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Systems 2009 2018  Difference 
Today & 2018 

System peak 2 Pflop/s 1 Eflop/s O(1000) 

Power 6 MW ~20 MW 

System memory 0.3 PB 32 - 64 PB   [ .03 Bytes/Flop ] O(100) 

Node performance 125 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ] O(100) 

Node concurrency 12 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 3.5 GB/s 200-400GB/s 
(1:4 or 1:8 from memory BW) 

O(100) 

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 225,000 O(billion) [O(10) to O(100) for 
latency hiding] 

O(10,000) 

Storage 15 PB 500-1000 PB (>10x system 
memory is min) 

O(10) – O(100) 

IO 0.2 TB 60 TB/s (how long to drain the 
machine) 

O(100) 

MTTI days O(1 day) - O(10) 



•  Steepness of the ascent from terascale
 to petascale to exascale 

•  Extreme parallelism and hybrid design 
•  Preparing for million/billion way

 parallelism 

•  Tightening memory/bandwidth
 bottleneck 
•  Limits on power/clock speed

 implication on multicore 
•  Reducing communication will become

 much more intense  
•  Memory per core changes, byte-to-flop

 ratio will change 

•  Necessary Fault Tolerance 
•  MTTF will drop 
•  Checkpoint/restart has limitations 

Software infrastructure does not exist today  

0 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

70,000 

80,000 

90,000 

100,000 

Average Number of Cores Per 
Supercomputer for Top20 

Systems 



4 

• Must rethink the design of our
 software 
  Another disruptive technology 

• Similar to what happened with cluster
 computing and message passing 

  Rethink and rewrite the applications,
 algorithms, and software 

• Numerical libraries for example will
 change 
  For example, both LAPACK and

 ScaLAPACK will undergo major changes
 to accommodate this 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 
(Vector operations) 

Rely on  
   - Level-1 BLAS 
operations 

LAPACK (80’s) 
(Blocking, cache 
friendly) 

Rely on  
   - Level-3 BLAS 
operations 

ScaLAPACK (90’s) 
(Distributed Memory) 

Rely on  
   - PBLAS Mess Passing 

PLASMA (00’s) 
New Algorithms  
(many-core friendly) 

Rely on  
   - a DAG/scheduler 
   - block data layout 
   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes a lots of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 
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•  Fork-join, bulk synchronous processing 10 

Step 1 Step 2 Step 3 Step 4 . . . 



•  Break into smaller tasks and remove
 dependencies 



Step 1: QR of block 1,1 
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• Objectives 
  high utilization of each core 
  scaling to large number of cores 
  shared or distributed memory 

• Methodology 
  DAG scheduling 
  explicit parallelism 
  implicit communication 
  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 
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Fork-join 
parallelism 

DAG scheduled 
parallelism 

Time 



•  Goal: Algorithms that communicate as little as possible 
•  Jim Demmel and company have been working on algorithms

 that obtain a provable minimum communication. 
•  Direct methods (BLAS, LU, QR, SVD, other decompositions) 

•  Communication lower bounds for all these problems 
•  Algorithms that attain them (all dense linear algebra, some

 sparse) 
•  Mostly not in LAPACK or ScaLAPACK (yet) 

•  Iterative methods – Krylov subspace methods for Ax=b, Ax=λx 
•  Communication lower bounds, and algorithms that attain them

 (depending on sparsity structure) 
•  Not in any libraries (yet) 

•  For QR Factorization they can show: 
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Communication Reducing QR 
Factorization 

August 28, 2009 

 TS matrix 
  MT=6 and NT=3 
  split into 2 domains 

3 overlapped steps 

  panel factorization 

  updating the trailing submatrix 

  merge the domains 
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August 28, 2009 

 TS matrix 
  MT=6 and NT=3 
  split into 2 domains 

3 overlapped steps 

  panel factorization 

  updating the trailing submatrix 

  merge the domains 

  Final R computed 

Communication Reducing QR 
Factorization 



Example with 4 and 8 Domains 

August 28, 2009 

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd 
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications, 
pages 1610‒1620, Pasadena, CA, Jan. 1988. ACM. Penn. State. 



Execution Trace 

16 core run 



Communication Reducing QR 
Factorization 

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.  
Theoretical peak is  153.2 Gflop/s with 16 cores. 

Matrix size 51200 by 3200 

Sequential PLASMA 
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•  grig.sinrg.cs.utk.edu 
•  61 nodes 

  Two CPUs per node 
  Intel Xeon 3.20GHz 
  Peak performance 6.4 GFLOPS 
  Myrinet interconnection (MX 1.0.0) 

•  Goto BLAS 1.26 
  DGEMM performance 5.57 GFLOPS (87%) 

•  MPICH-MX 
•  gcc 64 bits 
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On 1 CPU, the matrix size is 64x8 tiles 
On k  CPUs, the matrix size is k*64x8 tiles 
Tiles are 200x200 blocks 





•  Architectural trends are forcing
 major changes to our algorithms 

•  Communication avoiding algorithms
 will be critical for performance. 

•  PLASMA and MAGMA will make use of
 CA algorithms. 
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