Communication Avoiding
Algorithms in Plasma and Magma

Bilel Hadri, Hatem Ltaief, Emmanuel
Agullo, Fengguang Song, and Jack
Dongarra

University of Tennessee
Oak Ridge National Laboratory

2/25/10

c

~. Potential System Architecture

System peak
Power

System memory
Node performance
Node memory BW
Node concurrency

Total Node Interconnect BW

System size (nodes)

Total concurrency
Storage
10

MTTI

2 Pflop/s
6 MW
0.3 PB
125 GF

25 GB/s

12

3.5 GB/s

18,700
225,000

15 PB

0.2TB

days

Difference
Today & 2018
1 Eflop/s 0(1000)
~20 MW
32- 64 PB [.03 Bytes/Flop] 0(100)

1,2 or 15TF 0(10) - 0(100)

2 - 4TB/s [.002 Bytes/Flop]
0(1k) or 10k 0(100) - O(1000)
200-400GB/s

(1:4 or 1:8 from memory BW)

0(100,000) or O(1M) 0(10) - O(100)
O(billion) [O(10) to O(100) for
latency hiding]

500-1000 PB (>10x system
memory is min)

0(10,000)

0(10) - O(100)

60 TB/s (how long to drain the 0(100)
machine)
O(1 day) - 0(10)

¢ Factors that Necessitate Redesign of

ICL

Our Software

e Steepness of the ascent from terascale
to petascale to exascale

« Extreme parallelism and hybrid design 100,000

e Preparing for million/billion way 90,000
parallelism 80,000

e Tightening memory/bandwidth 70,000
bottleneck 60,000

« Limits on power/clock speed 50,000

implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change 10,000
e Necessary Fault Tolerance 0
e MTTF will drop
o Checkpoint/restart has limitations

40,000
30,000

20,000

Software infrastructure does not exist today

Average Number of Cores Per
Supercomputer for Top20
Systems

ICL

“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

« Numerical libraries for example will
change

= For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

£ A New Generation of Software:

IcLor-

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70Q’s) Rely on
(Vector operations) - Level-1 BLAS
operations

£ A New Generation of Software:

o Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70Q’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

£ A New Generation of Software:

ICLOr"

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90’s) Rely on

(Distributed Memory) - PBLAS Mess Passing

¢ A New Generation of Software:

. Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

LINPACK (70Q’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90’s) Rely on
(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms 1 - a DAG/scheduler
(many-core friendly) - block data layout

_ - some extra kernels
Those new algorithms

- have a very , they scale very well (multicore, petascale computing, ...)

among the tasks, (multicore, distributed computing)
(distributed computing, out-of-core)

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

¢ QR Factorization Intel 16 cores
Tall Skinny Matrices

180

160

140

120

. Theoretical Peak

DGEMM Peak
80 —#—="MKL (10.1)"
#—="LAPACK (3.2)"

Gflop/s

60

40

20

rd |

| " i
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

M=57200x N

£
“ LAPACK QR

ii

Step 1 > Step 2 —> Step 3 —> Step4 - - -

il is

ab

{ { { {
A A A A

S Y A Y S e 2N Y

* Fork-join, bulk synchronous processing

o)
< Parallel Tasks in QR

T
J.J.J

— — ep .

o Break mto smaller tasks and remove
dependencies

=»---l e DEE

CEIEET (L Lo
[| _

T - "ven

e

< Parallel Tasks in QR

k‘ Step 1: QR of block 1,1

o)
< Parallel Tasks in QR

‘ Step 1: QR of block 1,1
- Step 2: Use Rto zero A, ,

)
< Parallel Tasks in QR

‘ Step 1: QR of block 1,1

Step 2: Use Rto zero A, ,

)
< Parallel Tasks in QR

‘ Step 1: QR of block 1,1

Step 2: Use Rto zero A, ,

Step3: Use Rto zero A, ;

N
< Parallel Tasks in QR

‘ Step 1: QR of block 1,1

Step 2: Use Rto zero A, ,

Step3: Use Rto zero A, ;

N
< Parallel Tasks in QR

‘ Step 1: QR of block 1,1

Step 2: Use Rto zero A, ,

Step3: Use Rto zero A, ;

ICLOr"

QR Factorization Intel 16 cores
Tall Skinny Matrices

Gflop/s

180

160

140

120
100 Theoretical Peak

DGEMM Peak
=&—PLASMA (2.1)

—m—"MKL (10.1)"
m—"LAPACK (3.2)"
) //
40
20 —
-— X i
_’ T Y@rli T T T T T T T T T T T 1

0 =
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

80

18
M=57200x N

£ PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

‘Objectives Tile QR factorization

= high utilization of each core
= scaling to large number of cores
» shared or distributed memory

‘Methodology
= DAG scheduling
= explicit parallelism
= implicit communication
= Fine granularity / block data layout

*Arbitrary DAG with dynamic scheduling

S o= I = wET . =
B :-I .l =] e - - EI -‘ J -\:J’ ? x - Fork-jOin
———— ‘ r --E| -;I--- .
1 B I% -% lg -% g = = = m==f parallelism
L T " .y F = = =

DAG scheduled
parallelism

Time > 19

N
<. Communication Avoiding Algorithms

o Goal: Algorithms that communicate as little as possible

« Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication.

« Direct methods (BLAS, LU, QR, SVD, other decompositions)
« Communication lower bounds for all these problems

« Algorithms that attain them (all dense linear algebra, some
sparse)

e Mostly not in LAPACK or ScaLAPACK (yet)
e Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)
e Not in any libraries (yet)

« For QR Factorization they can show:

Lower bound

flops O(mn?)
words (")('\'/‘;‘_Vz)

2

messages | O(21;)

w3/2

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps
» panel factorization
> updating the trailing submatrix

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps
- panel factorization

- updating the trailing submatrix

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

- updating the trailing submatrix

Communication Reducing QR
Factorization

TS matrix

> MT=6 and NT=3

> split into 2 domains
3 overlapped steps

- panel factorization

- updating the trailing submatrix

> merge the domains

Communication Reducing QR
Factorization

TS matrix

> MT=6 and NT=3

> split into 2 domains
3 overlapped steps

- panel factorization

- updating the trailing submatrix

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

- updating the trailing submatrix

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

- updating the trailing submatrix

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- updating the trailing submatrix

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- panel factorization

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

> merge the domains

Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- Final R computed 0 0 0
0 0 0
0 0 0

Example with 4 and 8 Domains

e

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

Execution Trace

b e e L L
R T L T
o e L e
e e b e

Fig. 11. Parallel execution traces of SP-16 with MT=32 and NT=4 on 8 cores.

TABLE III
IMPROVEMENT OF SP-CAQR AGAINST OTHER LIBRARIES (PERFORMANCE RATIO).

Matrix sizes | PLASMA [MKL [ScaLAPACK [LAPACK
51200 — 200 954 877 338 28.63
51200 —3200 | 127 410 2388 11.05

16 core run

£ Communication Reducing QR

ICLOUr" ° °
Factorization
180 1
160
140 +
120
?ml ~@=Theoretical P
-] 100 _—m —"DGEMM Peak
o 8- CAQR
80 ~o—PLASMA (2.1)

// / —W=CMKL (10.1)°
w0 —m—LAPACK (3.2)

o, acm ad

th ydy TRtk Dy il

1 . 75 i ‘ \\ lt.‘ —
T q v =it T Ty /) ‘t& | Jae)
‘J m || ‘A”’A‘(@;LL LA\A‘\}”(t'L- J ﬁ)g‘\{f@a ; - a8 L ‘?\ ’h
X . ; —~— " -“ " !"
. TR 'J:ﬁ f —f e
- —— N

R 5

(a) One domain: SP-1 (or PLASMA-like Tile QR factor-
ization).

QR Factorization Intel 16 cores

Tall Skinny Matrices
5 |

—u
80 / —0—PLASMA (2.1)
—m—"MKL (10.1)"
60 / "L APACK (3.2)"
20
—n
/ — B X
T x‘a“ T T T T T T T T T T T T 1

0 »
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

39
M=57200x N

< Cluster Experiment

grig.sinrg.cs.utk.edu

61 nodes

= Two CPUs per node

* |Intel Xeon 3.20GHz

= Peak performance 6.4 GFLOPS

* Myrinet interconnection (MX 1.0.0)

Goto BLAS 1.26
* DGEMM performance 5.57 GFLOPS (87%)

MPICH-MX
gcc 64 bits

N

A

< Weak Scalability (8 columns of tiles)

Weak Scalability of CAQR on the Grig Cluster

450

400 —+-Peak 7

0350 —
(a

9300 7

™ —*-Serial-DGEMM x #Cores y
Q250

© i/
£200 :

150 s

100 —=

50 ———¥

1 2 4 Numbeil3 of Cores16 32 64

N

A

< Weak Scalability (8 columns of tiles)

Weak Scalability of CAQR on the Grig Cluster

450
400 .+ Peak /
/
/
2350 —»*-Serial-DGEMM x #Cores i //x
/
9300 7
LL ——ScalLAPACK - ;
2250 // //,
‘_U 1///
EZOO ///)(/
150 s //' —
100 //::; ‘. /
50 /’:::f/ﬁ//‘/,/
——__-_—=====*==,,
O r———l—_-*_ I - T - T T T
1 2 4 g - ” -

Number of Cores

N

A

< Weak Scalability (8 columns of tiles)

Weak Scalability of CAQR on the Grig Cluster

450
—+-Peak
400 —
—»-Serial-DGEMM x #Cores)/
n 350 ~ //"
a. g /
—=— Distri. CAQR /
2300 7
— /7
2250 ScalLAPACK /,’ //, /
— / 7/
£200 A
- s X
150 |—On 1 CPU, the matrix size is 64x8 tiles L /
On k CPUs, the matrix size is k*64x8 tiles //////
100 Tiles are 200x200 blocks ///? /

1 2 4 Numbeil3 of Cores16 32 64

{\

A %

< Weak Scalability (8 columns of tiles)

e peak
6
________________________________ LRI
5 —m- Distri. CAQR|——
—— ScaLAPACK
4 -
—n O = = -

GFLOPS per Core
w

0 [[I I I I 1

1 2 4 8 16 32 64
Number of Cores

{\
< Futures

* Architectural trends are forcing
major changes to our algorithms

 Communication avoiding algorithms
will be critical for performance.

« PLASMA and MAGMA will make use of
CA algorithms.

45

