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With All the Hype on the PS3With All the Hype on the PS3
We Became Interested We Became Interested 

♦ The PlayStation 3's CPU based on a "Cell“ processor
♦ Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing 

unit, SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from 
the others. 

4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!! 

Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues
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32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
♦ A long time ago 32 bit floating point was 

used
Still used in scientific apps but limited

♦ Most apps use 64 bit floating point
Accumulation of round off error

A 10 TFlop/s computer running for 4 hours performs 
> 1 Exaflop (1018) ops. 

Ill conditioned problems
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

♦ Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.
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Idea Something Like ThisIdea Something Like This……
♦ Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

♦ Correct or update the solution with 
selective use of 64 bit floating point to 
provide a refined results

♦ Intuitively: 
Compute a 32 bit result, 
Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with 
the correction using high precision. 
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32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦ Iterative refinement for dense systems,   

Ax = b, can work this way.

Wilkinson, Moler, Stewart, & Higham provide error bound 
for SP fl pt results when using DP fl pt.
It can be shown that using this approach we can compute 
the solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)
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In In MatlabMatlab on My Laptop!on My Laptop!
♦ Matlab has the ability to perform 32 bit 

floating point for some computations
Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sb=single(b);
[sl,su,sp]=lu(sa);                                                      Most of the work: O(n3)
sx=su\(sl\(sp*sb)); x=double(sx); r=b-a*x;                                           O(n2)
i=0;
while(norm(r)>res1),

i=i+1;
sr = single(r);
sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x;                    O(n2)

if (i==30), break; end;

♦ Bulk of work, O(n3), in “single” precision
♦ Refinement, O(n2), in “double” precision

Computing the correction to the SP results in DP and 
adding it to the SP results in DP.
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

Intel Pentium M (T2500 2 GHz)

Ax = b

1.4 GFlop/s!
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In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

Another Look at Iterative RefinementAnother Look at Iterative Refinement
♦ On a Pentium; using SSE2, single precision can perform 4 floating 

point operations per cycle and in double precision 2 floating point 
operations per cycle.

♦ In addition there is reduced memory traffic (factor on sp data)

A\b; Double Precision

A\b; Single Precision w/iterative refinement
With same accuracy as DP

2 X speedup Matlab
on my laptop!

Intel Pentium M (T2500 2 GHz)

Ax = b

3 GFlop/s!!

12.8 sec

6.1 sec
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On the Way to Understanding How to Use On the Way to Understanding How to Use 
the Cell Something Else Happened the Cell Something Else Happened ……

♦ Realized have the 
similar situation on 
our commodity 
processors.

That is, SP is 2X 
as fast as DP on 
many systems

♦ The Intel Pentium 
and AMD Opteron
have SSE2

2 flops/cycle DP
4 flops/cycle SP

♦ IBM PowerPC has 
AltiVec

8 flops/cycle SP
4 flops/cycle DP

No DP on AltiVec

1.83  9.98 18.28 PowerPC G5                 
(2.7GHz) AltiVec

1.97  2.48 4.89 AMD Opteron 240 
(1.4GHz) Goto BLAS 

1.98  5.61 11.09 Pentium IV Prescott 
(3.4GHz) Goto BLAS 

2.05  5.15 10.54 Pentium Xeon Prescott 
(3.2GHz) Goto BLAS 

1.98  3.88 7.68 Pentium Xeon Northwood 
(2.4GHz) Goto BLAS 

2.01  0.79 1.59 Pentium III CopperMine
(0.9GHz) Goto BLAS 

2.13  0.46 0.98 Pentium III Katmai 
(0.6GHz) Goto BLAS 

Speedup
SP/DP 

DGEMM
(GFlop/s) 

SGEMM
(GFlop/s) 

Processor and BLAS 
Library 

Performance of single precision and double precision 
matrix multiply (SGEMM and DGEMM) with n=m=k=1000
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Speedups for Ax = b Speedups for Ax = b (Ratio of Times)(Ratio of Times)

71.321.571.684000Cray X1 (libsci)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

41.581.791.453000Sun UltraSPARC IIe (Sunperf) 

51.531.931.984000AMD Opteron (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.922.242.103500Intel Pentium III Coppermine (Goto)

# iterDP Solve
/Iter Ref

DP Solve
/SP Solve

DGEMM
/SGEMM

nArchitecture (BLAS)

61.831.903200064AMD Opteron (Goto – OpenMPI MX)

61.791.852262732AMD Opteron (Goto – OpenMPI MX)

# 
iter

DP Solve
/Iter Ref

DP Solve
/SP Solve

n# 
procs

Architecture (BLAS-MPI)
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AMD AMD OpteronOpteron Processor 240 (1.4GHz), Processor 240 (1.4GHz), 
GotoGoto BLAS (1 thread)BLAS (1 thread)
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AMD AMD OpteronOpteron Processor 240 (1.4GHz), Processor 240 (1.4GHz), 
GotoGoto BLAS (1 thread)BLAS (1 thread)
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Bottom LineBottom Line

♦ Single precision is 
faster than DP 
because:

Higher parallelism 
within vector units

4 ops/cycle 
(usually) instead 
of 2 ops/cycle

Reduced data 
motion 

32 bit data 
instead of 64 bit 
data

Higher locality in 
cache

More data items 
in cache

Size SGEMM/
DGEMM

Size SGEMV/
DGEMV

AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-IIe 3000 1.64 5000 1.66
Intel PIII Coppermine 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)



8

15

Quadruple PrecisionQuadruple Precision

♦ Variable precision factorization (with say < 32 bit precision) 
plus 64 bit refinement produces 64 bit accuracy

94.8  2.92 276.1000 
86.3  2.33 201. 900 
77.3  1.83 141. 800 
68.7  1.38 94.9 700 
59.0  1.01 60.1 600 
49.7  0.69 34.7 500 
40.4  0.44 17.8400 
30.5  0.24 7.61 300 
20.9  0.10 2.27 200 
9.5  0.03 0.29 100 

Speedup  time (s) time (s) 

Iter. Refine.
DP to QP

Quad Precision
Ax = b

n Intel Xeon 3.2 GHz

Reference 
implementation of 
the 
quad precision 
BLAS

Accuracy: 10-32

No more than 3 
steps of iterative 
refinement are 
needed.
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Refinement Technique Using Refinement Technique Using 
Single/Double PrecisionSingle/Double Precision

♦ Linear Systems 
LU (dense and sparse)
Cholesky
QR Factorization

♦ Eigenvalue
Symmetric eigenvalue problem
SVD
Same idea as with dense systems, 

Reduce to tridiagonal/bi-diagonal in lower precision, 
retain original data and improve with iterative technique 
using the lower precision to solve systems and use higher 
precision to calculate residual with original data.
O(n2) per value/vector

♦ Iterative Linear System
Relaxed GMRES
Inner/outer iteration scheme

See webpage for tech report which discusses this.
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Sparse Direct Solver and Iterative RefinementSparse Direct Solver and Iterative Refinement

G64
Si10H16

airfoil_2d

bcsstk39

blockqp1

c-71
cavity26

dawson5

epb3
finan512

heart1
kivap004

kivap006

mult_dcop_01

nasasrb

nemeth26

qa8fk
rma10

torso2
venkat01

wathen120

Ite ra tiv e  R e fin e me n t
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2

Tim Davis's Collection, n=100K - 3M

Speedup Over DP
Opteron w/Intel compiler Iterative Refinement

Single Precision

MUMPS package based on multifrontal approach which 
generates small dense matrix multiplies
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Sparse Iterative Methods (PCG)Sparse Iterative Methods (PCG)
♦ Outer/Inner Iteration

♦ Outer iteration in 64 bit floating point and 
inner iteration in 32 bit floating point

Inner iteration:
In 32 bit floating pointOuter iterations using 64 bit floating point
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Mixed Precision Computations forMixed Precision Computations for
Sparse Inner/OuterSparse Inner/Outer--type Iterative Solverstype Iterative Solvers
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2.25

2.5

11,142 25,980 79,275 230,793 602,091

CG
PCG
GMRES
 PGMRES 

6,021        18,000        39,000       120,000     240,000

Matrix size

Condition number

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r0 residual reduction (10-12)

Speedups for mixed precision 
Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG2, GMRES2, PCG2, and PGMRES2 with diagonal prec.)
(Higher is better)

Iterations for mixed precision 
SP/DP iterative methods vs DP/DP
(Lower is better)

2
2

2

20

What about the Cell?What about the Cell?

♦ Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6

Achieved 10 Gflop/s SGEMM
♦ 8 SPUs

204.8 Gflop/s peak!
The catch is that this is for 32 bit floating 
point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!! 

Divide SP peak by 14; factor of 2 because of DP 
and 7 because of latency issues



11

Moving Data Around on the Cell

256 KB

Worst case memory bound operations (no reuse of data) 
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B)

Injection bandwidth

22

Cell Software for Iterative RefinementCell Software for Iterative Refinement

♦ LAPACK FORTRAN 77 DSGESV at the top
LINPACK-SP (from IBM)

SGETRF
SGETRS

♦ Additional SPE-parallel code
Conversion from standard to block layout
Conversion from single to double precision
DLANGE – matrix norm (DP)
DGEMM – matrix multiply (DP)

♦ PPU auxiliary Level 1 BLAS (DAXPY, DLACPY, 
DNRM2)

♦ Block data layout (64x64 SP, 32x32 DP)
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32 and 64 Bit Floating Point Arithmetic32 and 64 Bit Floating Point Arithmetic
♦Iterative refinement for dense 
systems,   Ax = b.

24

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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8 SGEMM (Embarrassingly Parallel)
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LINPACK Benchmark  LINPACK Benchmark  
Potential RealizedPotential Realized
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A

C

A

B C

T TT

T = T – AAT

SYRK

T = LLT

POTRF
C = C – BAT

GEMM
C = C \ T

TRSM

LAPACK Cholesky FactorizationLAPACK Cholesky Factorization

SPE Parallelization:

Every operation chopped into 64x64 tiles,

1, 2 or 3 tiles on input side,

1 tile on output side.

28

A

C

A

B C

T TT

Cholesky FactorizationCholesky Factorization

T = T – AAT

SYRK

T = LLT

POTRF
C = C – BAT

GEMM
C = C \ T

TRSM

Poor performance on many-core architectures because of 
sequential bottleneck and fork join parallelism
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Pipelining Loop IterationsPipelining Loop Iterations

1D Work Partitioning
Facilitates data reuse,
Prevents bus saturation.

2D Dependency Tracking
Facilitates loop pipelining,
Eliminates load imbalance.

30

Pipelining & Double BufferingPipelining & Double Buffering

Result:
Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls

(no waiting for data).

Pipelining:
Between loop iterations.

Double Buffering:
Within BLAS,
Between BLAS,
Between loop iterations.
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IBM Cell 3.2 GHz, Ax = b, IBM Cell 3.2 GHz, Ax = b, A Sym Pos DefA Sym Pos Def
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IBM Cell 3.2 GHz, Ax = b, IBM Cell 3.2 GHz, Ax = b, A Sym Pos DefA Sym Pos Def
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What About the PS3?What About the PS3?
♦ Sony Playstation 3, release:

November 11th, 2006 (Japan), 
November 17th, 2006 (North America) and 
March 2007 (Europe).

♦ The main elements to the Playstation 3 are a 7 SPE version of IBM's 
Cell processor and nVidia's Reality Synthesizer GPU. 

Note that the Cell processor actually contains 8 SPEs, but for yield 
reasons Sony have decided to disable one of the cores. 

♦ Each SPE has 256KB of local memory 
♦ Seven SPEs, of which one is dedicated to OS tasks (the remaining 6 

can be used as floating point units). 
Now we are down to 6 SPE’s

♦ PS3 connects to 256MB of Rambus XDR memory clocked at 3.2Ghz, 
giving a memory bandwidth of 25.6 GB/s.

♦ The PPE features 64KB L1 cache, 512KB L2 cache and also features
Symmetric Multithreading (i.e. two threads can run concurrently 
rather like Intel's Hyperthreading). 

♦ The PS3 additionally supports a removable hard disk, which will be 
available in either 60GB (Premium model) or 20GB (Basic model) sizes 
- although any size drive can be inserted

34

Sony Sony PlaystationPlaystation 33

♦$600 + a monitor for HDTV output
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Price ComparisonPrice Comparison

♦ From IBM or 
Mercury

2 Cell chip
Each w/8 SPEs

512 MB/Cell
~$17K
Some SW

♦ From WAL*MART 
PS3

1 Cell chip
w/6 SPEs

256 MB/PS3
$600
Download SW
Dual boot
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PlayStation 3 LU CodesPlayStation 3 LU Codes
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PlayStation 3 LU CodesPlayStation 3 LU Codes
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PlayStation 3 PlayStation 3 CholeskyCholesky CodesCodes
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PlayStation 3 PlayStation 3 CholeskyCholesky CodesCodes
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A Sparse Matrix on the Cell
One lucky case:

The Good:
•stride-1 access on the source 
vector

•easy vectorization
• regular memory access pattern
•big chunks of data may be 
fetched at once

The Bad:
•still no surface to volume as in 
matrix multiply

For Performance: Upper bound is bus speed if no 
reuse.
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PCG on the Cell: Grouping 
Operations (ops/data movement)

end
econvergenc check

2,...=ifor 
econvergenc check

    
    
    
    
    

/    
    
    

/    
    
    

/

1

1101

1
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1

1

1
1

1
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1
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11
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1

1
1

00

r=normr
qαr=r
x=normx
zα+x=x
q,pρ=α

Ap=q
βp+z=p
ρρ=β

z,r=ρ
Mr=z

r=normr
qαr=r
x=normx
zα+x=x
qz,ρ=α

Az=q
zr,=ρ

rM=z

Axb=r

iiii

ii

iii

ii

iii

ii

−

−

−

−

−

−
−

− 9n/7n=1.28

8n/4n=2.00

4n/3n=1.33

2n/3n=0.66

3n/3n=1.00

5.842 Gflops  = 18 GB/s

10.653 Gflops = 20 GB/s

7.004 Gflops  = 21 GB/s

5.250 Gflops  = 21 GB/s

3.503 Gflops  = 21 GB/s

PCG on the Cell: results

Code on the Woodcrest (2 dual core) is 
blocked, unrolled, vectorized and OpenMP 
parallelized. 

Lower is better
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♦ LAPACK 3.1.1 has a General Solver GE (DSGESV)
♦ For the next release:

GB: General Band Matrix
PB: Symmetric Positive Definite Band Matrix
PO: Symmetric Positive Definite Matrix (Full Storage)
SY: Symmetric Matrix (Full Storage)

♦ After Symmetric packed matrices:
PP: Symmetric Positive Definite Matrix (Packed Storage)
SP: Symmetric Matrix (Packed Storage)

♦ Probably not worth doing (O(n) ops for factor and 
solve)

GT: General Tridiagonal Matrix
PT: Symmetric Positive Definite Tridiagonal Matrix 

In LAPACK TodayIn LAPACK Today
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Intriguing PotentialIntriguing Potential
♦ Exploit lower precision as much as possible

Payoff in performance
Faster floating point 
Less data to move

♦ Automatically switch between SP and DP to 
match the desired accuracy

Compute solution in SP and then a correction to 
the solution in DP

♦ Potential for GPU, FPGA, special purpose 
processors

What about 16 bit floating point?
128 bit floating point?

♦ Linear systems and Eigenvalue problems
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1.2 TB/s memory BW 

http://www.pcper.com/article.php?aid=302
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CPU Desktop Trends 2004CPU Desktop Trends 2004--20112011
♦ Relative processing power will continue to double 

every 18 months
♦ 5 years from now: 128 cores/chip w/512 logical 

processes per chip
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Challenges Resulting From Challenges Resulting From MulticoreMulticore
♦ Aggravated memory wall

Memory bandwidth
to get data out of memory banks
to get data into multi-core processors

Memory latency
Fragments L3 cache

♦ Pins become strangle point
Rate of pin growth projected to slow and flatten
Rate of bandwidth per pin projected to grow slowly

♦ Relies on effective exploitation of                 
multiple-thread parallelism

Need for parallel computing model and parallel 
programming model

♦ Requires mechanisms for efficient inter-processor 
coordination

Synchronization
Mutual exclusion
Context switching

48

What will the chip will look like?What will the chip will look like?
Cache

Processor

Cache

Core Core

Cache

Core Core
Cache

Core Core
. . .

Shared
Cache

Core

Local
Cache



25

49

What will the chip will look likeWhat will the chip will look like
Cache

Processor

Cache

Core Core

Shared
Cache

Core

Local
Cache

Cache

Core Core
Cache

Core Core
. . .

50

What will the chip will look likeWhat will the chip will look like
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Major Changes to SoftwareMajor Changes to Software
♦Must rethink the design of our 
software

Another disruptive technology
Similar to what happened with cluster 
computing and message passing

Rethink and rewrite the applications, 
algorithms, and software

♦Numerical libraries for example will 
change

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
to accommodate this

52

Future Large Systems, Say in 5 YearsFuture Large Systems, Say in 5 Years
♦ 128 cores per socket

♦ 32 sockets per node

♦ 128 nodes per system

♦ System = 128*32*128
= 524,288 Cores!

♦ And by the way, its 4 
threads of exec per core

♦ That’s about 2M threads to 
manage 
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Constantly Evolving Constantly Evolving -- Hybrid DesignHybrid Design
♦ More and more High Performance Computers 

will be built on a Hybrid Desing

♦ Cluster of Cluster systems
Multicore nodes in a cluster

♦ Nodes augmented with accelerators
ClearSpeed, GPUs, Cell

♦ Japanese 10 PFlop/s “Life Simulator”
Vector+Scalar+Grape: 

Theoretical peak performance: >1-2 PetaFlops from 
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

♦ LANL’s Roadrunner
Multicore + specialized accelerator boards

54

Real Crisis With HPC Is With The Real Crisis With HPC Is With The 
Software Software 

♦ Programming is stuck
Arguably hasn’t changed since the 60’s

♦ It’s time for a change
Complexity is rising dramatically

highly parallel and distributed systems
From 10 to 100 to 1000 to 10000 to 100000 of processors!!

multidisciplinary applications
♦ A supercomputer application and software are usually 

much more long-lived than a hardware
Hardware life typically five years at most.
Fortran and C are the main programming models 

♦ Software is a major cost component of modern 
technologies.

The tradition in HPC system procurement is to assume that 
the software is free.
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Collaborators / SupportCollaborators / Support
♦U Tennessee, 

Knoxville
Alfredo Buttari, 
Julien Langou,        
Julie Langou,          
Piotr Luszczek, 
Jakub Kurzak
Stan Tomov

Software and papers available: http://icl.cs.utk.edu/iter-ref/


