
2/25/10 1

Bilel Hadri, Hatem Ltaief, Emmanuel
 Agullo, Fengguang Song, and Jack

 Dongarra
University of Tennessee

Oak Ridge National Laboratory

Systems 2009 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB [.03 Bytes/Flop] O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s [.002 Bytes/Flop] O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s
(1:4 or 1:8 from memory BW)

O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) [O(10) to O(100) for
latency hiding]

O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

•  Steepness of the ascent from terascale
 to petascale to exascale

•  Extreme parallelism and hybrid design
•  Preparing for million/billion way

 parallelism

•  Tightening memory/bandwidth
 bottleneck
•  Limits on power/clock speed

 implication on multicore
•  Reducing communication will become

 much more intense
•  Memory per core changes, byte-to-flop

 ratio will change

•  Necessary Fault Tolerance
•  MTTF will drop
•  Checkpoint/restart has limitations

Software infrastructure does not exist today

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Average Number of Cores Per
Supercomputer for Top20

Systems

4

• Must rethink the design of our
 software
  Another disruptive technology

• Similar to what happened with cluster
 computing and message passing

  Rethink and rewrite the applications,
 algorithms, and software

• Numerical libraries for example will
 change
  For example, both LAPACK and

 ScaLAPACK will undergo major changes
 to accommodate this

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS
operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
 - Level-3 BLAS
operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes a lots of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS
operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
 - Level-3 BLAS
operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes a lots of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS
operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
 - Level-3 BLAS
operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes a lots of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS
operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
 - Level-3 BLAS
operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes a lots of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

9
M=51200 x N

G
flo
p/
s

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Theoretical Peak

DGEMM Peak

"MKL (10.1)"

"LAPACK (3.2)"

•  Fork-join, bulk synchronous processing 10

Step 1 Step 2 Step 3 Step 4 . . .

•  Break into smaller tasks and remove
 dependencies

Step 1: QR of block 1,1

Step 1: QR of block 1,1

Step 2: Use R to zero A1,2

Step 1: QR of block 1,1

Step 2: Use R to zero A1,2

Step3: Use R to zero A1,3

.

.

.

Step 1: QR of block 1,1

Step 2: Use R to zero A1,2

.

.

.

Step3: Use R to zero A1,3

Step 1: QR of block 1,1

Step 2: Use R to zero A1,2

.

.

.

Step3: Use R to zero A1,3

Step 1: QR of block 1,1

Step 2: Use R to zero A1,2

18
M=51200 x N

G
flo
p/
s

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Theoretical Peak

DGEMM Peak

PLASMA (2.1)

"MKL (10.1)"

"LAPACK (3.2)"

• Objectives
  high utilization of each core
  scaling to large number of cores
  shared or distributed memory

• Methodology
  DAG scheduling
  explicit parallelism
  implicit communication
  Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

19

Fork-join
parallelism

DAG scheduled
parallelism

Time

•  Goal: Algorithms that communicate as little as possible
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication.
•  Direct methods (BLAS, LU, QR, SVD, other decompositions)

•  Communication lower bounds for all these problems
•  Algorithms that attain them (all dense linear algebra, some

 sparse)
•  Mostly not in LAPACK or ScaLAPACK (yet)

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure)
•  Not in any libraries (yet)

•  For QR Factorization they can show:

20

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

Communication Reducing QR
Factorization

August 28, 2009

 TS matrix
  MT=6 and NT=3
  split into 2 domains

3 overlapped steps

  panel factorization

  updating the trailing submatrix

  merge the domains

  Final R computed

Communication Reducing QR
Factorization

Example with 4 and 8 Domains

August 28, 2009

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

Execution Trace

16 core run

Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16 cores.

Matrix size 51200 by 3200

Sequential PLASMA

39
M=51200 x N

G
flo
p/
s

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Theoretical Peak

DGEMM Peak

CAQR

PLASMA (2.1)

"MKL (10.1)"

"LAPACK (3.2)"

•  grig.sinrg.cs.utk.edu
•  61 nodes

  Two CPUs per node
  Intel Xeon 3.20GHz
  Peak performance 6.4 GFLOPS
  Myrinet interconnection (MX 1.0.0)

•  Goto BLAS 1.26
  DGEMM performance 5.57 GFLOPS (87%)

•  MPICH-MX
•  gcc 64 bits

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64

To
ta

l #
G

FL
O

PS

Number of Cores

Weak Scalability of CAQR on the Grig Cluster

Peak

Serial-DGEMM x #Cores

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64

To
ta

l #
G

FL
O

PS

Number of Cores

Weak Scalability of CAQR on the Grig Cluster

Peak

Serial-DGEMM x #Cores

ScaLAPACK

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64

To
ta

l #
G

FL
O

PS

Number of Cores

Weak Scalability of CAQR on the Grig Cluster

Peak

Serial-DGEMM x #Cores

Distri. CAQR

ScaLAPACK

On 1 CPU, the matrix size is 64x8 tiles
On k CPUs, the matrix size is k*64x8 tiles
Tiles are 200x200 blocks

•  Architectural trends are forcing
 major changes to our algorithms

•  Communication avoiding algorithms
 will be critical for performance.

•  PLASMA and MAGMA will make use of
 CA algorithms.

45

