

The Impact Of Computer Architectures On Linear Algebra Algorithms and Software

Jack Dongarra
Innovative Computing Laboratory
University of Tennessee

http://www.cs.utk.edu/~dongarra/

1

Outline

- Performance issues
- Self Adapting Software for Optimization
 - >ATLAS and other examples
- Recursive Factorization➤LU
- ◆ Performance Monitoring Tools➤ PAPI

High Performance Computers

- ~ 20 years ago
 - > 1×106 Floating Point Ops/sec (Mflop/s)
 - > Scalar based
- ~ 10 years ago
 - > 1×109 Floating Point Ops/sec (Gflop/s)
 - > Vector & Shared memory computing, bandwidth aware
 - > Block partitioned, latency tolerant
- ~ Today
 - > 1x1012 Floating Point Ops/sec (Tflop/s)
 - > Highly parallel, distributed processing, message passing, network based
 - > data decomposition, communication/computation
- ~ 10 years away
 - > 1×1015 Floating Point Ops/sec (Pflop/s)
 - > Many more levels MH, combination/grids&HPC
 - More adaptive, LT and bandwidth aware, fault tolerant, extended precision, attention to SMP nodes

Optimizing Computation and Memory Use

- Computational optimizations
 - Theoretical peak: (# fpus)*(flops/cycle) * Mhz

```
> Pentium III: (1 fpu)*(1 flop/cycle)*(850 Mhz) = 850 MFLOP/s
> Pentium 4: (1 fpu)*(2 flops/cycle)*(2.53 Ghz)
                                               = 5060 MFLOP/s
```

- > Athlon: (2 fpu)*(1flop/cycle)*(600 Mhz) = 1200 MFLOP/s > Power3: (2 fpu)*(2 flops/cycle)*(375 Mhz) = 1500 MFLOP/s
- Operations like:
 - $> \alpha = x^T y$: 2 operands (16 Bytes) needed for 2 flops; at 850 Mflop/s will requires 1700 MW/s bandwidth
 - \Rightarrow $y = \alpha x + y : 3$ operands (24 Bytes) needed for 2 flops; at 850 Mflop/s will requires 2550 MW/s bandwidth
- Memory optimization
 - > Theoretical peak: (bus width) * (bus speed)

```
> Pentium III: (32 bits)*(133 Mhz) = 532 MB/s
                                               = 66.5 MW/s
> Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s
                                               = 266 MW/s
```

> Athlon: (64 bits)*(133 Mhz) = 1064 MB/s = 133 MW/s

> Power3: (128 bits)*(100 Mhz) = 1600 MB/s

= 200 MW/s

5

Ts

Memory Hierarchy

- By taking advantage of the principle of locality:
 - > Present the user with as much memory as is available in the cheapest technology.
 - > Provide access at the speed offered by the fastest technology.

Level 1, 2 and 3 BLAS

- Level 1 BLAS
 Vector-Vector
 operations
- Level 2 BLAS Matrix-Vector operations
- Level 3 BLAS Matrix-Matrix operations

7

Why Higher Level BLAS?

- Can only do arithmetic on data at the top of the hierarchy
- Higher level BLAS lets us do this

BLAS	Memory Refs	Flops	Flops/ Memory Refs
Level 1 $y = y + \alpha x$	3 n	2 n	2/3 Registers
Level 2 y = y + A x	n²	2 n ²	2 L 2 Cache Local Memory
Level 3 C = C + AB	4 n ²	2 n ³	n / 2 Remote Memory Secondary Memory


```
for \_=1:n;

for \_=1:n;

for \_=1:n;

C_{i,j} \leftarrow C_{i,j} + A_{i,k}B_{k,j}

end

end

end
```

for
$$_{-}$$
 = 1:n;
for $_{-}$ = 1:n;
for $_{-}$ = 1:n;
 $C_{i,j} \leftarrow A_{l,k} \rightarrow B_{k,j}$
for $_{-}$ = 1:n;
 $C_{i,j} \leftarrow C_{i,j} + A_{i,k} B_{k,j}$
end
end
end

6 Variations of Matrix Multiple

```
for _{-} = 1:n;

for _{-} = 1:n;

for _{-} = 1:n;

C_{i,j} \leftarrow A_{l,k} B_{k,j}

ikj (-) \leftarrow (*****) (= )

end

end

end

end
```

$$\begin{array}{l} \text{for } _ &= 1\text{:n;} \\ \text{for } _ &= 1\text{:n;} \\ \text{for } _ &= 1\text{:n;} \\ C_{i,j} \leftarrow C_{i,j} + A_{i,k} B_{k,j} \\ \text{end} \\ \text{end} \\ \text{end} \\ \end{array}$$

$$C_{i,j} \leftarrow A_{l,k} \quad B_{k,j}$$

$$= 1:n;$$

$$= 1:n;$$

$$C_{i,j} \leftarrow C_{l,k} \quad B_{k,j}$$

$$\downarrow \text{ikj} \quad (\text{******}) \quad \text{imj}$$

$$C_{i,j} \leftarrow C_{i,j} + A_{i,k} B_{k,j} \quad \text{kij} \quad (\text{******}) \quad \text{imj}$$

$$C_{i,j} \leftarrow C_{i,j} + A_{i,k} B_{k,j} \quad \text{kij} \quad (\text{******}) \quad \text{imj}$$

6 Variations of Matrix Multiple

6 Variations of Matrix Multiple

$$\begin{array}{c} C_{i,j} \leftarrow A_{l,k} & B_{k,j} \\ \hline \text{for} _ = 1:\text{n}; & & & & \\ \hline \text{for} _ = 1:\text{n}; & & & \\ \hline \text{for} _ = 1:\text{n}; & & & \\ \hline C_{i,j} \leftarrow C_{i,j} + A_{i,k} B_{k,j} & & & \\ \hline \text{end} & & & & \\ \hline \text{ijk} & & & & \\ \hline \text{jki} & & & & \\ \hline \text{jki} & & & \\ \hline \text{jki} & & & \\ \hline \text{jki} & & & \\ \hline \end{array}$$

6 Variations of Matrix Multiple

Matrices in Cache

For a Pentium III 933 MHz L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

$$\sqrt{16KB/8} \approx 45$$

L2 cache 256 KB

> Sqrt(256K/8) = 179

For a Pentium III 550 MHz L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

• L2 cache 512 KB

• Sqrt(512K/8) = 252


```
Matrix Multiply
 Assumption Data in Cache
                             • Inner loop:
                               ≥2 loads, 2
                                 operations,
◆DOT version - in cache
                                 suboptimal.
     DO 30 J = 1, M
                               >No reuse of
         DO 20 I = 1, M
                                 registers
             DO 10 K = 1, L
                 C(I,J) = C(I,J) + A(I,K)*B(K,J)
 10
            CONTINUE
        CONTINUE
 30 CONTINUE
                                                    24
```

How to Get Near Peak

```
• Inner loop:
   DO 30 J = 1, M, 2
       DO 20 I + 1, M, 2
                                            >4 loads, 8
         T11 = C(I, J)
         T12 = C(I, J+1)
                                              operations,
         T21 = C(I+1,J)
                                              optimal.
         T22 = C(I+1,J+1)
         DO 10 K = 1, L
                                            > Reuse data in
             T11 = T11 + A(I, K) *B(K,J)

T12 = T12 + A(I, K) *B(K,J+1)
                                              registers
             T21 = T21 + A(I+1,K)*B(K,J)
             T22 = T22 + A(I+1,K)*B(K,J+1)
        CONTINUE
10
         C(I, J) = T11
         C(I, J+1) = T12
         C(I+1,J) = T21
         C(I+1,J+1) = T22
      CONTINUE
                                                                         K
25
30 CONTINUE
                                                          *
```

```
◆For a Pentium III 933 MHz
```

>Peak 933 Mflop/s

>Best can do around 2/3 peak, has to do with the stack architecture

>2 level of cache 16KB and 256KB

Note 4 different performance levels

>Bad cache use

>Level 1 cache, then exceeds

>Level 2 cache, then exceeds

>Putting it all together

- Problems too large for cache, do blocking
- Unrolling for register reuse critical

```
Matrix Multiply
 (blocked, or tiled)
Consider A,B,C to be N by N matrices of b by b subblocks
  where b=n/N is called the blocksize
for i = 1 to N
    for j = 1 to N
       {read block C(i,j) into fast memory}
       for k = 1 to N
                     {read block A(i,k) into fast memory}
                     {read block B(k,j) into fast memory}
                      C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a}
  matrix multiply on blocks}
        {write block C(i,j) back to slow memory}
                                        A(i,k)
       C(i,j)
                        C(i,j)
                                                   ■ B(k,j)
                                                                    2.7
                       n is the size of the matrix, N blocks of size b; n = N*b
```

Adaptive Approach for Level 3

- Do a parameter study of the operation on the target machine, done once.
- Only generated code is Level 1 Cache multiply
- BLAS operation written in terms of generated on-chip multiply
- All tranpose cases coerced through data copy to 1 case of on-chip multiply
 - > Only 1 case generated per platform

Self-Adapting Numerical Software (SANS)

- ◆ Today's processors can achieve high-performance, but this requires extensive machine-specific hand tuning.
- Operations like the BLAS require many man-hours / platform
 - · Software lags far behind hardware introduction
 - · Only done if financial incentive is there
- Hardware, compilers, and software have a large design space w/many parameters
 - Blocking sizes, loop nesting permutations, loop unrolling depths, software pipelining strategies, register allocations, and instruction schedules.
 - > Complicated interactions with the increasingly sophisticated micro-architectures of new microprocessors.
- Need for quick/dynamic deployment of optimized routines.
- ATLAS Automatic Tuned Linear Algebra Software

29

Software Generation Strategy

- Level 1 cache multiply optimizes for:
 - > TLB access
 - > L1 cache reuse
 - > FP unit usage
 - > Memory fetch
 - > Register reuse
 - > Loop overhead minimization
- Takes about 30 minutes to run.
- "New" model of high performance programming where critical code is machine generated using parameter optimization.

- Code is iteratively generated & timed until optimal case is found. We try:
 - > Differing NBs
 - Breaking false dependencies
 - > M, N and K loop unrolling
- Designed for RISC arch
 - > Super Scalar
 - Need reasonable C compiler
- Today ATLAS in use by Matlab, Mathematica, Octave, Maple, Debian, Scyld Beowulf, SuSE, ...

30

MATLAB

- Currently over 500,000 MATLAB licenses
- Matlab gives simplicity and power but not performance
 - ► Codes prototyped in MATLAB
 - >User would rewrite in Fortran or C later
- Well...
- Today MATLAB uses ATLAS BLAS and LAPACK
 - >Great performance for these operations
 - >But no interoperation optimization in MATLAB
- Demo

Some Automatic Tuning Projects

- ATLAS (www.netlib.org/atlas) (Dongarra, Whaley)
- PHIPAC (www.icsi.berkeley.edu/~bilmes/phipac)
 (Bilmes, Asanovic, Vuduc, Demmel)
- Sparse matrix operations, (Yelick, Im & Dongarra, Eijkhout)
- Communication topologies (Dongarra)
- FFTs and Signal Processing
 - >FFTW (www.fftw.org)
 - > Won 1999 Wilkinson Prize for Numerical Software
 - > SPIRAL (www.ece.cmu.edu/~spiral)
 - > Extensions to other transforms, DSPs
 - > UHFFT
 - > Extensions to higher dimension, parallelism

33

Pentium 4 - SSE2

Today's "Sweet Spot" in Price/Performance

- ◆ 2.53 GHz, 400 MHz system bus, 16K L1 & 256K L2 Cache, theoretical peak of 2.53 Gflop/s, high power consumption
- Streaming SIMD Extensions 2 (SSE2)
 - > which consists of 144 new instructions
 - > includes SIMD IEEE double precision floating point
 - > Peak for 64 bit floating point 2X (5.06 Gflop/s)
 - > Peak for 32 bit floating point 4X (10.12 Gflop/s)
 - > SIMD 128-bit integer
 - > new cache and memory management instructions.
 - > Intel's compiler supports these instructions today
 - > ATLAS was trained to probe and detect SSE2

Development and Adaptation

- Communication libraries
 - >Optimize for the specifics of one's configuration.
- Algorithm layout and implementation
 - >Look at the different ways to express implementation

Reformulating/Rearranging/Reuse

• Example is the reduction to narrow band from for the SVD

$$A_{new} = A - uy^{T} - wv^{T}$$

$$y_{new} = A^{T}u$$

$$w_{new} = A_{new}v$$

- Fetch each entry of A once
- Restructure and combined operations
- Results in a speedup of > 30%

CG variants by Dynamic Selection at Run Time

- Variants combine inner products to reduce communication bottleneck at the expense of more scalar ops.
- Same number of iterations, no advantage on a sequential processor $\beta \leftarrow \rho/\rho_{\rm old} \\ Search direction update: \\ p \leftarrow z + \beta p \\ Matrix-vector product: \\ ap \leftarrow A \times p \\ Preconditioner application:$ Same number of
- With a large number Inner products 2: of processor and a high-latency network $\pi \leftarrow p^t a p$ may be advantages.
- Improvements can range from 15% to 50% depending on size.

Inner products 1: $\rho \leftarrow z^t r$

 $\alpha = \rho/\pi$ Residual update: $r \leftarrow r - \alpha Ap$ 3 separate inner products

43

CG variants by Dynamic Selection at Run Time

- Variants combine inner products to reduce communication bottleneck at the expense of more scalar ops.
- Same number of iterations, no advantage on a sequential processor
- With a large number of processor and a high-latency networ may be advantages.
- Improvements can range from 15% to 50% depending on size.

Classical	Saad/Meurant	Chronopoulos/Gear	Eijkhout
Norm calculation: $error = \sqrt{r^t r}$ Preservationer applications			
Preconditioner application: $z \leftarrow M^{-1}r$ Matrix-vector product:	$z \leftarrow z - \alpha q$	$z \leftarrow M^{-1}r$	id
Inner products 1:		$az \leftarrow A \times z$	id
$\boxed{\rho \leftarrow z^t r}$	$\rho_{\mathrm{predict}} \leftarrow -\rho_{\mathrm{true}} + \alpha^2 \mu$	$error = \sqrt{r^t r}$ $\rho \leftarrow z^t r$ $\zeta \leftarrow z^t a z$	$error = \sqrt{r^t r}$ $\rho \leftarrow z^t r$ $\zeta \leftarrow z^t a z$ $\epsilon \leftarrow (M^{-1}r)^t (Ap)$
$\beta \leftarrow \rho/\rho_{\text{old}}$ Search direction update:	$\beta = \rho_{\rm predict}/\rho_{\rm old}$	$\beta \leftarrow \rho/\rho_{\rm old}$	id
$p \leftarrow z + \beta p$	id	id	id
	id	$ap \leftarrow az + \beta ap$	id
Preconditioner application: Inner products 2:	$q \leftarrow M^{-1}ap$ $\pi \leftarrow p^t ap$		
$\boxed{\pi \leftarrow p^t a p}$	$\mu \leftarrow ap^t q$ $error = \sqrt{r^t r}$ $\rho_{\text{true}} = z^t r$	$\pi \leftarrow \zeta - \beta^2 \pi$	$\pi \leftarrow \zeta + \beta \epsilon$
$\alpha = \rho/\pi$ Residual update:	$\dots ho_{ ext{true}} \dots$	$\alpha = \rho/\pi$	
	id	id	id
3 separate inner products	4 combined	3 combined	4 combined
	1 extra vector update	id	id

Algorithms

- Early algorithms involved use of small main memory using tapes as secondary storage.
- Recent work centers on use of vector registers, level 1 and 2 cache, main memory, and "out of core" memory.

45

Blocked Partitioned Algorithms

- LU Factorization
- Cholesky factorization
- Symmetric indefinite factorization
- Matrix inversion
- QR, QL, RQ, LQ factorizations
- ◆ Form Q or Q^TC

- Orthogonal reduction to:
 - > (upper) Hessenberg
 - > symmetric tridiagonal form
 - > bidiagonal form
- Block QR iteration for nonsymmetric eigenvalue problems

LAPACK

- Linear Algebra library in Fortran 77
 - > Solution of systems of equations
 - > Solution of eigenvalue problems
- Combine algorithms from LINPACK and EISPACK into a single package
- ◆ Efficient on a wide range of computers
 ➤ RISC, Vector, SMPs
- ◆ User interface similar to LINPACK
 ➤ Single, Double, Complex, Double Complex
- Built on the Level 1, 2, and 3 BLAS

47

LAPACK

- Most of the parallelism in the BLAS.
- Advantages of using the BLAS for parallelism:
 - **≻**Clarity
 - > Modularity
 - >Performance
 - >Portability

Derivation of Blocked Algorithms Cholesky Factorization $A = U^{T}U$

$$\begin{pmatrix} A_{11} & a_j & A_{13} \\ a_j^T & a_{jj} & \alpha_j^T \\ A_{13}^T & \alpha_j & A_{33} \end{pmatrix} = \begin{pmatrix} U_{11}^T & 0 & 0 \\ u_{11}^T & u_{jj} & 0 \\ U_{13}^T & \mu_j & U_{33}^T \end{pmatrix} \begin{pmatrix} U_{11} & u_j & U_{13} \\ 0 & u_{jj} & \mu_j^T \\ 0 & 0 & U_{33} \end{pmatrix}$$
 Equating coefficient of the jth column, we obtain

$$a_j = U_{11}^T u_j$$

$$a_{jj} = u_j^T u_j + u_{jj}^2$$

Hence, if U_{11} has already been computed, we can compute u_i and u_{ii} from the equations:

$$U_{11}^T u_j = a_j$$
$$u_{jj}^2 = a_{jj} - u_j^T u_j$$

49

LINPACK Implementation

 Here is the body of the LINPACK routine SPOFA which implements the method:

```
DO 30 J = 1. N
     INFO = J
      S = 0.0E0
      JM1 = J - 1
      IF( JM1.LT.1 ) GO TO 20
      DO 10 \text{ K} = 1, \text{JM}1
        T = A(K, J) - SDOT(K-1, A(1, K), 1, A(1, J), 1)
        T = T / A(K, K)
        A(K,J) = T
        S = S + T*T
    CONTINUE
     CONTINUE
     S = A(J, J) - S
   ...EXIT
     IF( S.LE.0.0E0 ) GO TO 40
     A(J, J) = SQRT(S)
30 CONTINUE
```

LAPACK Implementation

```
DO 10 J = 1, N
     CALL STRSV( 'Upper', 'Transpose', 'Non-Unit', J-1, A, LDA, A(1, J), 1)
     S = A(J, J) - SDOT(J-1, A(1, J), 1, A(1, J), 1)
     IF( S.LE.ZERO ) GO TO 20
     A(J, J) = SQRT(S)
10 CONTINUE
```

- This change by itself is sufficient to significantly improve the performance on a number of machines.
- From 238 to 312 Mflop/s for a matrix of order 500 on a Pentium 4-1.7 GHz.
- However on peak is 1,700 Mflop/s.
- Suggest further work needed.

51

Derivation of Blocked Algorithms

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^T & A_{22} & A_{12} \\ A_{13}^T & A_{12}^T & A_{33} \end{pmatrix} = \begin{pmatrix} U_{11}^T & 0 & 0 \\ U_{12}^T & U_{22}^T & 0 \\ U_{13}^T & U_{23}^T & U_{33}^T \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23}^T \\ 0 & 0 & U_{33} \end{pmatrix}$$

Equating coefficient of second block of columns, we obtain

$$A_{12} = U_{11}^T U_{12}$$

$$A_{22} = U_{12}^T U_{12} + U_{22}^T U_{22}$$

Hence, if U₁₁ has already been computed, we can compute U_{12} as the solution of the following equations by a call to the Level 3 BLAS routine STRSM: $U_{11}^T U_{12} = A_{12}$

$$U_{11}^T U_{12} = A_{12}$$

$$U_{22}^T U_{22} = A_{22} - U_{12}^T U_{12}$$

LAPACK Blocked Algorithms

```
\begin{array}{l} DO\ 10\ J=1,N,NB\\ CALL\ STRSM(\ 'Left',\ 'Upper',\ 'Transpose','Non-Unit',\ J-1,\ JB,\ ONE,\ A,\ LDA,\\ \$\qquad A(1,J),LDA)\\ CALL\ SSYRK(\ 'Upper',\ 'Transpose',\ JB,\ J-1,-ONE,\ A(1,J),\ LDA,\ ONE,\\ \$\qquad A(J,J),LDA)\\ CALL\ SPOTF2(\ 'Upper',\ JB,\ A(J,J),\ LDA,\ INFO\ )\\ IF(\ INFO.NE.0\ )\ GO\ TO\ 20\\ \endaligned 10\ CONTINUE \end{array}
```

On Pentium 4, L3 BLAS squeezes a lot more out of 1 proc

Intel Pentium 4 1.7 GHz N = 500	Rate of Execution
Linpack variant (L1B)	238 Mflop/s
Level 2 BLAS Variant	312 Mflop/s
Level 3 BLAS Variant	1262 Mflop/s

53

LAPACK Contents

- Combines algorithms from LINPACK and EISPACK into a single package. User interface similar to LINPACK.
- Built on the Level 1, 2 and 3 BLAS, for high performance (manufacturers optimize BLAS)
- ◆ LAPACK does not provide routines for structured problems or general sparse matrices (i.e sparse storage formats such as compressed-row, -column, -diagonal, skyline ...).

Gaussian Elimination via a Recursive Algorithm

F. Gustavson and S. Toledo

LU Algorithm:

- 1: Split matrix into two rectangles (m \times n/2) if only 1 column, scale by reciprocal of pivot & return
- 2: Apply LU Algorithm to the left part
- 3: Apply transformations to right part (triangular solve $A_{12} = L^{-1}A_{12}$ and matrix multiplication $A_{22} = A_{22} A_{21} A_{12}$)

4: Apply LU Algorithm to right part

Most of the work in the matrix multiply 77 Matrices of size n/2, n/4, n/8, ...

Recursive Factorizations

- Just as accurate as conventional method
- Same number of operations
- Automatic variable blocking
 Level 1 and 3 BLAS only!
- Extreme clarity and simplicity of expression
- Highly efficient
- The recursive formulation is just a rearrangement of the point-wise LINPACK algorithm
- The standard error analysis applies (assuming the matrix operations are computed the "conventional" way).

Dense recursive factorization

• The algorithm:

function rlu(A)

begin

rlu(A₁₁); recursive call

 $A_{21} {\leftarrow} A_{21} \cdot \text{U-}^{1}(A_{11}); \qquad \text{xTRSM() on upper triangular submatrix}$

 $A_{12} \leftarrow L_1^{-1}(A_{11}) \cdot A_{12}; \quad \text{ xTRSM() on lower triangular submatrix}$

 $A_{22} \leftarrow A_{22} - A_{21} \cdot A_{12};$ xGEMM() rlu(A_{22}); recursive call

end.

 Replace xTRSM and xGEMM with sparse implementations that are themselves recursive 60

function RLU(A) begin

 $RLU(A_{11})$

$$A_{21} := A_{21} U^{-1} (A_{11})$$
DTRSM()

$$A_{12} := \mathbf{L}_1^{-1} (A_{11}) A_{12}$$

DTRSM()

$$A_{22} := A_{22} - A_{21} A_{12}$$

DGEMM()

 $RLU(A_{22})$

61

Sparse Factorization Assumptions

- Sparse recursive LU factorization
 - > Based on recursive formulation of LU factorization
 - >No partial pivoting during factorization
 - > Diagonal zeros replaced with small elements, eg. $\epsilon ||A||$
 - >Iterative refinement used to regain precision
 - >Locate dense blocks, performance comes from the use of BLAS Level 3
 - > Aimed at improving time to solution memory usage may suffer

Sparse Recursive Factorization Algorithm

- Solutions continued
 - > fast sparse xGEMM() is two-level algorithm
 - >recursive operation on sparse data structures
 - >dense xGEMM() call when recursion reaches single block
- Uses Reverse Cuthill-McKee ordering causing fill-in around the band
- No partial pivoting
 - >use iterative improvement or
 - >pivot only within blocks

63

- 2. Symbolic Factorization
- 3. Search for Dense blocks

 original nonzero value zero value introduced due to fill-in zero value introduced due to blocking

Recursive Factorization Applied to Sparse Direct Methods

Layout of sparse recursive matrix in storage follows recursion

- 1. Symbolic Factorization
- 2. Search for blocks that contain non-zeros
- 3. Conversion to sparse recursive storage
- 4. Search for embedded blocks
- 5. Numerical factorization

SuperLU - High Performance Sparse Solvers

- SuperLU; X. Li and J. Demmel
 - Solve sparse linear system Ax=b using Gaussian elimination.
 - Efficient and portable implementation on modern architectures:
 - Sequential SuperLU : PC and workstations
 Achieved up to 40% peak Megaflop rate
 - SuperLU_MT : shared-memory parallel machines
 - Achieved up to 10 fold speedup
 SuperLU_DIST: distributed-memory parallel machines
 - > Achieved up to 100 fold speedup
 - Support real and complex matrices, fillreducing orderings, equilibration, numerical pivoting, condition estimation, iterative refinement, and error bounds.
- Enabled Scientific Discovery
 - First solution to quantum scattering of 3 charged particles. [Recigno, Baertschy, Isaacs & McCurdy, Science, 24 Dec 1999]
 - SuperLU solved complex unsymmetric systems of order up to 1.79 million, on the ASCI Blue Pacific Computer at LLNL.

Comparison with SuperLU on Pentium III									
				SuperLU			Recursion		
Name	N		nonzeros	Time[s]	FERR	L+U	Time[s]	FERR	L+U
af23560		23560	460598	44.19	5.80E-14	132.2	31.34	1.80E-14	149.7
ex11		16614	1096948	109.67	2.50E-05	210.2	55.3	1.30E-06	150.6
goodwin		7320	324772	6.49	1.20E-08	31.3	6.74	4.60E-06	35
jpwh_991		991	6027	0.19	2.90E-15	1.4	0.25	2.60E-15	2.3
mcfe		765	24382	0.07	1.20E-13	0.9	0.22	9.10E-13	1.8
memplus		17758	126150	0.29	2.10E-12	5.9	12.67	6.60E-13	195.7
olafu		16146	1015156	26.16	1.10E-06	83.9	22.1	3.70E-09	96.1
orsreg_1		2205	14133	0.46	1.30E-13	3.6	0.45	2.10E-13	3.9
psmigr_1		3140	543162	110.79	7.90E-11	64.6	88.61	1.20E-05	78.4
raefsky3		21200	1488768	62.07	1.40E-09	147.2	69.67	4.40E-13	193.9
raefsky4		19779	1316789	82.45	2.30E-06	156.2	104.29	3.50E-06	234.4
saylr4		3564	22316	0.85	3.20E-11	6	0.95	1.20E-11	7.2
sherman3		5005	20033	0.61	6.00E-13	5	0.67	4.80E-13	7.3
sherman5		3312	20793	0.28	1.40E-13	3	0.32	6.20E-15	3.1
wang3		26064	177168	84.14	2.40E-14	116.7	79.18	1.60E-14	256.7

ScaLAPACK

- Complete numerical library for dense matrix computations
- Designed for distributed parallel computing (MPP & Clusters) using MPI
- One of the first math software packages to do this
- Numerical software that will work on a heterogeneous platform
- Funding from DOE, NSF, and DARPA
- In use today by IBM, HP-Convex, Fujitsu, NEC, Sun, SGI, Cray, NAG, IMSL, ...
 - > Tailor performance & provide support

69

ScaLAPACK

- Library of software dealing with dense & banded routines
- Distributed Memory Message Passing
- MIMD Computers and Networks of Workstations
- Clusters of SMPs

Programming Style

- SPMD Fortran 77 with object based design
- Built on various modules
 - > PBLAS Interprocessor communication
 - > BLACS
 - >PVM, MPI, IBM SP, CRI T3, Intel, TMC
 - > Provides right level of notation.
 - > BLAS
- LAPACK software expertise/quality
 - > Software approach
 - > Numerical methods

7

Overall Structure of Software

- Object based Array descriptor
 - Contains information required to establish mapping between a global array entry and its corresponding process and memory location.
 - Provides a flexible framework to easily specify additional data distributions or matrix types.
 - > Currently dense, banded, & out-of-core
- Using the concept of context

PBLAS

- Similar to the BLAS in functionality and naming.
- Built on the BLAS and BLACS
- ◆ Provide global view of matrix
 CALL DGEXXX (M, N, A(IA, JA), LDA,...)
 CALL PDGEXXX(M, N, A, IA, JA, DESCA,...)

73

ScaLAPACK Structure ScaLAPACK PBLAS PBLAS PVM/MPI/... 74

Choosing a Data Distribution

- Main issues are:
 - >Load balancing
 - >Use of the Level 3 BLAS

75

Possible Data Layouts

• 1D block and cyclic column distributions

- 1D block-cycle column and 2D block-cyclic distribution
- 2D block-cyclic used in ScaLAPACK for dense matrices

To Use ScaLAPACK a User Must:

- Download the package and auxiliary packages (like PBLAS, BLAS, BLACS, & MPI) to the machines.
- Write a SPMD program which
 - > Sets up the logical 2-D process grid
 - > Places the data on the logical process grid
 - > Calls the numerical library routine in a SPMD fashion
 - > Collects the solution after the library routine finishes
- The user must allocate the processors and decide the number of processes the application will run on
- The user must start the application
 - "mpirun -np N user_app"
 - > Note: the number of processors is fixed by the user before the run, if problem size changes dynamically ...
- Upon completion, return the processors to the pool of resources

ScaLAPACK Cluster Enabled

- Implement a version of a ScaLAPACK library routine that runs on clusters.
 - > Make use of resources at the user's disposal
 - > Provide the best time to solution
 - > Proceed without the user's involvement
- Make as few changes as possible to the numerical software.

79

LAPACK For Clusters

 Developing middleware which couples cluster system information with the specifics of a user problem to launch cluster based applications on the "best" set of resource available. Sample computing environment...

• Using ScaLAPACK as the prototype software

- Use information on Bandwidth/Latency/Load/Memory/CPU performance
 2 matrices (bw,lat) 3 arrays (load, cpu, memory available)
- Generated dynamically by library routine

43

LAPACK For Clusters (LFC)

- LFC will automate much of the decisions in the Cluster environment to provide best time to solution.
 - > Adaptivity to the dynamic environment.
 - As the complexities of the Clusters and Grid increase need to develop strategies for self adaptability.
 - Handcrafted developed leading to an automated design.

- Developing a basic infrastructure for computational science applications and software in the Cluster and Grid environment.
 - > Lack of tools is hampering development today.
- Plan to do suite: LU, Cholesky, QR, Symmetric eigenvalue, and Nonsymmetric eigenvalue
- Model for more general framework

FT-MPI

- Current MPI applications live under the MPI fault tolerant model of no faults allowed.
 - > This is great on an MPP as if you lose a node you generally lose a partition/job anyway.
 - Makes reasoning about results easy. If there was a fault you might have received incomplete/incorrect values and hence have the wrong result anyway.
 - Planning a version of MPI with some extension which will all the user to recover from system errors, take corrective action, and carry one.
 - > Plan to be finished by the end of summer with the beta release.

89

Fault Tolerance in the Message Passing

- Critical for many Grid and Cluster applications
- MPI wasn't designed to be fault tolerant
- Number of projectsFT-MPI at University of Tennessee

Algorithmic Fault Tolerance

- Important that this is built into the algorithms.
- Not good enough to have it in the message passing.
- Alpha version
 - > Limited number of MPI functions supported
- ◆ Currently working on getting PETSc (The Portable, Extensible Toolkit for Scientific Computation from ANL) working in a FT mode
 - > Target of 86 functions by end of summer 2002.
 - > Covers all major classes of functions in MPI.
- Future work
 - > Templates for different classes of MPI applications so users can build on our work
 - > Some MPI-2 support (PIO?)
- Working on numerical library design for ScaLAPACK and PETSc that will be fault tolerant.

9

Fault Tolerance - Diskless (RAID) Checkpointing

- Built into Software (J. Plank, J. Dongarra)
 - Maintain a system checkpoint in memory
 - > All processors may be roll back if necessary
 - Use m extra processors to encode checkpoints so that if up to m processors fail, their checkpoints may be restored
 - > No reliance on disk
 - Checksum and reverse communication
 - > Checkpoint less frequently
 - > Reverse the computation of the non-failed processors back to previous checkpoint
 - Idea to build into library routines
 - > System or user can dial it up
 - ➤ Working prototype for MM, LU, LL^T, QR, sparse solvers

Use Diskless Checkpointing (PL94b):

- The N application processors each maintain their own checkpoints locally.
- m extra processors maintain coding information so that if 1 or more processors die, they can be replaced.
- Will describe for m = 1 (parity)

93

What "Algorithm-based" means

Algorithm-based == non-transparent

Reasons against transparency:

- No synchronization worries
- Minimize checkpoint state
- Heterogeny

Tools for Performance Evaluation

- Timing and performance evaluation has been an art
 - > Resolution of the clock
 - > Issues about cache effects
 - > Different systems
 - > Can be cumbersome and inefficient with traditional tools
- Situation about to change
 - > Today's processors have internal counters

103

Performance Counters

- Almost all high performance processors include hardware performance counters.
- Some are easy to access, others not available to users.
- On most platforms the APIs, if they exist, are not appropriate for the end user or well documented.
- Existing performance counter APIs
 - > Compaq Alpha EV 6 & 6/7

> IA-64

- > SGI MIPS R10000
- > HP-PA RISC
- > IBM Power Series
- > Hitachi

> CRAY T3E

> Fujitsu

> Sun Solaris

- > NEC
- > Pentium Linux and Windows

Performance Data That May Be Available

- > Cycle count
- > Floating point instruction count
- > Integer instruction count
- > Instruction count
- > Load/store count
- Branch taken / not taken count
- > Branch mispredictions

- Pipeline stalls due to memory subsystem
- Pipeline stalls due to resource conflicts
- >I/D cache misses for different levels
- > Cache invalidations
- > TLB misses
- > TLB invalidations

105

Low Level API

- Increased efficiency and functionality over the high level PAPI interface
- There's about 40 functions
- Obtain information about the executable and the hardware.
- Thread safe

High Level API

- Meant for application programmers wanting coarse-grained measurements
- Calls the lower level API
- Not thread safe at the moment
- Only allows PAPI Presets events

107

High Level Functions

- PAPI_flops()
- PAPI_num_counters()
 - > Number of counters in the system
- PAPI_start_counters()
- PAPI_stop_counters()
 - > Enable counting of events and describes what to count
- + PAPI_read_counters()
 - > Returns event counts

Perfometer Features

- Platform independent visualization of PAPI metrics
- Flexible interface
- Quick interpretation of complex results
- → Small footprint→ (compiled code size < 15k)
- Color coding to highlight selected procedures
- Trace file generation or real time viewing.

PAPI - Supported Processors

- Intel Pentium, II, III, 4, Itanium,
 Linux 2.4, 2.2, 2.0 and perf kernel patch
- → IBM Power 3,604,604e (Power 4 coming)
 → For AIX 4.3 and pmtoolkit (in 4.3.4 available)
 → (laderose@us.ibm.com)
- Sun UltraSparc I, II, & IIISolaris 2.8
- SGI IRIX/MIPS
- AMD Athlon
 - > Linux 2.4 and perf kernel patch
- Cray T3E, SV1, SV2
- Windows 2K and XP
- To download software see: http://icl.cs.utk.edu/papi/

Work in progress on Compaq Alpha Fortran, C, and MATLAB bindings

111

Early Users of PAPI

- ♦ DEEP/PAPI (Pacific Sierra)

 http://www.psrv.com/deep_papi_top.html
- ◆ TAU (Allen Mallony, U of Oregon)
 http://www.cs.uoregon.edu/research/paracomp/tau/
- SvPablo (Dan Reed, U of Illinois)
 http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm
- Cactus (Ed Seidel, Max Plank/U of Illinois) http://www.aei-potsdam.mpg.de
- Vprof (Curtis Janssen, Sandia Livermore Lab) http://aros.ca.sandia.gov/~cljanss/perf/vprof/
- Cluster Tools (Al Geist, ORNL)
- DynaProf

What is DynaProf?

- A portable tool to dynamically instrument a running executable with *Probes* that monitor application performance.
- Simple command line interface.
- Java based GUI interface.
- Open Source Software.
- Built on and in collaboration with Bart Miller and Jeff Hollingsworth Paradyn project at U. Wisconsin and Dyninst project at U. Maryland

113

Dynamic Instrumentation:

- Operates on a running executable.
- Identifies instrumentation *points* where code can be inserted.
- Inserts code *snippets* at selected *points*.
- Snippets can collect and monitor performance information.
- Snippets can be removed and reinserted dynamically.
- + Source code not required, just executable

Futures for Numerical Algorithms and Software on Clusters and Grids

- Retargetable Libraries Numerical software will be adaptive, exploratory, and intelligent
- Determinism in numerical computing will be gone.
 - > After all, its not reasonable to ask for exactness in numerical computations.
 - Auditability of the computation, reproducibility at a cost
- Importance of floating point arithmetic will be undiminished.
 - > 16, 32, 64, 128 bits and beyond.
- Reproducibility, fault tolerance, and auditability
- Adaptivity is a key so applications can effectively use the resources.

Contributors to These Ideas

- ◆ Top500
 - > Erich Strohmaier, LBL
 - > Hans Meuer, Mannheim U
- ATLAS
 - > Antoine Petitet, UTK
 - > Clint Whaley, UTK
- Recursive factorization
 - ➤ Piotr Luszczek, UTK
 - > Victor Eijkhout, UTK
- ◆ PAPI
 - > Shirley Browne, UTK
 - > Kevin London, UTK
 - > Phil Mucci, UTK
 - > Keith Seymour, UTK
 - > Dan Terpstra, UTK

For additional information see...

www.netlib.org/top500/
icl.cs.utk.edu/atlas/

icl.cs.utk.edu/papi/

www.cs.utk.edu/~dongarra/

Many opportunities within the group at Tennessee