
1

1/25/2007 1

Exploiting the Performance of 32Exploiting the Performance of 32--bit bit
FloatingFloating--PointPoint

Arithmetic in Obtaining 64Arithmetic in Obtaining 64--bit Accuracybit Accuracy
(Computing on Games)(Computing on Games)

Jack Dongarra
University of Tennessee

and
Oak Ridge National Laboratory

Computer Science and Mathematics Division Seminar

2

With All the Hype on the PS3With All the Hype on the PS3
We Became Interested We Became Interested

♦ The PlayStation 3's CPU based on a "Cell“ processor
♦ Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing

unit, SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from
the others.

4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP)
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!

Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

2

3

32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
♦ A long time ago 32 bit floating point was

used
Still used in scientific apps but limited

♦ Most apps use 64 bit floating point
Accumulation of round off error

A 10 TFlop/s computer running for 4 hours performs
> 1 Exaflop (1018) ops.

Ill conditioned problems
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in
some parts

♦ Mixed precision a possibility
Approximate in lower precision and then refine
or improve solution to high precision.

4

Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

♦ Intuitively:
Compute a 32 bit result,
Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with
the correction using high precision.

3

5

32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦ Iterative refinement for dense systems,

Ax = b, can work this way.

Wilkinson, Moler, Stewart, & Higham provide error bound
for SP fl pt results when using DP fl pt.
It can be shown that using this approach we can compute
the solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

6

In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa); Most of the work: O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x; O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and
adding it to the SP results in DP.

4

70 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!

80 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Size of Problem

G
flo

p/
s

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating

point operations per cycle and in double precision 2 floating point
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!

12.8 sec

6.1 sec

5

9

On the Way to Understanding How to Use On the Way to Understanding How to Use
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the
similar situation on
our commodity
processors.

That is, SP is 2X
as fast as DP on
many systems

♦ The Intel Pentium
and AMD Opteron
have SSE2

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

1.83 9.98 18.28 PowerPC G5
(2.7GHz) AltiVec

1.97 2.48 4.89 AMD Opteron 240
(1.4GHz) Goto BLAS

1.98 5.61 11.09 Pentium IV Prescott
(3.4GHz) Goto BLAS

2.05 5.15 10.54 Pentium Xeon Prescott
(3.2GHz) Goto BLAS

1.98 3.88 7.68 Pentium Xeon Northwood
(2.4GHz) Goto BLAS

2.01 0.79 1.59 Pentium III CopperMine
(0.9GHz) Goto BLAS

2.13 0.46 0.98 Pentium III Katmai
(0.6GHz) Goto BLAS

Speedup
SP/DP

DGEMM
(GFlop/s)

SGEMM
(GFlop/s)

Processor and BLAS
Library

Performance of single precision and double precision
matrix multiply (SGEMM and DGEMM) with n=m=k=1000

10

Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf)

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n#
procs

Architecture (BLAS-MPI)

6

11

AMD AMD OpteronOpteron Processor 240 (1.4GHz), Processor 240 (1.4GHz),
GotoGoto BLAS (1 thread)BLAS (1 thread)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
T

R
F

DGESV
SGETRF
SGETRS

DGETRF

SGETRF

12

AMD AMD OpteronOpteron Processor 240 (1.4GHz), Processor 240 (1.4GHz),
GotoGoto BLAS (1 thread)BLAS (1 thread)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
T

R
F

DGESV
DSGESV
SGETRF
SGETRS
DGEMV
EXTRA

DGETRF

SGETRF

Mixed Precision Solve

7

13

Bottom LineBottom Line

♦ Single precision is
faster than DP
because:

Higher parallelism
within vector units

4 ops/cycle
(usually) instead
of 2 ops/cycle

Reduced data
motion

32 bit data
instead of 64 bit
data

Higher locality in
cache

More data items
in cache

Size SGEMM/
DGEMM

Size SGEMV/
DGEMV

AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-IIe 3000 1.64 5000 1.66
Intel PIII Coppermine 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Results for Mixed Precision Iterative
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

8

15

Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision)
plus 64 bit refinement produces 64 bit accuracy

94.8 2.92 276.1000
86.3 2.33 201. 900
77.3 1.83 141. 800
68.7 1.38 94.9 700
59.0 1.01 60.1 600
49.7 0.69 34.7 500
40.4 0.44 17.8400
30.5 0.24 7.61 300
20.9 0.10 2.27 200
9.5 0.03 0.29 100

Speedup time (s) time (s)

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference
implementation of
the
quad precision
BLAS

Accuracy: 10-32

No more than 3
steps of iterative
refinement are
needed.

16

Refinement Technique Using Refinement Technique Using
Single/Double PrecisionSingle/Double Precision

♦ Linear Systems
LU (dense and sparse)
Cholesky
QR Factorization

♦ Eigenvalue
Symmetric eigenvalue problem
SVD
Same idea as with dense systems,

Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the lower precision to solve systems and use higher
precision to calculate residual with original data.
O(n2) per value/vector

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.

9

17

Sparse Direct Solver and Iterative RefinementSparse Direct Solver and Iterative Refinement

G64
Si10H16

airfoil_2d

bcsstk39

blockqp1

c-71
cavity26

dawson5

epb3
finan512

heart1
kivap004

kivap006

mult_dcop_01

nasasrb

nemeth26

qa8fk
rma10

torso2
venkat01

wathen120

Ite ra tiv e R e fin e me n t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tim Davis's Collection, n=100K - 3M

Speedup Over DP
Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

18

Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
♦ Outer/Inner Iteration

♦ Outer iteration in 64 bit floating point and
inner iteration in 32 bit floating point

Inner iteration:
In 32 bit floating pointOuter iterations using 64 bit floating point

10

19

2

Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers

0

0.25

0.5

0.75

1

1.25

11,142 25,980 79,275 230,793 602,091

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

11,142 25,980 79,275 230,793 602,091

CG
PCG
GMRES
 PGMRES

6,021 18,000 39,000 120,000 240,000

Matrix size

Condition number

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r0 residual reduction (10-12)

Speedups for mixed precision
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)
(Higher is better)

Iterations for mixed precision
SP/DP iterative methods vs DP/DP
(Lower is better)

2
2

2

20

What about the Cell?What about the Cell?

♦ Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6

Achieved 10 Gflop/s SGEMM
♦ 8 SPUs

204.8 Gflop/s peak!
The catch is that this is for 32 bit floating
point; (Single Precision SP)
And 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!!

Divide SP peak by 14; factor of 2 because of DP
and 7 because of latency issues

11

Moving Data Around on the Cell

256 KB

Worst case memory bound operations (no reuse of data)
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B)

Injection bandwidth

22

Cell Software for Iterative RefinementCell Software for Iterative Refinement

♦ LAPACK FORTRAN 77 DSGESV at the top
LINPACK-SP (from IBM)

SGETRF
SGETRS

♦ Additional SPE-parallel code
Conversion from standard to block layout
Conversion from single to double precision
DLANGE – matrix norm (DP)
DGEMM – matrix multiply (DP)

♦ PPU auxiliary Level 1 BLAS (DAXPY, DLACPY,
DNRM2)

♦ Block data layout (64x64 SP, 32x32 DP)

12

23

32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦Iterative refinement for dense
systems, Ax = b.

24

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)

SP Ax=b IBM

DP Peak (15 Gflop/s)

DP Ax=b IBM

.30 secs

3.9 secs

8 SGEMM (Embarrassingly Parallel)

13

25

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)
SP Ax=b IBM
DSGESV
DP Peak (15 Gflop/s)
DP Ax=b IBM

.30 secs

.47 secs

3.9 secs

8.3X

8 SGEMM (Embarrassingly Parallel)

26

LINPACK Benchmark LINPACK Benchmark
Potential RealizedPotential Realized

14

27

A

C

A

B C

T TT

T = T – AAT

SYRK

T = LLT

POTRF
C = C – BAT

GEMM
C = C \ T

TRSM

LAPACK Cholesky FactorizationLAPACK Cholesky Factorization

SPE Parallelization:

Every operation chopped into 64x64 tiles,

1, 2 or 3 tiles on input side,

1 tile on output side.

28

A

C

A

B C

T TT

Cholesky FactorizationCholesky Factorization

T = T – AAT

SYRK

T = LLT

POTRF
C = C – BAT

GEMM
C = C \ T

TRSM

Poor performance on many-core architectures because of
sequential bottleneck and fork join parallelism

15

29

1

2

3

4

6

7 1

5

8

Pipelining Loop IterationsPipelining Loop Iterations

1D Work Partitioning
Facilitates data reuse,
Prevents bus saturation.

2D Dependency Tracking
Facilitates loop pipelining,
Eliminates load imbalance.

30

Pipelining & Double BufferingPipelining & Double Buffering

Result:
Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls

(no waiting for data).

Pipelining:
Between loop iterations.

Double Buffering:
Within BLAS,
Between BLAS,
Between loop iterations.

16

31

IBM Cell 3.2 GHz, Ax = b, IBM Cell 3.2 GHz, Ax = b, A Sym Pos DefA Sym Pos Def

0

50

100

150

200

250

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)

SP Cholesky

DP Peak (15 Gflop/s)

.30 secs

.47 secs

3.9 secs

8 SGEMM (Embarrassingly Parallel)

32

IBM Cell 3.2 GHz, Ax = b, IBM Cell 3.2 GHz, Ax = b, A Sym Pos DefA Sym Pos Def

0

50

100

150

200

250

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (204 Gflop/s)

SP Cholesky

DSPOSV

DP Peak (15 Gflop/s)

.30 secs

.47 secs

3.9 secs

8 SGEMM (Embarrassingly Parallel)

17

33

What About the PS3?What About the PS3?
♦ Sony Playstation 3, release:

November 11th, 2006 (Japan),
November 17th, 2006 (North America) and
March 2007 (Europe).

♦ The main elements to the Playstation 3 are a 7 SPE version of IBM's
Cell processor and nVidia's Reality Synthesizer GPU.

Note that the Cell processor actually contains 8 SPEs, but for yield
reasons Sony have decided to disable one of the cores.

♦ Each SPE has 256KB of local memory
♦ Seven SPEs, of which one is dedicated to OS tasks (the remaining 6

can be used as floating point units).
Now we are down to 6 SPE’s

♦ PS3 connects to 256MB of Rambus XDR memory clocked at 3.2Ghz,
giving a memory bandwidth of 25.6 GB/s.

♦ The PPE features 64KB L1 cache, 512KB L2 cache and also features
Symmetric Multithreading (i.e. two threads can run concurrently
rather like Intel's Hyperthreading).

♦ The PS3 additionally supports a removable hard disk, which will be
available in either 60GB (Premium model) or 20GB (Basic model) sizes
- although any size drive can be inserted

34

Sony Sony PlaystationPlaystation 33

♦$600 + a monitor for HDTV output

18

35

Price ComparisonPrice Comparison

♦ From IBM or
Mercury

2 Cell chip
Each w/8 SPEs

512 MB/Cell
~$17K
Some SW

♦ From WAL*MART
PS3

1 Cell chip
w/6 SPEs

256 MB/PS3
$600
Download SW
Dual boot

36

PlayStation 3 LU CodesPlayStation 3 LU Codes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DP Peak (10.9 Gflop/s)

8 SGEMM (Embarrassingly Parallel)

19

37

PlayStation 3 LU CodesPlayStation 3 LU Codes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DSGESV

DP Peak (10.9 Gflop/s)

8 SGEMM (Embarrassingly Parallel)

38

PlayStation 3 PlayStation 3 CholeskyCholesky CodesCodes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DP Peak (10.9 Gflop/s)

8 SGEMM (Embarrassingly Parallel)

20

39

PlayStation 3 PlayStation 3 CholeskyCholesky CodesCodes

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

Matrix Size

G
Fl

op
/s

SP Peak (153.6 Gflop/s)

SP Ax=b IBM

DSPOSV

DP Peak (10.9 Gflop/s)

8 SGEMM (Embarrassingly Parallel)

A Sparse Matrix on the Cell
One lucky case:

The Good:
•stride-1 access on the source
vector

•easy vectorization
• regular memory access pattern
•big chunks of data may be
fetched at once

The Bad:
•still no surface to volume as in
matrix multiply

For Performance: Upper bound is bus speed if no
reuse.

21

PCG on the Cell: Grouping
Operations (ops/data movement)

end
econvergenc check

2,...=ifor
econvergenc check

/

/

/

1

1101

1

1101

1

1

1
1

1

1101

1

1101

11

11

1

1
1

00

r=normr
qαr=r
x=normx
zα+x=x
q,pρ=α

Ap=q
βp+z=p
ρρ=β

z,r=ρ
Mr=z

r=normr
qαr=r
x=normx
zα+x=x
qz,ρ=α

Az=q
zr,=ρ

rM=z

Axb=r

iiii

ii

iii

ii

iii

ii

−

−

−

−

−

−
−

− 9n/7n=1.28

8n/4n=2.00

4n/3n=1.33

2n/3n=0.66

3n/3n=1.00

5.842 Gflops = 18 GB/s

10.653 Gflops = 20 GB/s

7.004 Gflops = 21 GB/s

5.250 Gflops = 21 GB/s

3.503 Gflops = 21 GB/s

PCG on the Cell: results

Code on the Woodcrest (2 dual core) is
blocked, unrolled, vectorized and OpenMP
parallelized.

Lower is better

22

43

♦ LAPACK 3.1.1 has a General Solver GE (DSGESV)
♦ For the next release:

GB: General Band Matrix
PB: Symmetric Positive Definite Band Matrix
PO: Symmetric Positive Definite Matrix (Full Storage)
SY: Symmetric Matrix (Full Storage)

♦ After Symmetric packed matrices:
PP: Symmetric Positive Definite Matrix (Packed Storage)
SP: Symmetric Matrix (Packed Storage)

♦ Probably not worth doing (O(n) ops for factor and
solve)

GT: General Tridiagonal Matrix
PT: Symmetric Positive Definite Tridiagonal Matrix

In LAPACK TodayIn LAPACK Today

44

Intriguing PotentialIntriguing Potential
♦ Exploit lower precision as much as possible

Payoff in performance
Faster floating point
Less data to move

♦ Automatically switch between SP and DP to
match the desired accuracy

Compute solution in SP and then a correction to
the solution in DP

♦ Potential for GPU, FPGA, special purpose
processors

What about 16 bit floating point?
128 bit floating point?

♦ Linear systems and Eigenvalue problems

23

45

1.2 TB/s memory BW

http://www.pcper.com/article.php?aid=302

46

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Cores Per Processor
Chip

0

100

200

300

400

500

600

Cores Per Processor Chip Hardware Threads Per Chip

CPU Desktop Trends 2004CPU Desktop Trends 2004--20112011
♦ Relative processing power will continue to double

every 18 months
♦ 5 years from now: 128 cores/chip w/512 logical

processes per chip

24

47

Challenges Resulting From Challenges Resulting From MulticoreMulticore
♦ Aggravated memory wall

Memory bandwidth
to get data out of memory banks
to get data into multi-core processors

Memory latency
Fragments L3 cache

♦ Pins become strangle point
Rate of pin growth projected to slow and flatten
Rate of bandwidth per pin projected to grow slowly

♦ Relies on effective exploitation of
multiple-thread parallelism

Need for parallel computing model and parallel
programming model

♦ Requires mechanisms for efficient inter-processor
coordination

Synchronization
Mutual exclusion
Context switching

48

What will the chip will look like?What will the chip will look like?
Cache

Processor

Cache

Core Core

Cache

Core Core
Cache

Core Core
. . .

Shared
Cache

Core

Local
Cache

25

49

What will the chip will look likeWhat will the chip will look like
Cache

Processor

Cache

Core Core

Shared
Cache

Core

Local
Cache

Cache

Core Core
Cache

Core Core
. . .

50

What will the chip will look likeWhat will the chip will look like
Cache

Processor

Cache

Core Core

Shared
Cache

Core

Local
Cache

Cache

Core Core
Cache

Core Core
. . .

26

51

Major Changes to SoftwareMajor Changes to Software
♦Must rethink the design of our
software

Another disruptive technology
Similar to what happened with cluster
computing and message passing

Rethink and rewrite the applications,
algorithms, and software

♦Numerical libraries for example will
change

For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

52

Future Large Systems, Say in 5 YearsFuture Large Systems, Say in 5 Years
♦ 128 cores per socket

♦ 32 sockets per node

♦ 128 nodes per system

♦ System = 128*32*128
= 524,288 Cores!

♦ And by the way, its 4
threads of exec per core

♦ That’s about 2M threads to
manage

27

53

Constantly Evolving Constantly Evolving -- Hybrid DesignHybrid Design
♦ More and more High Performance Computers

will be built on a Hybrid Desing

♦ Cluster of Cluster systems
Multicore nodes in a cluster

♦ Nodes augmented with accelerators
ClearSpeed, GPUs, Cell

♦ Japanese 10 PFlop/s “Life Simulator”
Vector+Scalar+Grape:

Theoretical peak performance: >1-2 PetaFlops from
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

♦ LANL’s Roadrunner
Multicore + specialized accelerator boards

54

Real Crisis With HPC Is With The Real Crisis With HPC Is With The
Software Software

♦ Programming is stuck
Arguably hasn’t changed since the 60’s

♦ It’s time for a change
Complexity is rising dramatically

highly parallel and distributed systems
From 10 to 100 to 1000 to 10000 to 100000 of processors!!

multidisciplinary applications
♦ A supercomputer application and software are usually

much more long-lived than a hardware
Hardware life typically five years at most.
Fortran and C are the main programming models

♦ Software is a major cost component of modern
technologies.

The tradition in HPC system procurement is to assume that
the software is free.

28

55

Collaborators / SupportCollaborators / Support
♦U Tennessee,

Knoxville
Alfredo Buttari,
Julien Langou,
Julie Langou,
Piotr Luszczek,
Jakub Kurzak
Stan Tomov

Software and papers available: http://icl.cs.utk.edu/iter-ref/

