I‘l! ¥ l‘ I Computer Science and Mathematics Division Seminar

Exploiting the Performance of 32-bit
Floating-Point
Arithmetic in Obtaining 64-bit Accuracy
(Computing on Games)

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

1/25/2007 1

. With All the Hype on the PS3
| We Became Interestec

+ The PlayStation 3's CPU based on a "Cell* processor
+ Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing
unit, SPE: SPU + DMA engine)
» An SPE is a self contained vector processor which acts independently from
the others.
> 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

» 204.8 Gflop/s peak!
» The catch is that this is for 32 bit floating point: (Single Precision SP)

» And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!

» Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues
Cell APU Architecture

Top-level block diagram of the Cell Broadband Engine (CBE)

a

]

SPE

(spAs/se1kq) snq peuuosisuy justis|]

1t

N

32 or 64 bit Floating Point Precision?

+ A long time ago 32 bit floating point was
used

> Still used in scientific apps but limited
¢ Most apps use 64 bit floating point

> Accumulation of round off error

» A 10 TFlop/s computer running for 4 hours performs
> 1 Exaflop (10'8) ops.

> Ill conditioned problems
> IEEE SP exponent bits too few (8 bits, 10:38)
> Critical sections need higher precision
> Sometimes need extended precision (128 bit fl pt)
> However some can get by with 32 bit fl pt in
some parts
+ Mixed precision a possibility
> Approximate in lower precision and then refine
or improve solution to high precision.

3

Idea Something Like This...

+ Exploit 32 bit floating point as much as
possible.

> Especially for the bulk of the computation
¢ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results
¢+ Intuitively:
> Compute a 32 bit result,

> Calculate a correction to 32 bit result using
selected higher precision and,

> Perform the update of the 32 bit results with
the correction using high precision.

N
“ 32 and 64 Bit Floating Point Arithmetic

+ Iterative refinement for dense systems,
Ax = b_can work this way.

L U =1u(A)

% = L\{U\b)

r=b-Ax

WHILE || r || not small enough

z = L\(U\r)

x=x+z
r=b-Ax
END

> Wilkinson, Moler, Stewart, & Higham provide error bound
for SP fl pt results when using DP fl pt.

> It can be shown that using this approach we can compute
the solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp: O(108)

N

< In Matlab on My Laptop!

+ Matlab has the ability to perform 32 bit
floating point for some computations
> Matlab uses LAPACK and MKL BLAS underneath.

sa=single(a); sh=single(b);

[sl,su,spl=lu(sa); Most of the work: O(n3)
sx=su\(sl\(sp*sh)); x=double(sx); r=b-a*x; Oo(n3)
i=0;
while(norm(r)>res1),

i=i+1;

sr = single(r);

sx1=su\(sl\(sp*sr)); x1=double(sx1); x=x1+x; r=b-a*x; Oo(n?)

if (i==30), break; end;

¢ Bulk of work, O(n3), in “single” precision
+ Refinement, O(n?), in “"double” precision

> Computing the correction to the SP results in DP and
adding it to the SP results in DP.

N
“* Another Look at Iterative Refinement

¢ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (factor on sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b

3.5 . .
Intel Pentium M (T2500 2 GHz)
3L 4
2.5¢ E
2+ i
@
Q.
o .
5 4 A\b; Double Precision | 1.4 GFlop/s!
i - —
0.5F / E
{
ol ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000
X = Size of Problem

N
“* Another Look at Iterative Refinement

+ On a Pentium; using SSE2, single precision can perform 4 floating
point operations per cycle and in double precision 2 floating point
operations per cycle.

+ In addition there is reduced memory traffic (factor on sp data)

In Matlab Comparison of 32 bit w/iterative refinement and 64 Bit Computation for Ax=b
3.5 T T T

Intel PentiL.Jr‘n M (T2500 é GHz) i X . 6.1
.| A\b; Single Precision wiiterative refinement -1 sec
With same accuracy as DP 3G FIOp/S”
2.5 4
' 2r 1
® as A\bj,?flit?lf,lirefygrlfff 412.8 sec
1 / - i
/-
wsl/ 2 X speedup Matlab]
on my laptop!
00 560 10‘00 15‘00 20‘00 25‘00 3000

X =b Size of Problem

£ On the Way to Understanding How to Use
the Cell Something Else Happened ...
¢ R.ea.'lized .{‘0":. the Processor and BLAS | SGEMM | DGEMM | Speedup
our commodity Liorary | (GFlopis) | (GFlopls) | SPIDP
processors. Pentium I11 Katmai 0.98 0.46 213
> Thc}f is, SPDi;, 2X (0.6GHz) Goto BLAS
as fast as On pentium 111 CopperMine 1.59 0.79 2.01
many systems (0.9GHz) Goto BLAS ' ' '
. Pentium Xeon Northwood 7.68 3.88 1.98
¢ Ir’\‘g }ﬂgl g;::';’o"r: (2.4GHz) Goto BLAS
have SSE2 Pentium Xeon Prescott 10.54 5.15 2.05
> 2 flops/cycle DP (3:2GHz) Goto BLAS
> 4 flops/cycle SP Pentium IV Prescott 11.09 5.61 1.98
(3.4GHz) Goto BLAS
¢+ IBM PowerPC has AMD Opteron 240 4.89 2.48 1.97
AltiVec (1.4GHz) Goto BLAS
> 8 flops/cycle SP PowerPC G5 18.28 9.98 1.83
> 4 flops/cycle DP (2.7GHz) AltiVec
> No DP on AltiVec .

Performance of single precision and double precision
matrix multiply (SGEMM and DGEMM) with n=m=k=1000

¢ Speedups for Ax

L

= b (Ratio of Times)

Architecture (BLAS) n DGEMM | DP Solve | DP Solve | #iter
ISGEMM | /SP Solve | /lIter Ref

Intel Pentium 111 Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2.99 205 1.24 5
Cray X1 (libsci) 4000 1.68 157 1.32 7
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 113 0.91 4
Architecture (BLAS-MPI) # n DP Solve DP Solve #

procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMP1 MX) 64 32000 1.90 1.83 6 B

¢ AMD Opteron Processor 240 (1.4GHz),
~_Goto BLAS (1 thread)

o w
100 oo s >
DGETRF —— DGESV
90 —+ SGETRF
& 80
I.I_.I 70
8 60
Y W_‘—.““‘_‘_/‘i
S s0
z SGETRF
40
S
g =0
20
10
o . ; ; ;
500 1500 2500 3500 4500

size of the matrix

¢ AMD Opteron Processor 240 (1.4GHz),
" Goto BLAS (1 thread)

110

M —— DGESV
100 22 2 -
90 DGETRF —— SGETRF
L g0 _/.\"L
E_j 20 e —— DGEMV
o ‘\-\.\Mi;(ed Precision Solve —— EXTRA
A 60
5 50 WH‘H—A—A“A“‘_‘_/A*
= SGETRF
g 4o
g 30
o e
10 \“l.. Ko
o . : . : '
500 1500 2500 3500 4500

size of the matrix

N

<= Bottom Line

+ Single precision is
faster than DP
because:

> Higher parallelism
within vector units
> 4 ops/cycle
(usually) instead
of 2 ops/cycle
> Reduced data
motion
> 32 bit data
instead of 64 bit
data
> Higher locality in
cache

> More data items
in cache

Size SEELY Size =82

DGEMM DGEMV
AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-lle | 3000 1.64 5000 1.66
Intel Plll Coppermine| 3000 203 | 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 181 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.1 5000 2.2

¢ Results for Mixed Precision Iterative

L

Refinement for Dense Ax = b

Speedup wrt double precision

=r| Avrchitecture (BLAS)

I o o 5 |

Intel Pentium 111 Coppermine (Goto)

Intel Pentium I11 Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)

Intel Pentium 1VV-M Northwood (Goto)

AMD Opteron (Goto)

N |O M~ W (N

Cray X1 (libsci)

IBM Power PC G5 (2.7 GHz) (VecLib)

Compaq Alpha EV6 (CXML)

== ©
(NS

IBM SP Power3 (ESSL)

SGI Octane (ATLAS)

N

< Quadruple Precision

n Quad Precision | Iter. Refine. Intel Xeon 3.2 GHz
Ax = b DP to QP
time (s) time (s) Speedup Reference
implementation of
100 0.29 0.03 9.5 the
quad precision
200 2.27 0.10 20.9 BLAS
300 7.61 0.24 30.5
Accuracy: 1032
400 17.8 0.44 40.4
500 34.7 0.69 49.7 No more than 3
steps of iterative
600 60.1 101 59.0 refinement are
700 94.9 1.38 68.7 needed.
800 141. 1.83 77.3
900 201. 2.33 86.3
1000 276. 2.92 04.8

+ Variable precision factorization (with say < 32 bit precision) 15
plus 64 bit refinement produces 64 bit accuracy

¢ Refinement Technique Using

A

_Single/Double Precision

¢ Linear Systems
> LU (dense and sparse)
» Cholesky
> QR Factorization

+ Eigenvalue
> Symmetric eigenvalue problem
» SVD
> Same idea as with dense systems,

> Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the Tower precision to solve systems and use higher
precision to calculate residual with original data.

» O(n?) per value/vector
¢ Iterative Linear System
> Relaxed GMRES
> Inner/outer iteration scheme

See webpage for tech report which discusses this. 16

N

«- Sparse Direct Solver and lterative Refinement
MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Opteron w/intel compiler @ Iterative Refinement

{\

Sparse lterative Methods (PCG)

¢ Outer/Inner Iteration Inner iteration:

Outer iterations using 64 bit floating point In 32 bit floating point

Compute r'%) = b — Az'% for some initial guess 2"
=]

for i=1,2,... \.“IT”.

solve M 2li-1) = pli-1) i

pios = pli= 1" (i)

ifi =1 ,
}3':” =z i

else o=
Bie1 = pi- .-"lPr'— i) = r
P = - g - TN L ok

endif

gl = Apl

- ()7 i)
@ =pi-1 /P a"
2l = (=10 4 gppl)
pli) = pli=1) _ t’!,-t]':'.j
check convergence; continue if necessary
end

+ Outer iteration in 64 bit floating point and
inner iteration in 32 bit floating point 18

I MITXed Precision Computations Tor
“ Sparse Inner/Outer-type Iterative Solvers

2222 Speedups for mixed precision

2 Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
1.75 (CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)

15 (Higher is better)

1.25

! B CG?
075 mpPCG
0?2'2 B GMRES

B PGMRES

11,142 25980 79,275 230,793 602,091

Iterations for mixed precision
SP/DP iterative methods vs DP/DP
(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r, residual reduction (1012)

11,142 25,980 79,275 230,793 602,091 ~<r— Matrix size

6021 18000 39,000 120,000 240,000 ~<—— Condition number 19

¢ Power PCat 3.2 6GHz - %
» DGEMM at 5 Gflop/s
> Altivec peak at 25.6
> Achieved 10 Gflop/s SGEMM

¢+ 8 SPUs

> 204.8 Gflop/s peak!

> The catch is that this is for 32 bit floating
point; (Single Precision SP)

> And 64 bit roaﬁnEq Poin'r runs at 14.6 Gflop/s
total for all 8 SPEs!!

> Divide SP peak by 14: factor of 2 because of DP
and 7 because of latency issues

20

10

£ Moving Data Around on the Cell

SPE SPE SPE SPE
SPU SPU SPU SPU 25.6 GFlogs SP
LS LS LS \s |182GFlopaDP
I I I I 256 KB
g s : = N\
PPE -
MEM
PPU 1 — 204.8 GB/s M
N v, \
| | | Ja———25.6 GBis
Injection bandwidth
Ls Ls Ls s
SPU SPU SPU SPU
SPE SPE SPE SPE

Worst case memory bound operations (no reuse of data)
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*20ps/12B)

N
<= Cell Software for Iterative Refinement

¢+ LAPACK FORTRAN 77 DSGESV at the top
> LINPACK-SP (from IBM)
> SGETRF
> SGETRS
+ Additional SPE-parallel code
> Conversion from standard to block layout
> Conversion from single to double precision
» DLANGE - matrix norm (DP)
> DGEMM - matrix multiply (DP)
¢ PPU auxiliary Level 1 BLAS (DAXPY, DLACPY,
DNRM2)

¢+ Block data layout (64x64 SP, 32x32 DP)

22

11

N

< 32 and 64 Bit Floating Point Arithmetic

¢ Iterative refinement for dense
systems, Ax = b.

L U = lu(A)
x = L\(U\b)
r=b—Ax
WHILE || r || not small enough

z = L\(U\r)

X=x+z

r=b—Ax
END

N
A
L —
IBM Cell 3.2 GHz, AX =D
250
200
8 SGEMM (Embarrassingly Parallel)
—&— SP Peak (204 Gflop/s)
—8— SP Ax=b IBM
150 — .30 secs
) DP Peak (15 Gflop/s)
Q
2 —%=DP Ax=b IBM
)
100
50
3.9 secs
0 W -
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

24

12

N

< |BM Cell 3.2 GHz, Ax=Db

250
200
8 SGEMM (Embarrassingly Parallel
—&— SP Peak (204 Gilop/s
~&—SP Ax=b IBM
150 {—— —~—DSGESV 30 secs
2 DP Peak (15 Gflop/s)
L—; —¥=DP Ax=b IBM
100 - 4T secs
2
50 8.3X
3.9 secs
% 0 0 0 0 0 . ‘ ‘ “ “ . . v
W } i ! } | f f | f ! ! } }
0 - T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size
25
b}
£. LINPACK Benchmark
L
IBM SP (375 MHz POWER3) 38 997 132.0
SGI Origin 2000 250/300 MHz Cluster (2x64x250+2x64x300) 256 08.87 81920 140.8
Sun Fire 6900 (UltraSPARC IV, 1.2 GHz) 48 98.26 8300 115.2
IBM Cell BE (3.2 GHz)#*#*#* 14.6 (64 bit)
9 98.05 1536 | 204.8 (32bit)
SGI Altix 3000, 900 MHz 32 97.67 82079 115
Kepler (192 PIII@650 MHz + 4 PIII@733 MHz) 196 96.25 109760 12320 127.7
IBM SP (375 MHz POWER3) 24 95.5 88000 126.0
IBM eServer pSeries 690 Turbo(1.3 GHz Power 4) 32 95.26 108000 7000 166.4
Cray X-1 (800 MHz) 8 95.2 61440 5632 102.4
Fujitsu VPP700/46 (7nsec) 46 94.3 100280 8280 101
SGI Origin 300 (500 MHz, w/Myrinet) 128 94.15 81920 81920 128
HP 9000 tp8420-32 (1000MHz PA-8800) 32 94.1 58960 5200 128
Sun Fire 15K (1050MHz/8MB E$) 56 94.06 926116 10000 117.6
IBM S80s (450 MHz, SP switch) 192 93.87 82000 21000 173
ClearSpeed CSX600 Advance accelerator boards (dual
:> ClearSpeed boards each 250 MHz) (frontend HP ProLiant
DL380 G5, dual node Intel Xeon 5100 dual core, 3 GHz) 6 93.3 45000 240
26

13

£ LAPACK Cholesky Factorization

SPE Parallelization:
Every operation chopped into 64x64 tiles,
1, 2 or 3 tiles on input side,
1 tile on output side.

£ Cholesky Factorization

Poor performance on many-core architectures because of
sequential bottleneck and fork join parallelism

14

£ Pipelining Loop lterations

1D Work Partitionin 2D Dependency Trackin
Facilitates data reuse, Facilitates loop pipelining,
Prevents bus saturation. Eliminates load imbalance.

€ Pipelining & Double Buffering

Pipelining:
Between loop iterations.

Double Buffering:
Within BLAS,

Between BLAS,
Between loop iterations.

Result:
Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls
(no waiting for data).

N

< |BM Cell 3.2 GHz, Ax = b, A Sym Pos Def

250
200 * < < < < < < g
8 SGEMM (Embarrassingly Parallel
—o— SP Peak (204 Gflop/s)
150 ———— —=—SP Cholesky 30 secs
2
E DP Peak (15 Gflop/s)
0] 47
100 A7 secs
50 4
3.9 secs
v
0 T T T T
0 500 1000 1500 2000
Matrix Size
N

< IBM Cell 3.2 GHz, Ax = b, A Sym Pos Def

250

200

150 —

GFlop/s

100 1

e e e o o o e o
\ g g g g 4

8 SGEMM (Embarrassingly Parallel

——SP Peak (204 Gfiop/s)

—&— SP Cholesky

.30 secs

DSPOSV
DP Peak (15 Gflop/s)

.47 secs

50

—

3.9 secs

500 1000 1500 2000
Matrix Size

16

i

< \What About the PS3?

L4

Sony Playstation 3, release:
> November 11, 2006 (Japan),
> November 17, 2006 (North America) and
» March 2007 (Europe).
The main elements to the Playstation 3 are a 7 SPE version of IBM's
Cell processor and nVidia's Reality Synthesizer GPU.

> Note that the Cell processor actually contains 8 SPEs, but for yield
reasons Sony have decided to disable one of the cores.

Each SPE has 256KB of local memory
Seven SPEs, of which one is dedicated to OS tasks (the remaining 6
can be used as floating point units).

> Now we are down to 6 SPE's

PS3 connects to 256MB of Rambus XDR memory clocked at 3.2Ghz,
giving a memory bandwidth of 25.6 GB/s.

The PPE features 64KB L1 cache, 512KB L2 cache and also features
Symmetric Multithreading (i.e. two threads can run concurrently
rather like Intel's Hyperthreading).

The PS3 additionall s&appor'rs a removable hard disk, which will be
available in either 60GB (Premium model) or 20GB (Basic model) sizes
- although any size drive can be inserted

33

n

leLwr

Sony Playstation 3

+ $600 + a monitor for HDTV output

34

17

N

< Price Comparison

¢ From IBM or

Mercury
> 2 Cell chip
> Each w/8 SPEs
> 512 MB/Cell
> ~$17K
> Some SW
¢+ From WAL*MART
PS3
> 1 Cell chip
> w/6 SPEs
> 256 MB/PS3
> $600
> Download SW
> Dual boot

P o o o o o N o

1o 8 SGEMM (Embarrassingly Parallel)

—4— SP Peak (153.6 Gflop/s)

~#- SP Ax=b IBM

@ 100 +——
[=N
E DP Peak (10.9 Gflop/s)
(O]

80
o | /
40

/-/

20 /
./

T T T T
0 500 1000 1500 2000
Matrix Size

2500

36

18

N

< PlayStation 3 LU Codes

180
160 — — — — — — — —
140 A q
8 SGEMM (Embarrassingly Parallel
—&— SP Peak (153.6 Gflop/s)
120 —
~— SP Ax=b IBM
» 100 — DSGESV
Q
2 DP Peak (10.9 Gflop/s)
O 80
60 -
40 +
20
0 ./
0 500 1000 1500 2000 2500
Matrix Size 37
(\
- -
cL
PlayStation 3 Cholesky Codes
180
160 — — — — — — — N
140 a
8 SGEMM (Embarrassingly Parallel
120 I —#—SP Peak (153.6 Gflopls)
~—SP Ax=b IBM
@ 100 —
§ DP Peak (10.9 Gflopls)
O 804
60
40
20
0 T T T T
0 500 1000 1500 2000 2500
Matrix Size
38

19

N

< PlayStation 3 Cholesky Codes

120 ——

100 ——

P o o o o o o o

8 SGEMM (Embarrassingly Parallel)

—&— SP Peak (153.6 Gflop/s)

~#—SP Ax=b IBM

DSPOSV
DP Peak (10.9 Gflop/s)

7

/

20 /

0 500 1000 1500 2000 2500
Matrix Size

39

& A Sparse Matrix on the Cell

One lucky case:

The Good:

«stride-1 access on the source
vector

eeasy vectorization

eregular memory access pattern

*big chunks of data may be
fetched at once

The Bad:

«still no surface to volume as in
matrix multiply

100 200 300 400 500 600 70O 800 900 1000
nz = 2036

For Performance: Upper bound is bus speed if no
reuse.

20

c PCG on the Cell- Grouping
Operations (ops/data movement)

e 9n/7n=1.28 5.842 Gflops = 18 GB/s

A={r3)
95, | 8n/4n=2.00 10.653 Gflops = 20 GB/s
il 4n/3n=1.33 7.004 Gflops = 21 GB/s
rormr 1
check convergence
fori=2,..
3n/3n=1.00 5.250 Gflops = 21 GB/s
o 2n/3n=0.66 3.503 Gflops = 21 GB/s
Z:ip,?p,,q,)
worms =]
n=r—0g,
normr =|s|
check convergence
end
L .
PCG on the Cell: results
— "__".F:.r?bse.r.n'size.'a_lszoo d'ller_e!lic_nns:slu_ .) Problem size:1638400 # iterations:80
i i,
I : I

Code on the Woodcrest (2 dual core) is
blocked, unrolled, vectorized and OpenMP
parallelized.

Lower is better

21

N

A
L

In LAPACK Today

¢ LAPACK 3.1.1 has a General Solver GE (DSGESV)

¢ For the next release:
> GB: General Band Matrix
> PB: Symmetric Positive Definite Band Matrix
> PO: Symmetric Positive Definite Matrix (Full Storage)
> SY: Symmetric Matrix (Full Storage)
¢ After Symmetric packed matrices:
» PP: Symmetric Positive Definite Matrix (Packed Storage)
» SP: Symmetric Matrix (Packed Storage)
+ Probably not worth doing (O(n) ops for factor and
solve)
> 6T: General Tridiagonal Matrix
> PT: Symmetric Positive Definite Tridiagonal Matrix

43

N

A
L

Intriguing Potential

+ Exploit lower precision as much as possible
> Payoff in performance
> Faster floating point
>Less data to move
+ Automatically switch between SP and DP to
match the desired accuracy
> Compute solution in SP and then a correction to
the solution in DP
¢+ Potential for GPU, FPGA, special purpose
processors
> What about 16 bit floating point?
> 128 bit floating point?

+ Linear systems and Eigenvalue problems

44

22

L

leLwr

Intel pushes for 80 core CPU by 2010
Faster servers needed to power "mega data centres"

Tom Sanders at Intel Developer Forum in San Francisco, vnunet.com 27 Sep 2006

hosted applications, Intel
has unfolded a set of new -
research projects that aim
to deliver terra-scale chips.

sl o 1 1 0P OF PERFORMANCE

Intel chief executive Paul
Otellini at the Intel
Developer Forum showed
off a prototype of the
TerraFLOP processor. The
chip features 80 processor
SN
3.1GHz. It delivers a
combined performance of
more than one teraflop and
has the ability to transfer
terabytes of data per
second, Otellini touted. A
production model of the chip

is slated for availability by 2010. 1.2 TB/S memory BW

"This kind of performance for the first time gives us the capability to imagine
things like real time video search or real time speech translation from one
language to another," Otellini told delegates.

The TerraFLOP processor is required to power what Intel described as the mega

data centre, delivering online applications. Intel touted Google and Youtube as

examples of providers that will require this level of computing power. The

chipmaker projected that by 2010 terra-scale servers will make up about 25 45

percent of all server sales. http://www.pcper.com/article.php?aid=302

AN

«_\ ;

leLwr

CPU Desktop Trends 2004-2011

Relative processing power will continue to double
every 18 months

5 years from now: 128 cores/chip w/512 logical
processes per chip

600
500
400
300
200
100

Cores Per Processor
Chip

2004
2005
2006
2007
2008
2009
2010
2011

46

O Cores Per Processor Chip B Hardware Threads Per Chip

23

L
<-Challenges Resulting From Multicore

+ Aggravated memory wall ——
» Memory bandwidth | (grows S I your
> to get data out of memory banks i
> to get data into multi-core processors ¢ -/
> Memory latency
> Fragments L3 cache
+ Pins become strangle point
> Rate of pin growth projected to slow and flatten &
> Rate of bandwidth per pin projected to grow slowly |

+ Relies on effective exploitation of —
multiple-thread parallelism B B

> Need llel i del and llel
e toniba i Pt model nd poralel 1
¢ Requires mechanisms for efficient inter-processor
coordination
» Synchronization

> Mutual exclusion a7

» Context switching

L
< \What will the chip will loo

48

24

L
< What will the chip will loo

49

L
< \What will the chip will loo

50

25

N

Major Changes to Software

¢ Must rethink the design of our
software

»Another disruptive technology

>Similar to what happened with cluster
computing and message passing

>Rethink and rewrite the applications,
algorithms, and software
¢ Numerical libraries for example will
change
>»For example, both LAPACK and

ScalLAPACK will undergo major changes
to accommodate this

51

{\

Future Large Systems, Say in 5 Years

+ 128 cores per socket
+ 32 sockets per node

+ 128 nodes per system

¢ System = 128*32*128
= 524,288 Coresl

¢+ And by the way, its 4
threads of exec per core

¢ That's about 2M threads to
manage

26

N

< Constantly Evolving - Hybrid Design

¢ More and more High Performance Computers
will be built on a Hybrid Desing

¢ Cluster of Cluster systems
> Multicore nodes in a cluster

+ Nodes augmented with accelerators
> ClearSpeed, GPUs, Cell

+ Japanese 10 PFlop/s "Life Simulator”
> Vector+Scalar+Grape:

» Theoretical peak performance: >1-2 PetaFlops from
Vector + Scalar System, ~10 PetaFlops from MD-
GRAPE-like System

¢+ LANL's Roadrunner

> Multicore + specialized accelerator boards

53

£ Real Crisis With HPC Is With The
Software

¢ Programming is stuck
> Arguably hasn't changed since the 60's
¢ It's time for a change
> Complexity is rising dramatically
> highly parallel and distributed systems
> From 10 to 100 to 1000 to 10000 to 100000 of processors!!
> multidisciplinary applications
+ A supercomputer application and software are usually
much more long-lived than a hardware
> Hardware life typically five years at most.
> Fortran and C are the main programming models
+ Software is a major cost component of modern
technologies.

> The tradition in HPC system procurement is to assume that
the software is free.

54

27

N

< Collaborators / Support

+ U Tennessee,
Knoxville 5
> Alfredo Buttari, @
Julien Langou,

Julie Langou,
Piotr Luszczek,

Jakub Kurzak GO ® gle

Stan Tomov

= Offi f
: Z&Sc:gﬁcoe

T OF ENEROY

Web Images Video News Maps Deskiop more »

|dongama | Advanced Search

— S ! Preferences
[Google Search]L I'm Feeling Lucky* Language Tools

New! Try Docs & Spreadsheets and share your projects instantly.

Advertising Programs - Business Solutions - About Google

Software and papers available: http://icl.C%U.Uagtulu(gl.eedu/iter—ref/ -

28

