

Grid Computing: NetSolve and the GrADS Project

Jack Dongarra
Innovative Computing Lab
University of Tennessee
http://www.cs.utk.edu/~dongarra/

Innovative Computing Laboratory

- Numerical Linear Algebra
- Heterogeneous Distributed Computing
- Software Repositories
- Performance Evaluation

Software and ideas have found there way into many areas of Computational Science

Around 40 people: At the moment...

- 16 Researchers: Research Assoc/Post-Doc/Research Prof
- 15 Students: Graduate and Undergraduate
- 8 Support staff: Secretary, Systems, Artist
- 1 Long term visitors (Japan)

Responsible for about \$4M/years in research funding from NSF, DOE, DOD, etc

Outline

- Grid computing in general
- Two approaches to Grid numerical libraries, some early experiments
 - >NetSolve Grid enabled portal software servers
 - >GrADS Project Software Technology for Problem Solving on Computational Grids

Grid Computing

- Enable communities ("virtual organizations") to share geographically distributed resources as they pursue common goals—in the absence of central control, omniscience, trust relationships.
- Resources (HPC systems, visualization systems & displays, storage systems, sensors, instruments, people) are integrated via 'middleware' to facilitate use of all resources.

Why Grids?

- Large problems require teamwork and computation
- Power of any single resource is small compared to aggregations of resources
- Network connectivity is increasing rapidly in bandwidth and availability

CTechnology Trends:

Microprocessor Capacity

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful. Not just processors, bandwidth, storage, etc

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Network Bandwidth Growth

- Network vs. computer performance
 - > Computer speed doubles every 18 months
 - > Network speed doubles every 9 months
 - > Difference = order of magnitude per 5 years
- 1986 to 2000
 - > Computers: × 500
 - > Networks: x 340,000
- 2001 to 2010
 - > Computers: x 60
 - ➤ Networks: x 4000

Moore's Law vs. storage improvements vs. optical improvements. Graph from Scientific American (Jan-2001) by Cleo Vilett, source Vined Khoslan, Kleiner, Caufield and Perkins.

Bandwidth Won't Be A Problem Soon --Bisection Bandwidth (BB) Across the US

- 1971 BB 112 Kb/s
- 1986 BB 1 Mb/s
- 2001 BB 200 Gb/s
- Today in the lab, 4000 channels on single fiber and each channel 10 Gb/s
- 12 strands of fiber can carry 4000*10 Gb/s or 40 Tb/s
- 5 backbone network across the US each w/ 2 sets of 12 strands can provide 2.4 Pb/s
- "When the Network is as fast as the computer's internal links, the machine disintegrates across the Net into a set of special purpose appliances"
 - Gilder Technology Report June 2000
- Internet doubling every 9 months
- Factor of 100 in 5 years
- BB will grow be a factor of 12000.

9

Grid Possibilities

- A biochemist exploits 10,000 computers to screen 100,000 compounds in an hour
- 1,000 physicists worldwide pool resources for petaflop analyses of petabytes of data
- Civil engineers collaborate to design, execute, & analyze shake table experiments
- Climate scientists visualize, annotate, & analyze terabyte simulation datasets
- An emergency response team couples real time data, weather model, population data

Some Grid Usage Models

- Distributed computing: job scheduling on Grid resources with secure, automated data transfer
- Workflow: synchronized scheduling and automated data transfer from one system to next in pipeline (e.g. compute-viz-storage)
- Coupled codes, with pieces running on different systems simultaneously
- Meta-applications: parallel apps spanning multiple systems

11

Grid Usage Models

- Some models are similar to models already being used, but are made much simpler by the Grid due to:
 - >single sign-on
 - >automatic process scheduling
 - >automated data transfers
- But Grids can encompass new resources likes sensors and instruments, so new usage models will arise

Example Application Projects

- Earth Systems Grid: environment (US DOE)
- EU DataGrid: physics, environment, etc. (EU)
- EuroGrid: various (EU)
- Fusion Collaboratory (US DOE)
- GridLab: astrophysics, etc. (EU)
- Grid Physics Network (US NSF)
- MetaNEOS: numerical optimization (US NSF)
- NEESgrid: civil engineering (US NSF)
- Particle Physics Data Grid (US DOE)

Some Grid Requirements – Systems/Deployment Perspective

- Identity & authentication
- Authorization & policy
- Resource discovery
- Resource characterization
- Resource allocation
- (Co-)reservation, workflow
- Distributed algorithms
- Remote data access
- High-speed data transfer
- Performance guarantees
- Monitoring

- Adaptation
- Intrusion detection
- Resource management
- Accounting & payment
- Fault management
- System evolution
- Etc.

Some Grid Requirements – User Perspective

- Single sign-on: authentication to any Grid resources authenticates for all others
- Single compute space: one scheduler for all Grid resources
- Single data space: can address files and data from any Grid resources
- Single development environment: Grid tools and libraries that work on all grid resources

15

The Systems Challenges: Resource Sharing Mechanisms That...

- Address security and policy concerns of resource owners and users
- Are flexible enough to deal with many resource types and sharing modalities
- Scale to large number of resources, many participants, many program components
- Operate efficiently when dealing with large amounts of data & computation

The Security Problem

- Resources being used may be extremely valuable & the problems being solved extremely sensitive
- Resources are often located in distinct administrative domains
 - > Each resource may have own policies & procedures
- The set of resources used by a single computation may be large, dynamic, and/or unpredictable
 - > Not just client/server
- It must be broadly available & applicable
 - > Standard, well-tested, well-understood protocols
 - > Integration with wide variety of tools

The Resource Management Problem

- Enabling secure, controlled remote access to computational resources and management of remote computation
 - > Authentication and authorization
 - > Resource discovery & characterization
 - > Reservation and allocation
 - > Computation monitoring and control

Grid Systems Technologies

- Systems and security problems addressed by new protocols & services. E.g., Globus:
 - > Grid Security Infrastructure (GSI) for security
 - > Globus Metadata Directory Service (MDS) for discovery
 - > Globus Resource Allocations Manager (GRAM) protocol as a basic building block
 - > Resource brokering & co-allocation services
 - > GridFTP, IBP for data movement

The Programming Problem

- How does a user develop robust, secure, long-lived applications for dynamic, heterogeneous, Grids?
- Presumably need:
 - >Abstractions and models to add to speed/robustness/etc. of development
 - >Tools to ease application development and diagnose common problems
 - >Code/tool sharing to allow reuse of code components developed by others

- MPICH-G2: Grid-enabled message passing
- CoG Kits, GridPort: Portal construction, based on N-tier architectures
- GDMP, Data Grid Tools, SRB: replica management, collection management
- Condor-G: simple workflow management
- Legion: object models for Grid computing
- NetSolve: Network enabled solver
- Cactus: Grid-aware numerical solver framework
 - > Note tremendous variety, application focus

2

MPICH-G2: A Grid-Enabled MPI

- A <u>complete</u> implementation of the Message Passing Interface (MPI) for heterogeneous, wide area environments
 - ➢ Based on the Argonne MPICH implementation of MPI (Gropp and Lusk)
- Globus services for authentication, resource allocation, executable staging, output, etc.
- Programs run in wide area without change
- See also: MetaMPI, PACX, STAMPI, MAGPIE

22

www.globus.org/mpi

Grid Events

- Global Grid Forum: working meeting
 - >Meets 3 times/year, alternates U.S.-Europe, with July meeting as major event
- HPDC: major academic conference >HPDC-11 in Scotland with GGF-8. **July 2002**
- Other meetings include >IPDPS, CCGrid, EuroGlobus, Globus Retreats

www.gridforum.org, www.hpdc.org

23

Useful References

- Book (Morgan Kaufman)
 - >www.mkp.com/grids
- Perspective on Grids
 - >"The Anatomy of the Grid: Enabling Scalable Virtual Organizations", IJHPCA, 2001
 - >www.globus.org/research/papers/anato my.pdf
- All URLs in this section of the presentation, especially:
 - >www.gridforum.org, www.gridscenter.org, www.globus.org

Emergence of Grids

- But Grids enable much more than apps running on multiple computers (which can be achieved with MPI alone)
 - virtual operating system: provides global workspace/address space via a single login
 - >automatically manages files, data, accounts, and security issues
 - connects other resources (archival data facilities, instruments, devices) and people (collaborative environments)

25

Grids Are Inevitable

- Inevitable (at least in HPC):
 - leverages computational power of all available systems
 - manages resources as a single system easier for users
 - provides most flexible resource selection and management, load sharing
 - researchers' desire to solve bigger problems will always outpace performance increases of single systems; just as multiple processors are needed, 'multiple multiprocessors' will be deemed so

*In the past: Isolation*Motivation for Grid Computing

- There is a complex interplay and increasing interdependence among the sciences.
- What we do as collaborative infrastructure developers has profound influence on the future of science.
- This is especially true as theory, experiment, and computational models provide insights into the bedrock principles of nature.
- Networking, distributed computing, and parallel computation research have matured to make it possible for distributed systems to support highperformance applications, but...
 - > Resources are dispersed
 - > Connectivity is variable

> Dedicated access may not be possible

Today: Collaboration

2.

Globus Grid Services

- the globus project
 - The Globus toolkit provides a range of basic Grid services
 - > Security, information, fault detection, communication, resource management, ...
 - These services are simple and orthogonal
 - > Can be used independently, mix and match
 - > Programming model independent
 - For each there are well-defined APIs
 - ◆ Standards are used extensively
 ➤ E.g., LDAP, GSS-API, X.509, ...
 - You don't program in Globus, it's a set of tools like Unix

Evolution of a Community Grid Model

 Roll your own SW but agree on interfaces, service architecture, standards

Applications

User-focused grid middleware, tools, and services

Common Infrastructure layer (NMI, GGF standards, OGSA etc.)

Grid Resources

31

Maturation of Grid Computing

- Research focus moving from building of basic infrastructure and application demonstrations to
 - > Middleware
 - > Usable production environments
 - > Application performance
 - > Scalability > Globalization
- Development, research, and integration happening outside of the original infrastructure groups
- Grids becoming a first-class tool for scientific communities
 - > GriPhyN (Physics), BIRN (Neuroscience), NVO (Astronomy), Cactus (Physics), ...

The Computational Grid is...

- ...a distributed control infrastructure that allows applications to treat compute cycles as commodities.
- Power Grid analogy
 - > Power producers: machines, software, networks, storage systems
 - Power consumers: user applications
- Applications draw power from the Grid the way appliances draw electricity from the power utility.
 - > Seamless
 - > High-performance
 - > Ubiquitous
 - > Dependable

33

Computational Grids and **Electric Power Grids**

- Why the Computational Grid is like the Electric Power Grid
 - > Electric power is ubiquitous
 - > Don't need to know the source of the power (transformer, generator) or the power company that serves it
- Why the Computational Grid is different from the Electric Power Grid
 - > Wider spectrum of performance
 - > Wider spectrum of services
 - > Access governed by more complicated issues
 - > Security
 - > Performance
 - > Socio-political factors

€ ICL UT

An Emerging Grid Community

1995-2000

- "Grid book" gave a comprehensive view of the state of the art
- Important infrastructure and middleware efforts initiated
 - ➤ Globus
 - > Legion
 - ➤ Condor
 - > NetSolve, Ninf
 - > Storage Resource
 Broker
 - Network Weather Service
 - > AppLeS, ...

Broad Acceptance of Grids as a Critical Platform for Computing

 Widespread interest from government in developing computational Grid platforms

NSF's Cyberinfrastructure

NASA's Information Power Grid

DOE's Science Grid

37

Broad Acceptance of Grids as a Critical Platform for Computing

- Widespread interest from industry in developing computational Grid platforms
- ◆ IBM, Sun, Entropia, Avaki, Platform, ...

AP reported that IBM was investing \$4 billion into building 50 computer server farms around the world.

"Grids Meet Peer-to-Peer"

- Currently Grids and P2P have distinct foci
 - > Grids: small scale, general purpose, static, managed
 - > P2P: large scale, specialized, dynamic, unmanaged
- Future systems will combine aspects of both
 - Large scale, general-purpose, dynamic, selfmanaged
- Keys to progress: <u>exploiting heterogeneity</u> and <u>self organization</u>

4

Peer to Peer Computing

- Peer-to-peer is a style of networking in was a group of computers communicate directly each other.
- Wireless communication
- Home computer in the utility room next to the water heater and furnace.
- Web tablets
- Imbedded computers in things all tied together.
 - > Books, furniture, milk cartons, etc
- Smart Appliances
 - > Refrigerator, scale, etc

Distributed Computing

- Concept has been around for two decades
- Basic idea: run scheduler across systems to runs processes on least-used systems first
 - > Maximize utilization
 - > Minimize turnaround time
- Have to load executables and input files to selected resource
 - > Shared file system
 - > File transfers upon resource selection

Examples of Distributed Computing

- Workstation farms, Condor flocks, etc.
 - > Generally share file system
- SETI@home project, Entropia, etc.
 - > Only one source code; copies correct binary code and input data to each system
- Napster, Gnutella: file/data sharing
- NetSolve
 - > Runs numerical kernel on any of multiple independent systems, much like a Grid solution

45

SETI@home: Global Distributed Computing

- Running on 500,000 PCs, ~1000 CPU Years per Day
 > 485,821 CPU Years so far
- Sophisticated Data & Signal Processing Analysis
- Distributes Datasets from Arecibo Radio Telescope

- Use thousands of Internetconnected PCs to help in the search for extraterrestrial intelligence.
- Uses data collected with the Arecibo Radio Telescope, in Puerto Rico
- When their computer is idle or being wasted this software will download a 300 kilobyte chunk of data for analysis.
- The results of this analysis are sent back to the SETI team, combined with thousands of other participants.

- Largest distributed computation project in existence
 - >~ 400,000 machines
 - > Averaging 27 Tflop/s
- Today many companies trying this for profit.

47

Motivation for NetSolve

Design an easy-to-use tool to provide efficient and uniform access to a variety of scientific packages on UNIX and Window's platforms

Basics

- Client-Server Design
- Non-hierarchical system
- Load Balancing and Fault Tolerance
- Heterogeneous Environment Supported
- Multiple and simple client interfaces
- Built on standard components

5

NetSolve Network Enabled Server

- NetSolve is an example of a Grid based hardware/software/data server.
- Based on a Remote Procedure Call model but with ...
 - resource discovery, dynamic problem solving capabilities, load balancing, fault tolerance asynchronicity, security, ...
- Easy-of-use paramount
- Its about providing transparent access to resources.

Hiding the Parallel Processing

User maybe unaware of parallel processing

 NetSolve takes care of the starting the message passing system, data distribution, and returning the results

57

Basic Usage Scenarios

- User doesn't have to have software library on their machine, LAPACK, SuperLU, ScaLAPACK, PETSc, AZTEC, ARPACK
- Task farming applications
 - "Pleasantly parallel" execution eg Parameter studies
- Remote application execution
 - Complete applications with user specifying input parameters and receiving output

- "Blue Collar" Grid Based Computing
 - Does not require deep knowledge of network programming
 - > Level of expressiveness right for many users
 - User can set things up, no "su" required
 - > In use today, up to 200 servers in 9 countries
- Can plug into Globus, Condor, NINF, ...

NetSolve Agent

- Name server for the NetSolve system.
- Information Service
 - > client users and administrators can query the hardware and software services available.
- Resource scheduler
 - > maintains both static and dynamic information regarding the NetSolve server components to use for the allocation of resources

59

NetSolve Agent

- Resource Scheduling (cont'd):
 - > CPU Performance (LINPACK).
 - > Network bandwidth, latency.
 - > Server workload.
 - > Problem size/algorithm complexity.
 - > Calculates a "Time to Compute." for each appropriate server.
 - > Notifies client of most appropriate server.

NetSolve Client

- Function Based Interface.
- Client program embeds call from NetSolve's API to access additional resources.
- Interface available to C, Fortran, Matlab, Octave, Scilab, and Mathematica.
- Opaque networking interactions.
- NetSolve can be invoked using a variety of methods: blocking, nonblocking, task farms, ...

NetSolve Client

- Intuitive and easy to use.
- Matlab Matrix multiply e.g.:
 - >A = matmul(B, C);

A = netsolve('matmul', B, C);

• Possible parallelisms hidden.

[x,its]=netsolve('sparse_iterative_solve','PETSC',A,rhs,1.e-6,500); [x]=netsolve('sparse_direct_solve','MA28',A,rhs,0.3,1);

NetSolve Client

- i. Client makes request to agent.
- ii. Agent returns list of servers.
- iii. Client tries first one to solve problem.

Task Farming -

Multiple Requests To Single Problem

- A Solution:
 - > Many calls to netsInb(); /* non-blocking */
- Farming Solution:
 - > Single call to netsl_farm();
- Request iterates over an "array of input parameters."
- Adaptive scheduling algorithm.
- Useful for parameter sweeping, and independently parallel applications.

65

Data Persistence

- Chain together a sequence of NetSolve requests.
- Analyze parameters to determine data dependencies. Essentially a DAG is created where nodes represent computational modules and arcs represent data flow.
- Transmit superset of all input/output parameters and make persistent near server(s) for duration of sequence execution.
- Schedule individual request modules for execution.

♦ Show IPARS Demo

SInRG

- SInRG provides a testbed
 - > C5 grid middleware
 - > Computational Science applications
- Many hosts, co-existing in a loose confederation tied together with high-speed links.
- Users have the illusion of a very powerful computer on the desk.
- Spectrum of users

75

UTK - SInRG

- SInRG constitutes a novel Grid research approach
 - > Empirical
 - > Vertically integrated and collaborative
 - > Both technology and applications driven
 - > A real research project
- UTK Grid research efforts are drawing national international attention
 - > Burgeoning user communities for software artifacts
 - > Research and infrastructure funding
 - > Persistent installations

The Internet Backplane Protocol (IBP)

- Network middleware which makes distributed network storage available as a flexibly allocated resource.
- Storage buffers exposed to the network.
- A simple mechanism for experimenting with allocation and scheduling

IBP's Unit of Storage

- You can think of it as a buffer.
- You can think of it as a "file".
- Append-only semantics.
- Can be used by anyone who can talk to the server.
- Seven procedure calls in three categories:
 - > Allocation (1)
 - > Data transfer (5)
 - > Management (1)

Sharing more than the wires.

IBP Servers

- Daemons that serve local disk or memory
- Root access not required to set or use.
- Servers can be dynamically added to collection
- Can specify sliding time limits or revocability.
- Encourages resource sharing.
- Data encrypted on the servers

Keep data close to the sender (lazy transmission)

- Network Weather Service sensor data collection.
- Checkpoint servers.
- Tony's example of jet engine.

ScaLAPACK

- Complete numerical library for dense matrix computations
- Designed for distributed parallel computing (MPP & Clusters) using MPI
- One of the first math software packages to do this
- Numerical software that will work on a heterogeneous platform
- Funding from DOE, NSF, and DARPA
- In use today by IBM, HP-Convex, Fujitsu, NEC, Sun, SGI, Cray, NAG, IMSL, ...
 - > Tailor performance & provide support

91

To Use ScaLAPACK a User Must:

- Download the package and auxiliary packages (like PBLAS, BLAS, BLACS, & MPI) to the machines.
- Write a SPMD program which
 - > Sets up the logical 2-D process grid
 - > Places the data on the logical process grid
 - > Calls the numerical library routine in a SPMD fashion
 - > Collects the solution after the library routine finishes
- The user must allocate the processors and decide the number of processes the application will run on
- The user must start the application
 - > "mpirun -np N user_app"
 - > Note: the number of processors is fixed by the user before the run, if problem size changes dynamically ...
- Upon completion, return the processors to the pool of resources

ScaLAPACK Grid Enabled

- Implement a version of a ScaLAPACK library routine that runs on the Grid.
 - > Make use of resources at the user's disposal
 - > Provide the best time to solution
 - > Proceed without the user's involvement
- Make as few changes as possible to the numerical software.
- Assumption is that the user is already "Grid enabled" and runs a program that contacts the execution environment to determine where the execution should take place.

93

GrADS Numerical Library

- Want to relieve the user of some of the tasks
- Make decisions on which machines to use based on the user's problem and the state of the system
 - > Determinate machines that can be used
 - > Optimize for the best time to solution
 - > Distribute the data on the processors and collections of results
 - > Start the SPMD library routine on all the platforms
 - > Check to see if the computation is proceeding as planned
 - > If not perhaps migrate application

Resource Selector Input

- Clique based
 - > 2 @ UT, UCSD, UIUC
 - > Part of the MacroGrid
 - > Full at the cluster level and the connections (clique leaders)
 - > Bandwidth and Latency information looks like this.
 - > Linear arrays for CPU and Memory
- · Matrix of values are filled out to generate a complete, dense, matrix of values.
- At this point have a workable coarse grid.
 - > Know what is available, the connections, and the power of the machines

x x x x x x x x x x x x x x x x x x x				
x x x x x x	x	x	x	
x x x x x x				
x x x x x x				
x x x x x x				
	x			
x	x	x	x	
	x			
	x			
		x		
		x		
x	x	x	x	
		x		
		x		
			x x x x x x	
			x	
x	x	x	x	
			x x x x x x	
			x x x x x x	
			x x x x x x	

101

ScaLAPACK Performance Model

$$T(n,p) = C_f t_f + C_v t_v + C_m t_m$$

 $C_f = \frac{2n^3}{3p}$ > Total number of floating-point operations per processor

 $C_{v} = (3 + \frac{1}{4}\log_{2}p)\frac{n^{2}}{\sqrt{p}} > \text{Total number of data items communicated}$ $C_{m} = n(6 + \log_{2}p) > \text{Total number of messages}$ t > Total number of messages

 $t_{\scriptscriptstyle v}$ > Time per data item communicated

 $t_m >$ Time per message

Ex	perime	ntal Ha	rdware	/ Software Grid
MacroGrid Testbed	TORC	CYPHER	OPUS	
Type	Cluster 8 Dual Pentium III	Cluster 16 Dual Pentium III	Cluster 8 Pentium II	 Globus version 1.1.3 Autopilot version 2.3
os	Red Hat Linux 2.2.15 SMP	Debian Linux 2.2.17 SMP	Red Hat Linux 2.2.16	 NWS version 2.0.pre2 MPICH-G version 1.1.2
Memory	512 MB	512 MB	128 or 256 MB	ScaLAPACK version 1.6ATLAS/BLAS version 3.0.3
CPU speed	550 MHz	500 MHz	265 – 448 MHz	BLACS version 1.1PAPI version 1.1.5
Network	Fast Ethernet (100 Mbit/s) (3Com 3C905B) and switch (BayStack 350T) with 16 ports	Gigabit Ethernet (SK- 9843) and switch (Foundry FastIron II) with 24 ports	Myrinet (LANai 4.3) with 16 ports each	• GrADS' "Crafted code" Independent components being put together and interacting
				10

Largest Problem Solved

- Matrix of size 30,000
 - >7.2 GB for the data
 - >32 processors to choose from UIUC and UT
 - > Not all machines have 512 MBs, some little as 128 MBs
 - >PM chose 17 machines in 2 clusters from UT
 - **≻**Computation took 84 minutes
 - > 3.6 Gflop/s total
 - > 210 Mflop/s per processor
 - > ScaLAPACK on a cluster of 17 processors would get about 50% of peak
 - > Processors are 500 MHz or 500 Mflop/s peak
 - > For this grid computation 20% less than ScaLAPACK

Major Challenge - Adaptivity

- These characteristics have major implications for applications that require performance guarantees.
- Adaptivity is a key so applications can function appropriately...
 - > as resource utilization and availability change,
 - > as processors and networks fail,
 - > as old components are retired,
 - > as new systems are added, and
 - > as both software and hardware on existing systems are updated and modified.

Conclusion

- Exciting time to be in scientific computing
- Grid computing is here
- The Grid offers tremendous opportunities for collaboration
- Important to develop algorithms and software that will work effectively in this environment

115

Collaborators

- GrADS
 - > Sathish Vadhiyar, UTK
 - > Asim YarKhan, UTK
 - Ken Kennedy, Fran Berman, Andrew Chein, Keith Cooper, Ian Foster, Carl Kesselman, Lennart Johnsson, Dan Reed, Linda Torczon, & Rich Wolski
- IBP
 - Micah Beck, UTK
 - > Jim Plank, UTK
 - > Rich Wolski, UCSB
 - Fran Berman, UCSDHenri Casanova, UCSD
- NetSolve
- > Sudesh Agrawal, UTK
 - > Henri Casanova, UCSD
 - > Keith Seymour, UTK
 - > Sathish Vadhiyar, UTK

Software Availability

- ➤ NetSolve
 - > icl.cs.utk.edu/netsolve/
- > LFC
 - > 5 drivers from ScaLAPACK around the end of summer
 - > Next look at iterative solvers

Many opportunities within the group at Tennessee

Major Challenge - Adaptivity

- These characteristics have major implications for applications that require performance guarantees.
- Adaptivity is a key so applications can function appropriately...
 - > as resource utilization and availability change.
 - > as processors and networks fail,
 - > as old components are retired,
 - > as new systems are added, and
 - > as both software and hardware on existing systems are updated and modified.

Futures for Numerical Algorithms and Software on Clusters and Grids

- Retargetable Libraries Numerical software will be adaptive, exploratory, and intelligent
- Determinism in numerical computing will be gone.
 - > After all, its not reasonable to ask for exactness in numerical computations.
 - > Auditability of the computation, reproducibility at a
- Importance of floating point arithmetic will be undiminished.
 - > 16, 32, 64, 128 bits and beyond.
- Reproducibility, fault tolerance, and auditability
- Adaptivity is a key so applications can effectively use the resources.

Conclusion

- Exciting time to be in scientific computing
- Network computing is here
- The Grid offers tremendous opportunities for collaboration
- Important to develop algorithms and software that will work effectively in this environment

Vinny's Bad Day

• Hopefully the Grid will simplify computer use not make it more difficult.

