
2/25/10 1

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

2

Jim Wilkinson
Cleve Moler

Gene Golub Ken Kennedy

Brian Smith

3

Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications
 and encourage development of parallel processing)

  1 GFlop/s; 1988; Cray Y-MP; 8 Processors
 Static finite element analysis

  1 TFlop/s; 1998; Cray T3E; 1024 Processors
 Modeling of metallic magnet atoms, using a

 variation of the locally self-consistent multiple
 scattering method.

  1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors
 Superconductive materials

  1 EFlop/s; ~2018; ?; 1x107 Processors (109 threads)

Performance Development in Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11
19

94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s SUM	

N=1	

N=500	

Gordon
Bell

Winners

•  Town Hall Meetings April-June 2007
•  Scientific Grand Challenges

 Workshops Nov, 2008 – Feb, 2010
•  Climate Science (11/08),
•  High Energy Physics (12/08),
•  Nuclear Physics (1/09),
•  Fusion Energy (3/09),
•  Nuclear Energy (5/09),
•  Biology (8/09),
•  Material Science and Chemistry (8/09),
•  National Security (10/09)
•  Cross-cutting technologies (2/10)

•  Exascale Steering Committee
•  “Denver” vendor NDA visits 8/2009
•  SC09 vendor feedback meetings
•  Extreme Architecture and Technology

 Workshop 12/2009

•  International Exascale Software
 Project

•  Santa Fe, NM 4/2009; Paris, France
 6/2009; Tsukuba, Japan 10/2009;
 Oxford 4/2010 6

MISSION IMPERATIVES

FUNDAMENTAL SCIENCE

Systems 2009 2018
(Cost capped at $200M)

Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW Capped at 20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

•  Steepness of the ascent from terascale
 to petascale to exascale

•  Extreme parallelism and hybrid design
•  Preparing for million/billion way

 parallelism

•  Tightening memory/bandwidth
 bottleneck
•  Limits on power/clock speed

 implication on multicore
•  Reducing communication will become

 much more intense
•  Memory per core changes, byte-to-flop

 ratio will change

•  Necessary Fault Tolerance
•  MTTF will drop
•  Checkpoint/restart has limitations

Software infrastructure does not exist today

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Average Number of Cores Per
Supercomputer for Top20

Systems

9

• Must rethink the design of our
 software
  Another disruptive technology

• Similar to what happened with cluster
 computing and message passing

  Rethink and rewrite the applications,
 algorithms, and software

• Numerical libraries for example will
 change
  For example, both LAPACK and

 ScaLAPACK will undergo major changes
 to accommodate this

•  Effective Use of Many-Core and Hybrid architectures
  Break fork-join parallelism
  Dynamic Data Driven Execution
  Block Data Layout

•  Exploiting Mixed Precision in the Algorithms
  Single Precision is 2X faster than Double Precision
  With GP-GPUs 10x
  Power saving issues

•  Self Adapting / Auto Tuning of Software
  Too hard to do by hand

•  Fault Tolerant Algorithms
  With 1,000,000’s of cores things will fail

•  Communication Reducing Algorithms
  For dense computations from O(n log p) to O(log p)

 communications
  Asynchronous iterations
  GMRES k-step compute (x, Ax, A2x, … Akx)

10

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000

G
flo

p/
s

Matrix size

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

DGEMM

LAPACK

•  Fork-join, bulk synchronous processing 12

Step 1 Step 2 Step 3 Step 4 . . .

•  Break into smaller tasks and remove
 dependencies

Step 1: LU of block 1,1 (w/partial pivoting)

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step3: Use U1,1 to zero A1,3 (w/partial pivoting)

.

.

.

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step3: Use U1,1 to zero A1,3 (w/partial pivoting)

.

.

.

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step3: Use U1,1 to zero A1,3 (w/partial pivoting)

.

.

.

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000

G
flo

p/
s

Matrix size

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores)
theoretical peak 153.6 Gflop/s

DGEMM

PLASMA

LAPACK

Communication Avoiding Algorithms will boost performance

�

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10||
A

x
-B

||
_

o
o

/(
(|

|A
||
_

o
o

||
x
||
_

o
o

+
||
B

||
_

o
o

).
N

.e
p

s
)

log2(NT)

N=10240
N=9216
N=8192
N=7168
N=6144
N=5120
N=4096
N=3072
N=2048
N=1024

�

|| Ax − b ||∞
(|| A ||∞ || x ||∞ + ||b ||∞)nε

NT (Number of Tiles) Random Matrices

 : 105 - 108

�

κ (A)

�

κ (A)

Validation and verification
• Compute the answer
 fast with a possibly (but
 rarely) unreliable/
 unstable algorithm
• Quickly check that the
 answer is ok (exception
 flags, small residual..)
• In the rare event of a
 problem, recompute
 carefully and slowly
 using classical approach

• Objectives
  high utilization of each core
  scaling to large number of cores
  shared or distributed memory

• Methodology
  DAG scheduling
  explicit parallelism
  implicit communication
  Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

22

Fork-join
parallelism

DAG scheduled
parallelism

Time

•  We would generate the DAG,
 find the critical path and
 execute it.

•  DAG too large to generate ahead
 of time
  Not explicitly generate
  Dynamically generate the DAG as

 we go

•  Machines will have large
 number of cores in a
 distributed fashion
  Will have to engage in message

 passing
  Distributed management
  Locally have a run time system

•  Here is the DAG for a factorization on a
 20 x 20 matrix

•  For a large matrix say O(106) the DAG is huge
•  Many challenges for the software 24

•  www.exascale.org

www.exascale.org

25

Mega, Giga, Tera,
 Peta, Exa, Zetta …

 103 kilo
 106 mega
 109 giga
 1012 tera
 1015 peta
 1018 exa
 1021 zetta

1024 yotta
1027 xona
1030 weka
1033 vunda
1036 uda
1039 treda
1042 sorta
1045 rinta
1048 quexa
1051 pepta
1054 ocha
1057 nena
1060 minga
1063 luma

26

