

Experiences and Lessons Learned with a Portable Interface to Hardware Performance Counters

Jack Dongarra, Kevin London, Shirley Moore, Philip Mucci, Daniel Terpstra, Haihang You, and Zhou Min

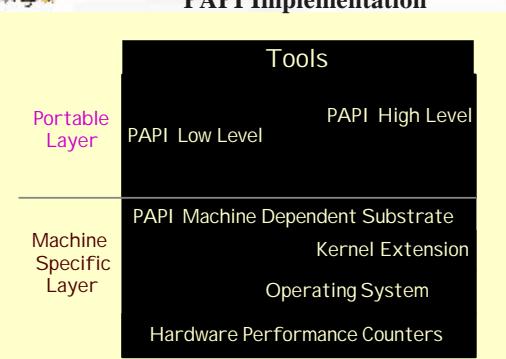
INNOVATIVE COMPUTING LABORATORY
COMPUTING SCIENCE DIVISION
UNIVERSITY OF TENNESSEE

Tools for Performance Evaluation

- » Timing and performance evaluation has been an art
- » Resolution of the clock
- » Issues about cache effects
- » Different systems
- » Can be cumbersome and inefficient with traditional tools
- » Situation about to change
- » Almost all high performance processors include hardware performance counters.
- » Some are easy to access, others not available to users.
- » On most platforms the APIs, if they exist, are not appropriate for the end user or well documented.

IPDPS/PADTAD 2003

PAPI - PERFORMANCE APPLICATION PROGRAMMING INTERFACE


- » PAPI is a proposed "standard" cross-platform interface to hardware performance counters.
- » PAPI provides two APIs to access the underlying performance counter hardware:
 - » A low-level interface designed for tool developers and expert users; and
 - » A high-level interface for application engineers.

April 26, 2003 IPDPS/PADTAD 2003 3

Hardware Counters

- » Small number of registers dedicated for performance monitoring functions
 - AMD Athlon, 4 counters
 - Pentium <= III, 2 counters
 - Pentium IV, 18 counters
 - IA64, 4 counters
 - Alpha 21x64, 2 counters
 - Power 3, 8 counters
 - Power 4, 8 counters
 - UltraSparc II, 2 counters
 - MIPS R14K, 2 counters

April 26, 2003 IPDPS/PADTAD 2003 4

PAPI Implementation

Portable Layer

Machine Specific Layer

Tools

PAPI Low Level

PAPI High Level

PAPI Machine Dependent Substrate

Kernel Extension

Operating System

Hardware Performance Counters

April 26, 2003 IPDPS/PADTAD 2003 5

PAPI Preset Events

- » Proposed standard set of event names deemed most relevant for application performance tuning
- » Exact standardization of the semantics not possible
 - » eg IBM's FMA
- » PAPI supports approximately 100 preset events.
- » Mapped to native events on a given platform
 - » Preset events are mappings from symbolic names to machine specific definitions for a particular hardware event.
 - » Example: `PAPI_TOT_CYC`
 - » PAPI also supports presets that may be derived from multiple underlying hardware metrics.
 - » Example: `PAPI_L1_DCM`

April 26, 2003 IPDPS/PADTAD 2003 6

Title goes here

 Sample Preset Listing

```
.tests/avail
Test case 8: Available events and hardware information.
-----
Vendor string and code : GenuineIntel (-1)
Model string and code : Celeron (Mendocino) (6)
CPU revision : 10.000000
CPU MhzPerf : 366.504944

Name          Code      Avail  Deriv  Description (Note)
PAPI_L1_DCM  0x8000000  Yes    No    Level 1 data cache misses
PAPI_L1_ICM  0x80000001 Yes    No    Level 1 instruction cache misses
PAPI_L2_DCM  0x80000002 No     No    Level 2 data cache misses
PAPI_L2_ICM  0x80000003 No     No    Level 2 instruction cache misses
PAPI_L3_DCM  0x80000004 No     No    Level 3 data cache misses
PAPI_L3_ICM  0x80000005 No     No    Level 3 instruction cache misses
PAPI_L1_TCM  0x80000006 Yes    Yes   Level 1 cache misses
PAPI_L2_TCM  0x80000007 Yes    No    Level 2 cache misses
PAPI_L3_TCM  0x80000008 No     No    Level 3 cache misses
PAPI_TOT_CDF  0x80000009 No     No    Requests for shared cache
PAPI_CA_SUR  0x8000000a No     No    Requests for shared cache line
PAPI_CA_CIN  0x8000000b No     No    Requests for clean cache line
PAPI_CA_INV  0x8000000c No     No    Requests for cache line inv.
.

http://dld.cs.utk.edu/projects/papi/files/html/man/papi_presets.html
```

April 26, 2003 IPDPS/PADTAD 2003 7

 Support for Native Events

- » PAPI supports native events:
- » An event countable by the CPU can be counted even if there is no matching preset PAPI event.
- » The developer uses the same API as when setting up a preset event, but a CPU -specific bit pattern is used instead of the PAPI event definition.

April 26, 2003 IPDPS/PADTAD 2003 8

 High-level Interface

- » Meant for application programmers wanting coarse-grained measurements
- » As easy to use as SGI IRIX prefix calls
 - » a command-line interface to the R10000 hardware performance counters
- » Requires no setup code
- » Restrictions:
 - » Allows only PAPI presets
 - » Not thread safe
 - » Only aggregate counters

April 26, 2003 IPDPS/PADTAD 2003 9

 High-level API Calls

- » `PAPI_flops(float *rtime, float *ptime, long long *flops)`
 - » Wallclock time, process time, FP ins since start.
 - » Mflop/s since last call
- » `PAPI_num_counters()`
 - » Returns the number of available counters
- » `PAPI_start_counters(int *cntrs, int alen)`
 - » Start counters
- » `PAPI_stop_counters(long long *vals, int alen)`
 - » Stop counters and put counter values in array
- » `PAPI_accum_counters(long long *vals, int alen)`
 - » Accumulate counters into array and reset
- » `PAPI_read_counters(long long *vals, int alen)`
 - » Copy counter values into array and reset counters

April 26, 2003 IPDPS/PADTAD 2003 10

 Low-level Interface

- » Increased efficiency and functionality over the high level PAPI interface
- » Approximately 60 functions
- » Thread-safe (SMP, OpenMP, Pthreads)
- » Supports both preset and native events

April 26, 2003 IPDPS/PADTAD 2003 11

 Low-level Functionality

- » API Calls for:
 - » Counter multiplexing
 - » SVR4 compatible profiling
 - » Processor information
 - » Address space information
 - » Accurate and low latency timing functions
 - » Hardware event inquiry functions
 - » Eventset management functions
 - » Static and dynamic memory information
 - » Simple locking operations
 - » Callbacks on user defined overflow threshold

April 26, 2003 IPDPS/PADTAD 2003 12

PAPI 2.3.4 Release
April 14, 2003

Platforms

- » IBM PPC604, 604e, Power 3, Power4, AIX 5
- » Intel x86/Linux, Windows, including Pentium IV
- » Sun UltraSparc I/II/III
- » SGI MIPS R10K/R12K/R14K
- » Compaq Alpha 21164/21264 with DADD/DCPI
- » Itanium/Itanium2 Linux
- » Cray T3E

Enhancements

- » Static/dynamic memory info
- » IA64 hardware profiling and sampling
- » Misc bug fixes

Sample Tools

- » Perfometer
- » Trapper
- » Dynaprof

April 26, 2003 IPDPS/PADTAD 2003 13

Design and Implementation Experiences

- » Success of community-based open source development effort
- » Parallel Tools Consortium <http://www.ptools.org/>
- » Tradeoffs between ease-of-use and increased functionality and features
- » Operating system support
- » Interfacing to third-party tools
- » Data interpretation and accuracy issues
- » Efficiency and scalability issues

April 26, 2003 IPDPS/PADTAD 2003 14

Operating System Support

- » Perfctr kernel patch by Mikael Petterson required for Linux/x86
- » Kernel modification has met resistance from some system administrators
- » Effort underway to get perfctr into mainstream Linux release
- » Vendor cooperation has been good (in most cases)
 - » Register level operations code provided by Cray
 - » IBM pmtoolkit included in AIX 5
 - » Perfmon library from Hewlett-Packard for Itanium/Itanium2 Linux
 - » DADD (Dynamic Access to DCPI Data) extension to DCPI from Hewlett-Packard for Alpha Tru64 UNIX

April 26, 2003 IPDPS/PADTAD 2003 15

Tools

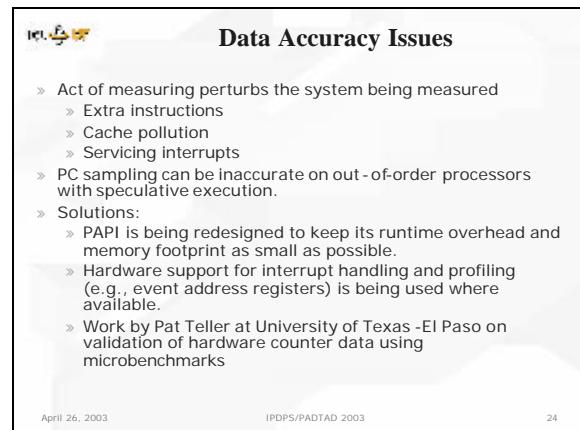
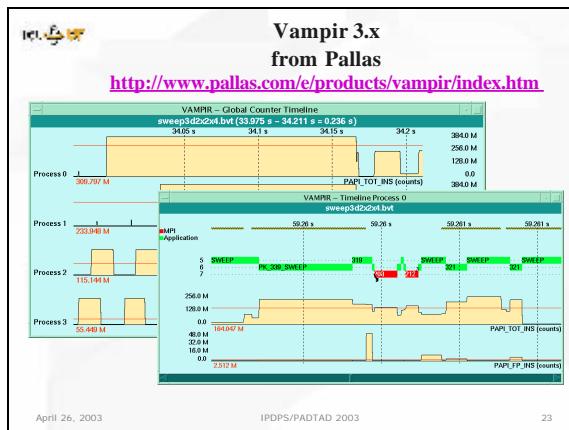
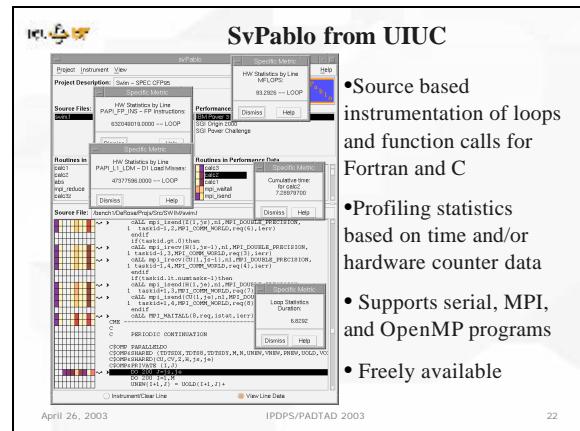
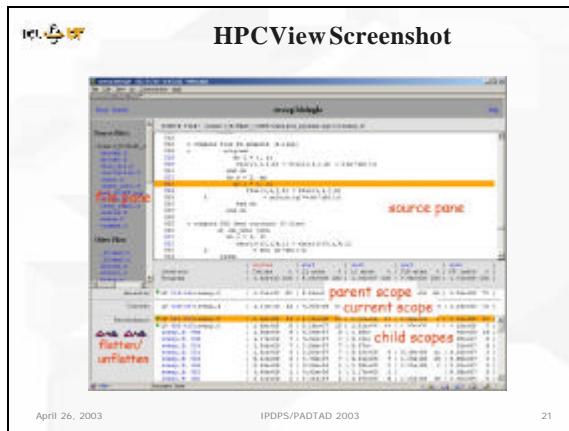
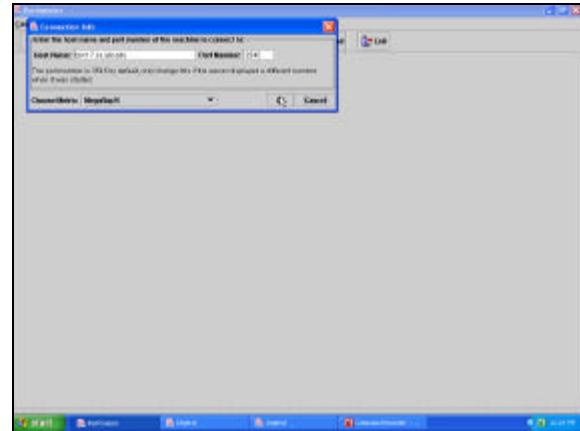
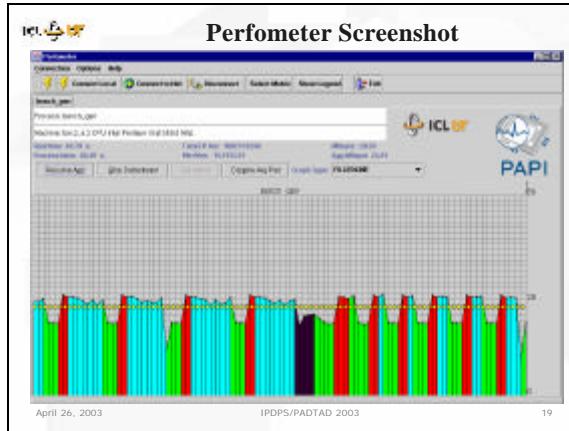
- » Tools developed by the PAPI project
 - » Dynaprof
 - » Perfometer
- » Third-party tools
 - » HPCView (Rice University)
 - » SvPablo (University of Illinois)
 - » TAU (University of Oregon)
 - » Vampir 3.x (Pallas)
 - » VProf (Sandia National Lab)
 - » Others (see PAPI home page)

April 26, 2003 IPDPS/PADTAD 2003 16

Dynaprof

- » A portable tool to dynamically instrument serial and parallel programs for the purpose of performance analysis
- » Simple and intuitive command line interface like GDB
- » Java/Swing GUI
- » Instrumentation is done through the run-time insertion of function calls to specially developed performance probes.

No source code required!







April 26, 2003 IPDPS/PADTAD 2003 17

Dynaprof GUI Screenshot

The screenshot shows a Java Swing application window titled 'Dynaprof'. The window has a menu bar with 'File', 'Options', 'Command', 'Run', 'Pause', 'Continue', 'Info', 'Unload', and 'Exit'. The 'File' menu is currently open, showing sub-options: 'Dynaprof', 'a:/cl/leather/homes/you/w', 'DEFAULT_MODULE', 'swim.F', 'MAIN...', 'initial...', 'calc1...', 'calc2...', 'calc3...', 'libgc2.c', 'atexit.c', 'libm.so.6', and 'libc.so.6'. Below the menu, there is a text area showing command-line history: '(dynaprof) load /a:/cl/leather/homes/you/work', '(dynaprof) use perfometerprobe', '(dynaprof) list', '(dynaprof) list swim.F', and '(dynaprof)'. A 'Choose a file...' dialog box is overlaid on the window, with 'perfometerprobe' selected in a dropdown menu. Buttons for 'Browse', 'Open file', and 'Cancel' are visible at the bottom of the dialog.

April 26, 2003 IPDPS/PADTAD 2003 18

Title goes here

PAPI Version 3 (expected June 2003)

- » Using lessons learned from years earlier
- » Redesign for:
 - » Robustness
 - » Feature set
 - » Simplicity
 - » Portability to new platforms
- » New features
 - » Multiway multiplexing
 - » Use all available counter registers instead of one per time slice. (Just 1 additional register means 2x increase in accuracy)
 - » Effective collection of 5 events on 4 counters
 - » Improved performance
 - » Pentium 4, a PAPI_read() costs 230 cycles.
 - » Today can be as much as 3000 cycles
 - » Register access alone costs 100 cycles.

April 26, 2003

IPDPS/PADTAD 2003

25

PAPI Version 3 (cont.)

- » New features (cont.)
 - » Programmable events
 - » Third-party interface
 - » Allow control of counters in other threads of execution
 - » Internal timer/signal/thread abstractions
 - » Static and dynamic memory utilization information
 - » Advanced profiling functions for event address sampling (branch, cache, etc...)
 - » System-wide counting
 - » High level API made thread safe
 - » Optimal counter allocation scheme
 - » Papirun utility
- » Additional platforms
 - » Cray X1
 - » AMD Opteron/K8

April 26, 2003

IPDPS/PADTAD 2003

26

Conclusions

- » PAPI has been widely adopted by application and tool developers.
- » Use of PAPI simplifies collection and interpretation of hardware counter data by application developers.
- » Use of PAPI allows tool developers to focus on tool design rather than expending redundant effort on implementing low-level access to hardware counters.
- » Data must be accurate to be useful.
 - » Keep perturbation small.
 - » Validate results.
- » Counter access must be efficient and scalable.
 - » Eliminate unnecessary features to streamline the interface (PAPI Version 3)
 - » Make use of available hardware support for sampling, interrupt handling, etc.

April 26, 2003

IPDPS/PADTAD 2003

27

For More Information

- » <http://icl.cs.utk.edu/papi/>
- » Software and documentation
- » Reference materials
- » Papers and presentations
- » Third-party tools
- » Mailing lists

April 26, 2003

IPDPS/PADTAD 2003

28