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~. Potential System Architecture
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Difference
Today & 2018
1 Eflop/s 0(1000)
~20 MW
32- 64 PB [ .03 Bytes/Flop ] 0(100)

1,2 or 15TF 0(10) - 0(100)

2 - 4TB/s [ .002 Bytes/Flop ]
0(1k) or 10k 0(100) - O(1000)
200-400GB/s

(1:4 or 1:8 from memory BW)
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O(billion) [O(10) to O(100) for
latency hiding]

500-1000 PB (>10x system
memory is min)
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60 TB/s (how long to drain the 0(100)
machine)
O(1 day) - 0(10)



¢ Factors that Necessitate Redesign of

ICL

Our Software

e Steepness of the ascent from terascale
to petascale to exascale

« Extreme parallelism and hybrid design 100,000

e Preparing for million/billion way 90,000
parallelism 80,000

e Tightening memory/bandwidth 70,000
bottleneck 60,000

« Limits on power/clock speed 50,000

implication on multicore

e Reducing communication will become
much more intense

e« Memory per core changes, byte-to-flop
ratio will change 10,000
e Necessary Fault Tolerance 0
e MTTF will drop
o Checkpoint/restart has limitations

40,000
30,000

20,000

Software infrastructure does not exist today

Average Number of Cores Per
Supercomputer for Top20
Systems



ICL

“Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

« Numerical libraries for example will
change

= For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this
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Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70Q’s) Rely on
(Vector operations) - Level-1 BLAS
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¢ A New Generation of Software:

. Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

LINPACK (70Q’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90’s) Rely on
(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms 1 - a DAG/scheduler
(many-core friendly) - block data layout

_ - some extra kernels
Those new algorithms

- have a very , they scale very well (multicore, petascale computing, ... )

among the tasks, (multicore, distributed computing)
(distributed computing, out-of-core)

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



¢ QR Factorization Intel 16 cores
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“ LAPACK QR
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* Fork-join, bulk synchronous processing
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< Parallel Tasks in QR
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< Parallel Tasks in QR

k‘ Step 1: QR of block 1,1
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QR Factorization Intel 16 cores
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£ PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

‘Objectives Tile QR factorization

= high utilization of each core
= scaling to large number of cores
» shared or distributed memory

‘Methodology
= DAG scheduling
= explicit parallelism
= implicit communication
= Fine granularity / block data layout

*Arbitrary DAG with dynamic scheduling

S o= I = wET . =
B :-I .l = ] e - - EI -‘ J -\:J’ ? x - Fork-jOin
———— ‘ r --E| -;I--- .
1 B I% -% lg -% g = = = m==f parallelism
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DAG scheduled
parallelism

Time > 19
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<. Communication Avoiding Algorithms

o Goal: Algorithms that communicate as little as possible

« Jim Demmel and company have been working on algorithms
that obtain a provable minimum communication.

« Direct methods (BLAS, LU, QR, SVD, other decompositions)
« Communication lower bounds for all these problems

« Algorithms that attain them (all dense linear algebra, some
sparse)

e Mostly not in LAPACK or ScaLAPACK (yet)
e Iterative methods - Krylov subspace methods for Ax=b, Ax=Ax

« Communication lower bounds, and algorithms that attain them
(depending on sparsity structure)
e Not in any libraries (yet)

« For QR Factorization they can show:

Lower bound

# flops O(mn?)
# words (")('\'/‘;‘_Vz)

2

# messages | O(21;)

w3/2
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Communication Reducing QR
Factorization

TS matrix
> MT=6 and NT=3
> split into 2 domains

3 overlapped steps

- Final R computed 0 0 0
0 0 0
0 0 0




Example with 4 and 8 Domains

e

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume I, Applications,
pages 1610-1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.




Execution Trace
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Fig. 11. Parallel execution traces of SP-16 with MT=32 and NT=4 on 8 cores.

TABLE III
IMPROVEMENT OF SP-CAQR AGAINST OTHER LIBRARIES (PERFORMANCE RATIO).

Matrix sizes | PLASMA [ MKL [ ScaLAPACK [ LAPACK
51200 — 200 954 877 338 28.63
51200 —3200 | 127 410 2388 11.05

16 core run




£ Communication Reducing QR
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(a) One domain: SP-1 (or PLASMA-like Tile QR factor-
ization).



QR Factorization Intel 16 cores
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< Cluster Experiment

grig.sinrg.cs.utk.edu

61 nodes

= Two CPUs per node

* |Intel Xeon 3.20GHz

= Peak performance 6.4 GFLOPS

* Myrinet interconnection (MX 1.0.0)

Goto BLAS 1.26
* DGEMM performance 5.57 GFLOPS (87%)

MPICH-MX
gcc 64 bits
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< Weak Scalability (8 columns of tiles)

Weak Scalability of CAQR on the Grig Cluster
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< Weak Scalability (8 columns of tiles)

Weak Scalability of CAQR on the Grig Cluster
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< Weak Scalability (8 columns of tiles)
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< Futures

* Architectural trends are forcing
major changes to our algorithms

 Communication avoiding algorithms
will be critical for performance.

« PLASMA and MAGMA will make use of
CA algorithms.

45



