’se factors from above ScaLAPACK / SALSA.
X=X+2 * Debug on laptop, run on cluster
norm(b-A*x)/(norm(A)*norm(x)) .
% results printed on laptop Plans for Python, Mathematica, Maple ... as well

10

H
“* Fault Tolerance in the Computation

¢ The next generation of DOE e
ASCI computers are being Dt tast
designed with 131,000
processors (IBM Blue Gene L)

VA4
il
it

is\\s\s\a\al s

i i &
o s s s \sa's's|

. Mok Boerd
¢ Failures for such a system vy iy
is_likely to be just a few cmuwce W Fosls's's's'slsl
minutes away. Gy LILILILIEIE
2 s
+ Application checkpoint oo~ gy
/restart is today's B wee
typical fault tolerance oo %ian
method. e

¢ Problem with MPI, no
recovery from faults in the
standard

¢ MPI Implementations with Fault

L

Tolerance
Automatic Semi-automatic
T T
Checkpoint Log based 1 Other
based : Optimistic Casual Pessimistic :
| |
| |
Framework CoCheck | Manetho |
. | |
Starfish I
| |
API Clip : Egida MPI/FT : FT-MPI
| |
I _ I
LAM/MPI 1 Pruitto8 MPLET 1
Comms : Send based :
layer MPICH'V/CLI Mesg. logging MPICH-V2 | LA-MPI

11

. Algorithm Based Fault Tolerance Using
“" Diskless Check Pointing

*

Not "automagic”, recovery has to be built into
the algorithm

N processors will be executing the computation.
> Each processor maintains their own checkpoint locally
M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

Look at M = 1 (parity processor)

*

*

*

FT-MPI based on MPI 1.3 but with Fault
Tolerance available to the programmer.

> Similar to what was done in PVM.

> http://icl.cs.utk.edu/ft-mpi/

*

£.Fault Tolerance - Diskless (RAID)

IcL

Checkpointing - Built into software

(J. Plank, Y. Kim, J. Dongarra)

¢ Maintain a system checkpoint in memory
> All processors may be roll back if necessary

> Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored

> No reliance on disk

¢ Checksum and reverse communication
> Checkpoint less frequently
> Reverse the computation of the non-failed processors
back to previous checkpoint
¢ Idea to build into library routines
> System or user can dial it up

> Working prototype for MM, LU, LLT, QR, sparse
solvers (built on PVM)

12

H

IcL

How Diskless Check Pointing Works

¢ Similar to RAID for disks.

RAID 4
] Block 0, 1,

Block 0 Block 1 Block 2 Block 3 ;""' 2, 3 Parity
Generation
AD
BO
co
DO

COPYRIGHT & L9598, 1957, 1958, 1555 ADVANCED COMPUTER E NETWORK CORPORATION

R B then this is true:

[\

-
L

Diskless Checkpointing

¢ The N application

processors (4 in this

case) each maintain their Application
own checkpoints locally. processors .
M extra processors Py
maintain coding P
f . . PO | P1
information so that if 1
or more processors die, P4
they can be replaced. P2 | P3
z/\/ill.de)scribe for m=1
parity

. P4=P0®P1®P2®P3
If a single processor

fails, then its state may
be restored from the
remaining live processors

13

H

Diskless Checkpointing

PO

®

P2

P3

P4

P1=P0®P2®P3® P4

PO

P2

P4

(‘\

Diskless Checkpointing

P4

o ()
P2 P3
PO

P2 P3

P4

P4 takes on the identity of P1
and the computation continues

PO

P2

P3

& [

14

~

< A Fault-Tolerant Parallel CG Solver

¢+ Tightly coupled computation
+ Do a "backup” (checkpoint) every k iterations

¢ Can survive the failure of a single process

+ Dedicate an additional process for holding data,
which can be used during the recovery
operation

+ Work-communicator excludes the backup
process

+ For surviving m process failures (m < np) you
need m additional processes

H
< The Checkpoint Procedure

+ 4 processes participating in the computation, one for
checkpointing and recovery

+ If your application can survive one process failure at a time

|Rank0| |Rank1| |Rank2| |Rank3|
@ [EI

np
b= ZVI(J)
i1

+ Implementation: a single reduce operation for a vector
+ Keep a copy of the vector v which you used for the backup

15

s

-

= The Recovery Procedure

Rank 1 Rank 4 /| Rank 0 | | Rank 2 | | Rank 3 |\

+ Rebuild work-communicator and Recover data

+ Say lose process w/rank 1, checkpoint in process 4, then
use remain processes 0, 2, and 3 along with checkpoint in
4 to recover data from process 1.

1 EIR
ER)
s + 8

— ~/

¢ Reset iteration counter

+ On each process: copy backup of vector v into the
current version

I
BREERE
1
|
+

IcLw

1000
= — OMPICHI. 2.5
2 800 T
5
2 600 £ W FTMPIL. 0.1
95}
o
S 400 T O FTMPI
I Checkpoint
£ 200 — —
= O FTMPI

0 | T | Recovery

-I duIt L. FUO PEHIUTTTAINILE UITEZD TIUUEDS UT LHE DU CIUSLET dl U 1 I\ £4 1IUUEDS dl £ USEU 1UT LUTTIPULALIVLL. L T1IUUE 15> udEu wr Checkpoint
Checkpoint every 100 iterations, with diagonal preconditioning

- N
¢ Preconditioned Conjugate Grad Performance

besstkl18 besstkl7 nasasrb besstk3b

Matrices

Matrix Mpich1.2.5 FT-MPI FT-MPI FT-MPI w/ Recovery Ckpoint Ohead Recovery

(Size) (sec) (sec) w/ ckpoint (sec) | recovery (sec) (sec) (%) Overhead (%)
besstk18.rsa 9.81 9.78 10.0 129 2.31 2.4 23.7
(11948)

besstk17.rsa 27.5 27.2 27.5 30.5 2.48 1.1 9.1
(10974)

nasasrb.rsa 577. 569. 570. 577. 4.09 0.23 0.72
(54870)

bcsstk35.rsa 860. 858. 859. 872. 3.17 0.12 0.37
(30237)

16

H
< Futures for Numerical Algorithms and Software

+ Numerical software will be adaptive,
exploratory, and intelligent

+ Determinism in numerical computing will be
gone.

> After all, its not reasonable to ask for exactness in numerical
computations.

> Auditability of the computation, reproducibility
at a cost
+ Importance of floating point arithmetic will
be undiminished.
> 16, 32, 64, 128 bits and beyond.

¢ Fault tolerance a critical feature of future
software and hardware systems

+ Adaptivity is a key so applications can
effectively use the resources.

(‘\

< Collaborators / Support

r -
LACSIZR
o LFC/SALSA/BeBOP :
>Victor Eijkhout, UTK NARPA
»>Erika Fuentes, UTK
>Kenny Roche. UTK » For more information:
>Piotr Luszczek, UTK N
>David Keyes, CU CO US[Q

>Bill Gropp, ANL =

>Jim Demmel, UCB —

»Kathy Yelick, UCB [Gugeseren | Infesmoty
+ Python/Matlab Clusters

>Piotr Luszczek, UTK

Advertise with Us - Business Solutions - Services & Tools - Jobs, Press, & Help

Make Google Your Homepage!

