& 1N RIA

The Impact Of Computer Architectures
On Linear Algebra
Algorithms and Software

Jack Dongarra
Innovative Computing Laboratory
University of Tennessee

http://www.cs.utk.edu/~dongarra/

Qutline

+ Performance issues

+ Self Adapting Software for
Optimization
»ATLAS and other examples

¢ Recursive Factorization
>LU

¢+ Performance Monitoring Tools
»>PAPT




High Performance Computers

¢+ ~ 20 years ago
» 1x106 Floating Point Ops/sec (Mflop/s)
> Scalar based
¢+ ~ 10 years ago
» 1x10° Floating Point Ops/sec (Gflop/s)
> Vector & Shared memory computing, bandwidth aware
> Block partitioned, latency tolerant
+ ~ Today
» 1x10'2 Floating Point Ops/sec (Tflop/s)
» Highly parallel, distributed processing, message passing, network based
> data decomposition, communication/computation
+ ~ 10 years away
> 1x1015 Floating Point Ops/sec (Pflop/s)
> Many more levels MH, combination/grids&HPC

> More adaptive, LT and bandwidth aware, fault tolerant,
extended precision, attention to SMP nodes

3
Where Does the Performance Go? or
Why Should | Care About the Memory Hierarchy?
Processor-DRAM Memory Gap (latency)
TOOQ | oo (MPI’OC
“ : ” 60%/yr.
M L
9 oores Lal (2X/1.5yr)
% 100 ........................................................... P'r'(')"C'eSSOI’-MemOI’y
g Performance Gap:
10/ (grows 50% / year)
) ~DRAM
o orav Q0%/yr.
1 R | LI [P I R U I BN B R B D Ry | (ZX/].O yrs)
PR B3R Er88555258358558¢8

-
3
@




Optimizing Computation and
Memory Use

¢+ Computational optimizations
> Theoretical peak:(# fpus)*(flops/cycle) * Mhz

» Pentium III: (1 fpu)*(1 flop/cycle)*(850 Mhz) = 850 MFLOP/s
> Pentium 4: (1 fpu)*(2 flops/cycle)*(2.53 Ghz) = 5060 MFLOP/s
> Athlon: (2 fpu)*(1flop/cycle)*(600 Mhz) = 1200 MFLOP/s
> Power3: (2 fpu)*(2 flops/cycle)*(375 Mhz) = 1500 MFLOP/s
+ Operations like:
> a=xTy: 2 operands (16 Bytes) needed for 2 flops:

at 850 Mflop/s will requires 1700 MW/s bandwidth

» y =ax+y 3 operands (24 Bytes) needed for 2 flops:
at 850 Mflop/s will requires 2650 MW/s bandwidth

¢+ Memory optimization
» Theoretical peak: (bus width) * (bus speed)

> Pentium III: (32 bits)*(133 Mhz) = 532 MB/s = 66.5 MW/s
> Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s = 266 MW/s
> Athlon: (64 bits)*(133 Mhz) = 1064 MB/s = 133 MW/s 5
> Power3: (128 bits)*(100 Mhz) = 1600 MB/s = 200 MW/s

Memory Hierarchy

+ By taking advantage of the principle of locality:

> Present the user with as much memory as is available in
the cheapest technology.

> Provide access at the speed offered by the fastest

technology.
Processor Tertiary
Secondary (DiStsI(Z/r'?gaze)
Control Storage
(Disk)
— Level Main
&E 09 2and3 Memory | |Distributed || Remote
Datapath a 8o Cache (DRAM) Memory Cluster
el |23 (SRAM) Memory
[%2]
Speed (ns): 1s 10s 100s 108%0100(33 10,000,000,000s
S ms
Size (bytes): 100s (10s se0)
(bytes) Ks Ms 100,000s 10,000,000’ s
(1sms) (10s ms)

Gs Ts




Level 1, 2and 3BLAS

¢ Level 1 BLAS .

Vector-Vector = H + H
operations -

¢+ Level 2 BLAS .
Matrix-Vector = . H
operations .

¢+ Level 3 BLAS

Matrix-Matrix o N D L
operations

Why Higher Level BLAS?

¢+ Can only do arithmetic on data at
the top of the hierarchy

¢+ Higher level BLAS lets us do this

BLAS Memory |Flops Flops/

Refs Memory
Refs
Level1 3n 2n 213
y=y+ux
Level2 [|n? 2n? 2
y=y+Ax
Level 3 |4 n? 2n® nl/?2

C=C+AB




BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz

2000 + Level 3 BLAS
1500 +
é 1000 +
500 - Level 2 BLAS
P Level 1BLAS
0 } } } } } {

10 100 200 300 400 500

Order of vector/Matrices

+ Development of blocked algorithms
important for performance

6 Variations of Matrix Multiple

for = 1in;
for _ = 1in;
for = 1in;
G, < G +AB
end
end
end




6 Variations of Matrix Multiple

Ciy~ A
for_ = 1in; [ aaa ] {_] Ul"”
for _ = 1.n;
for_ = 1:n;
C, < G, *+AB,
end
end
end

6 Variations of Matrix Multiple

Ci,j - Al,k Bk,j
ijk
for = 1.n;
f =1 p—
o= g (=) (=
G, < C] +A,ka<1
end
end




6 Variations of Matrix Multiple

Ci,j e Al,k Bk,j
for_ = 1.n; K
for_ = 1in; ki
for_ = 1:n;
G < G *ALB K [EJ{ : } [_}
end
end
end

6 Variations of Matrix Multiple

Ci,j - Al,k Bk,j
for = 1.n; Ik
for = 1:n ki
for _ = 1:n
Cl,j - C.j +A,ka<,j Kij
end
end G (-] [
end




6 Variations of Matrix Multiple

ik
for _ = 1.n; !
for _ = 1.n; ki
for _ = 1.n;
G, < G +AB Kij
end
end
end ki

Ci,J“ALk Bk,j

AR
) (3 )

6 Variations of Matrix Multiple

iik
for = 1n; ]
for = 1:n ki
for _ = 1:n
Cl,j — C.j +A,ka<,j Kij
end
end
end ki
jik

Ci,J“ALk Bk,j

[[ANIES




6 Variations of Matrix Multiple

o in ik [ aaaaa ] _} U ||”
forf;r_: . v . i (=] (B
C,-C,*AB, W (=} i) [—]

o o (CE
end ja 1R[]
- ik [FHE1)

6 Variations of Matrix Multiple

for_ = 1in . [ vvvvv ] —} U "”
for = 1.n; ikj [—}“[} [E}
g [EMi)[—

o o (-1
end g (R[5
Fcortran /Jik [ : }[E} [ | }

However, only part of the story




Matrices in Cache

For a Pentium III 933 MHz
L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

v16KB/8 = 45

¢+ L2 cache 256 KB

> 5qrt(256K/8) = 179

For a Pentium 11l 550 MHz
L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

* L2 cache 512 KB

Sqrt(512K/8) = 252

Pentium 111 933 MHz
77 -03

ik
ik

iki
ki
- kij
ik

—+—atlas

20

10



Pentium 111 933 MHz
77 -03

ik
=ik
i
s kji
s kij
ik
——atlas
TCHSIRE8ILABIEN R8RSR EEEIEABEEILEEEE
order
Pentium 11 550 MHz
77 -03
ik
—=—jik
ki
—kji
—xkji
——ikj
——dgemm
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 561 581 22

Order

11



Pentium 11 550 MHz
77 -03

400
350

300

100
50 1§

0

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253

| 25
Matrix Multiply
Assumption Datain Cache
+ Inner loop:
>2 loads, 2
. . operations,
+ DOT version - in cache sﬁbopﬁmal.
DO 32; 2=01f CAI " >»No reuse of
8O 10 K S L registers
C(T.T) = C(T.T) + ACLKY*B(K,T)
10 CONTINUE
20 CONTINUE
30 CONTINUE
24

12



How to Get Near Peak

DO30JT =1, M2 ¢+ Inner loop:
DO20I+1, M, 2
Til=¢x J) >4 loads, 8
T12 = (T, J+1) :
T21 - CI1.7 ) operahons,
T22 = C(T+1,J+1) optimal.
DO10K=1,L

T11 = T11 + AT, K) *B(K,T ) >Reuse dOTO in
T12 = T12 + A(T, K) *B(K,J+1) pegisfer-s
T21 = T21 + A(I+1,K)*B(K,T )
T22 = T22 + A(T+1 K)*B(K,J+1)
10 CONTINUE
cIT, T )=Ti1
CET. J+1) = T12

C(I+1,7 )= T21 = J=>
C(T+1,T+1) = T22 [ = K
20  CONTINUE °o

30 CONTINUE | =1
! l

¢ For a Pentium IITI 933 MHz
»Peak 933 Mflop/s

»>Best can do around 2/3 peak, has to do with the stack
architecture

»2 level of cache 16KB and 256KB

+ Note 4 different performance levels
»Bad cache use
»>Level 1 cache, then exceeds
»>Level 2 cache, then exceeds
»>Putting it all together

¢+ Problems too large for cache, do blocking
¢+ Unrolling for register reuse critical

15



Mairix Multiply
(blocked, or tiled)

Consider A,B,C to be N by N matrices of b by b subblocks
where b=n/N is called the blocksize

fori=11to N
for j=11to N
{read block C(i,j) into fast memory}
fork=1to N
{read block A(i k) into fast memory}
{read block B(k,j) into fast memory}
€(i.j) = C(i.j) + AG.K) * B(k,j) {do a
matrix multiply on blocks}
{write block C(i,j) back to slow memory}

Ai,K)
S
= + * | mek

C(i.j) C(i.)
o =

27

n is the size of the matrix, N blocks of size b; n = N*b

Adaptive Approach for Level 3

+ Do a parameter study of the operation
on the target machine, done once.

¢+ Only generated code is Level 1 Cache
multiply

+ BLAS operation written in terms of
generated on-chip multiply

¢+ All tranpose cases coerced through data
copy to 1 case of on-chip multiply

> Only 1 case generated per platform
N

K N

14



elf-Adapting Numerical Software
(SANS)

Today's processors can achieve high-performance, but
this requires extensive machine-specific hand tuning.

Operations like the BLAS require many man-hours /
platform

+ Software lags far behind hardware introduction

* Only done if financial incentive is there

Hardware, compilers, and software have a large
design space w/many parameters

> Blocking sizes, loop nesting permutations, loop unrolling
depths, software pipelining strategies, register allocations,
and instruction schedules.

> Complicated interactions with the increasingly sophisticated
micro-architectures of new microprocessors.
Need for quick/dynamic deployment of optimized routines.

ATLAS - Automatic Tuned Linear Algebra Software .

300

Software Generation / S N

Strategy

¢ Level 1 cache multiply

optimizes for:

> TLB access
» L1 cache reuse

> FP unit usage

> Memory fetch
> Register reuse
> Loop overhead

minimization

¢+ Takes about 30 minutes
to run.

+ "New" model of high
performance programming
where critical code is
machine generated using
parameter optimization.

200

[E
0
100
5

50 10

0 15

—_—
=0 18 10 5 o &

¢+ Code is iteratively

generated & timed until
optimal case is found.
We try:

> Differing NBs

> Breaking false
dependencies

> M, N and K loop unrolling
Designed for RISC arch
> Super Scalar

> Need reasonable C
compiler

¢+ Today ATLAS in use by

Matlab, Mathematica,
Octave, Maple, Debian,
Scyld Beowulf, SuSE, ..

15



| libraries provided by the vendor

ATLAS (DGEMM n=500)

3500.0
3000.0
2500.0

2000.0

MFLOP/S

1500.0

1000.0

N )

+ ATLAS is faster than ail other ;ortable BLAS
implementations and it is comparable with machine-specific

X

31

MATLAB

¢+ Currently over 500,000 MATLAB licenses
+ Matlab gives simplicity and power but not
performance
»>Codes prototyped in MATLAB
»>User would rewrite in Fortran or C later

+ Well...

¢+ Today MATLAB uses ATLAS BLAS and
LAPACK
»>6reat performance for these operations
»>But no interoperation optimization in MATLAB

+ Demo

32

16



Some Automatic Tuning Projects

¢+ ATLAS (www.netlib.org/atlas) (Dongarra, Whaley)

¢ PHIPAC (www.icsi.berkeley.edu/~bilmes/phipac)
(Bilmes, Asanovic, Vuduc, Demmel)

+ Sparse matrix operations, (Yelick, Im & Dongarra, Eijkhout)
+ Communication topologies (Dongarra)
+ FFTs and Signal Processing
»FFTW (www.fftw.org)
> Won 1999 Wilkinson Prize for Numerical Software
» SPIRAL (www.ece.cmu.edu/~spiral)
> Extensions to other transforms, DSPs
»UHFFT
> Extensions to higher dimension, parallelism

33

Penfium 4 - SSEZ
Today’s “ Sweet Spot” in Price/Performance

¢+ 2.53 6Hz, 400 MHz system bus, 16K L1 &
256K L2 Cache, theoretical peak of 2.53
Gflop/s, high power consumption

+ Streaming SIMD Extensions 2 (SSE2)

> which consists of 144 new instructions

» includes SIMD IEEE double precision floating point
» Peak for 64 bit floating point 2X (5.06 Gflop/s)
» Peak for 32 bit floating point 4X (10.12 Gflop/s)

> SIMD 128-bit integer

> new cache and memory management instructions.

> Intel's compiler supports these instructions today

> ATLAS was trained to probe and detect SSE2

34

17



ATLAS Matrix Multiply
Intel Pentium 4 at 2.53GHz — using SSE2

8000
7000
6000
5000
o 4000
3000
2000
1000

2-bit fl pt using SSE2

p/s

it fl pt using SSE2

Mfl

——Intel P4 2.53 GHz 32-bit SSE2

—=—Intel P4 2.53GHz 64-bit SSE2

Multi-Threaded DGEMM
Intel PI11 550 MHz

800
700
600
2 500
S 400
= 300
200
100

S
D

—o—Intel BLAS 1 proc ——ATLAS 1proc = Intel BLAS 2 proc —sk—ATLAS 2 proc

Q O O QOSSO S QS D
PSS S

16



Experiments with C, Fortran, and
Javafor ATLAS (DGEMM kernel)

800
700 ﬂ

600 [ |
® 500 -
& 400
£ 300-
200 -
100
0 |
periom 1 2P0 81 pow er
A00MH 3 375 MHz
- FO rt ran Linux anzdszoj(')z’ailz
OcC 'B'\lekl-s Java 2
SDK 1.2.2
D Ja va w ith Fast
VM1.2.2
Recursive Approacn Tor
Other Level 3BLAS
¢+ Recur down to L1 Recursive TRMM
cache block size
¢+ Need kernel at N
bottom of
recursion N

> Use gemm-based \\
kernel for

portability W\

28

19



Intel Pl 933 MHz
MKL 5.0 vsATLAS 3.2.0 using Windows 2000

800
W Vendor BLAS

700 W ATLAS BLAS

600
0 500
5
O 400 1
LL
= 300 -

200 |

100 +

0 . . . . .
DGEMM DSYMM DSYRK DSYR2K DTRMM DTRSM

BLAS

¢+ ATLAS is faster than all other portable BLAS
implementations and it is comparable with

machine-specific libraries provided by the vendor.

[ IVIACTTIITTIE-ASIIEU APPITCAlIun
Development and Adaptation

¢+ Communication libraries

»Optimize for the specifics of one's
configuration.

¢+ Algorithm layout and implementation

»>Look at the different ways to express
implementation

40

20



Work in Progress.
ATLAS like Approach Applied to Broadcast

[ (PIT 8" Way CIUStEr WitlT 100 V1S SWitCHed TIetwWor K)

R

Sequentia Binary Binomia
Ring
T broaccast o) ‘ . M essage Size Optimal algorithm Buffer Size
automatically tuned broadcast —— (bytes) (bytes)
D2 44 F mpich broadcast —+—
8 binomial 8
131072 F 16 binomial 16
32 binary 32
B5536 64 binomial 64
_ 128 binomial 128
5 wves 256 binomial 256
B 512 binomial 512
E 16384 1K sequential 1K
2K binary 2K
8192 ¢ 4K binary 2K
8K binary 2K
4086 16K binary 4K
048 32K b_mary 4K
64K ring 4K
1024 ¢ X . . . ‘ . 128K ring K
16 B4 D5R 104 4096 1GGA4 BSSRG PAPIADMASASOR 256K ring 4K
Message Size [bytes] 512K ring 4K
M binary 4K

Reformulating/Rearranging/Reuse

+ Example is the reduction to narrow band
from for the SVD

A, =A-uy' —w'
— AT
Yiew = Au
Wnew = A‘IGNV
¢+ Fetch each entry of A once
+ Restructure and combined operations

+ Results in a speedup of > 30%

42

21



CG VdATas Dy DYTIATIC
Selection at Run Time

Classical

¢+ Variants combine
inﬂel" pr‘OdUCfS 1’0 Pra‘con i;onanwph‘cun‘ou:
reduce o -
communication
bottleneck at the
expense of more

scalar ops.

Inner products 1:

+ Same number of Sl
iterations, no e
advantage on a e Eroduct:

Sequenfia' processor Preconditioner application:

+ With a large number #merproduicts2:
of processor and a
high-latency network
may be advantages. )

'S Improvemenfs can Residual updte:

r+r—aldp

range from 15% t0  Supamte taner producss”
50% depending on

size. 45
Classical Saad/Meurant Chronopoulos/Gear  Eijkhout
+ Variants combine ’V-'
o error = rfr
inner products to ppnmou.- . _
reduce LT sedr
A id
Commun‘caflon Inner products 1: A !
bottleneck at the — PRy
ervor = vrtr
expense of more AT e grar
scalar ops. ¢« s'az e (M1 (Ap)
* Same numbEr Of B« p[poia B = ppredict/ Pord B+ p/poa id
iterations, no S;”Z"JTZZ"” e id id id
. A
Matrix-v duct:
advanfa_ge on a P WS T e
Sequen*ha' processor Preconditioner application: .
. g+ M ap
¢ With a large number fnerproducis2i -
of processor and a D
. P ‘ 4= apq o _gx - E
high-latency network ervor = Vr'r o cors
may be advantages. Pirve = 27
a=p/7 +«Porue - - a=pfw
¢+ Improvements can  Residual ypdte: . . .
o 71— adp id id id
range from 15% to 3 separate inner products 4 combined 3 combined 4 combined
50% depending on 1 extra vector update id id
size w

22



[ TS0y O BIroCK Fartitnorreu
Algorithms

¢ Early algorithms involved use of
small main memory using tapes as
secondary storage.

+ Recent work centers on use of
vector registers, level 1 and 2
cache, main memory, and “out of
core” memory.

45

Blocked Partitioned Algorithms

+ Orthogonal
reduction to:

> (upper) Hessenberg

¢+ LU Factorization

+ Cholesky
factorization

form
+ Symmetric indefinite  » symmetric tridiagonal
factorization form
+ Matrix inversion > bidiagonal form
+ QR, QL, RQ, LQ ¢ Block QR iteration
factorizations for nonsymmetric
+ Form Q or Q'C eigenvalue problems

46

25



LAPACK

¢+ Linear Algebra library in Fortran 77
> Solution of systems of equations
> Solution of eigenvalue problems

+ Combine algorithms from LINPACK and
EISPACK into a single package

+ Efficient on a wide range of computers
> RISC, Vector, SMPs

+ User interface similar to LINPACK
> Single, Double, Complex, Double Complex

¢ Built on the Level 1, 2, and 3 BLAS

47

LAPACK

¢ Most of the parallelism in the
BLAS.

+ Advantages of using the BLAS for
parallelism:
»>Clarity
»Modularity
>Performance
»>Portability

48

24



Derivaiion of Blocked ATgorithms
Cholesky Factorization A = UTU

il

Au a; A13 UlTl 0 0 U11 U, U13
aj a; al| ={u u 0| 0 u 4
A1T3 aj %3 UlTs H, U3T3 0 0 Us
Equating coefficient of the j*h column, we obtain
117
— (7 2
a. =uu +u°
ji i i
Hence, if Uy has already been computed, we can
compute uand u; from the equations:

T —

2 o _.T
U =a; — U u;

49

LINPACK Implementation

¢+ Here is the body of the LINPACK
routine SPOFA which implements the

method:

DO30J=1,N
INFO=J
S=0.0E0
M1=J3-1
IF(JM1LT.1) GO TO 20
DO 10K =1, JM1
T=A(K,J)-SDOT(K-1,A(LK ), LA(1,J) 1)
T=T/A(K,K)
A(K,J)=T
S=S+T*T
10  CONTINUE
20 CONTINUE
S=A(J,J)-S
C  LEXIT
IF( SLE.0.0E0) GO TO 40
A(J,J)=SQRT(S)
30 CONTINUE

50

25



LAPACK Implementation

DO10J=1,N

CALL STRSV('Upper', 'Transpose', 'Non-Unit’, J-1, A, LDA,A(1,J),1)
S=A(J,J)-SDOT(J-1,A(1,J),1,A(1,J),1)
IF(SLE.ZERO)GO TO 20
A(J,J)=SQRT(S)
10 CONTINUE

+ This change by itself is sufficient to
significantly improve the performance on a
number of machines.

¢+ From 238 to 312 Mflop/s for a matrix of
order 500 on a Pentium 4-1.7 GHz.

+ However on peak is 1,700 Mflop/s.
+ Suggest further work needed.

51

Derivation of Blocked Algorithms

Al A Ag U, 0 0)(U, U, Uy,
AiTz A, A, =|U 1Tz U 2Tz 0 0 U, U 2Ts iﬁ%
us, U, UL O 0 U,

As A A
Equating coefficient of second block of columns, we obtain
— T
A&Z - U 11U 12
— T T
Ay =URUL +URU
Hence, if Uy, has already been computed, we can
compute U, as the solution of the following equations

by acall to the Levgl S BLAS routine STRSM:
Ullu 12 = Aﬁ.Z

U2TzU22 = A, _U1T2U12

52

20



LAPACK Blocked Algorithms

DO 10J=1,N,NB
CALL STRSM('Left', "Upper', 'Transpose','Non-Unit', J-1, JB, ONE, A, LDA,

$ A(1,J),LDA)
CALL SSYRK ('Upper, ‘Transpose, JB, J-1,-ONE, A( 1,J), LDA, ONE,
$ A(J,3),LDA)

CALL SPOTF2('Upper', JB, A(J,J), LDA, INFO )
IF(INFO.NE.O) GO TO 20
10 CONTINUE

On Pentium 4, L3 BLAS squeezes a lot more out of 1 proc

Intel Pentium 4 1.7 GHz | Rate of Execution
N = 500
Linpack variant (L1B) 238 Mflop/s

Level 2 BLAS Variant 312 Mflop/s

Level 3 BLAS Variant 1262 Mflop/s 53

LAPACK Contents

+ Combines algorithms from LINPACK and
EISPACK into a single package. User
interface similar to LINPACK.

¢ Built on the Level 1, 2 and 3 BLAS, for
high performance (manufacturers optimize
BLAS)

¢+ LAPACK does not provide routines for
structured problems or general sparse
matrices (i.e sparse storage formats such
as compressed-row, -column, -diagonal,
skyline ...).

54

27



LU Factorization
Pentium 4, 1.5 GHz, using SSE2

100
300
500
700
0
1200
1600
2000
2400
2800

Gaussian Elimination

D

— 0

Standard Way LINPACK

subtract a multiple of a row apply sequence to a column

ar3
) %

4| a3

22 =L 22

nb LAPACK b Az=2z"2y ap
apply sequence to nb then apply nb to rest of matrix

56

28



GausSian Elfminalion viaa
Recursive Algorithm

F. Gustavson and S. Toledo

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)
if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part
3: Apply transformations to right part
(triangular solve A,,= LA, and
matrix multiplication A,,=A,, -Az*As,)
4: Apply LU Algorithm to right part
L AIZ
AZ] AZZ N
Most of the work in the matrix multiply7
Matrices of size n/2,n/4,n/8, ..

Recursive Factorizations

+ Just as accurate as conventional method
+ Same number of operations
+ Automatic variable blocking
> Level 1 and 3 BLAS only !
¢+ Extreme clarity and simplicity of expression
+ Highly efficient

¢+ The recursive formulation is just a
rearrangement of the point-wise LINPACK
algorithm

¢+ The standard error analysis applies (assuming
the matrix operations are computed the
“conventional” way).

55

29



Pentium I11 550 MHz Dual Processor
LU Factorization

FAPACK

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Order

Dense recursive factorization

+ The algorithm:

function rlu(A)

begin
rlu(Ay); recursive call
Ay <Ay UYAL; XxTRSM() on upper triangular submatrix
Ay, <LiY(Ay) - Ay XTRSM() on lower triangular submatrix
Az —AgrAyrAy XGEMM()
rlu(A,y); recursive call

end.

+ Replace xTRSM and xGEMM with sparse
implementations that are themselves recursive

30



Recursive LU Factorization

function RLU(A)
begin
RLU(A,,)
A=Ay Ut (Ay)
DTRSM()

Ap =Lt (Ap) Ap
DTRSM()

Ap=Ap—AyAp
DGEMM()

RLU(A,,)

o1

Sparse Factorization Assumptions

¢+ Sparse recursive LU factorization

>Based on recursive formulation of LU
factorization
»No partial pivoting during factorization
»>Diagonal zeros replaced with small elements,
eg. €l|All
»>Iterative refinement used to regain precision
>Locate dense blocks, performance comes
from the use of BLAS Level 3

»Aimed at improving time to solution - memory
usage may suffer

62

31



Sparse Recursive Factorization Algorithm

¢ Solutions - continued

»>fast sparse xGEMM() is two-level algorithm
>recursive operation on sparse data structures

»>dense xGEMM() call when recursion reaches
single block

¢+ Uses Reverse Cuthill-McKee ordering
causing fill-in around the band

+ No partial pivoting
>use iterative improvement or
>pivot only within blocks

63

2. Symbolic Factorization
3. Search for Dense blocks

® original nonzero value
zero value introduced due to fill-in

zero value introduced due to blocking oa

22



Recursive Factorizaiion Applied 1o
Sparse Direct Methods

L ayout of sparse recur sive matrix
in storage follows recursion

Symbolic Factorization

Search for blocks that

contain non-zeros || [ au

Conversion o sparse ]

recursive storage } a

Search for embedded s

blocks ! =

Numerical factorization N N } N
21 22 12

A2
o

SuperL U - High Performance Sparse
Solvers

¢ SuperLU: X. Li and J. Demmel
> Solve sparse linear system Ax=b using Gaussian
elimination.
> Efficient and portable implementation on
modern architectures:
> Sequential SuperLU : PC and workstations
> Achieved up to 40% peak Megaflop
rate
> SuperLU_MT : shared-memory parallel
machines
» Achieved up to 10 fold speedup
> SuperLU_DIST : distributed-memory
parallel machines
> Achieved up to 100 fold speedup
> Support real and complex matrices, fill-
reducing orderings, equilibration, numerical
pivoting, condition estimation, iterative
refinement, and error bounds.
¢+  Enabled Scientific Discovery
» First solution to quantum scattering of 3
charged particles. [Recigno, Baertschy, Isaacs
& McCurdy, Science, 24 Dec 1999]
> SuperLU solved complex unsymmetric systems
of order up to 1.79 million, on the ASCI Blue
Pacific Computer at LLNL.

66




Comparison with SuperLU on Pentium 111

SuperLU Recursion

Name N nonzeros |Time[s] 'FERR  |L+U Time[s] [FERR  |L+U

af23560 23560 460598 44.19 5.80E-14 132.2 31.34 1.80E-14 149.7
ex11 16614 1096948  109.67 2.50E-05 210.2 55.3 1.30E-06 150.6
goodwin 73200 324772 6.49) 1.20E-08 313 6.74/ 4.60E-06 35
jpwh_991 991 6027, 0.19/ 2.90E-15 1.4 0.25/ 2.60E-15 2.3
mcfe 765 24382 0.07 1.20E-13 0.9 0.22 9.10E-13 1.8
memplus 17758 126150 0.29 2.10E-12 5.9 12.67 6.60E-13 195.7
olafu 16146 1015156 26.16 1.10E-06 83.9 22.1 3.70E-09 96.1
orsreg_1 2205 14133 0.46/ 1.30E-13 3.6 0.45 2.10E-13 39

psmigr_1 3140 543162 110.79 7.90E-11 64.6 88.61 1.20E-05 78.4
raefsky3 21200 1488768 62.07 1.40E-09 147.2 69.67 4.40E-13 193.9
raefsky4 19779 1316789 82.45 2.30E-06 156.2| 104.29 3.50E-06 234.4

saylrd 3564 22316 0.85 3.20E-11 6 0.95 1.20E-11 7.2
sherman3 5005 20033 0.61| 6.00E-13 5 0.67 4.80E-13 7.3
sherman5 33120 20793 0.28| 1.40E-13 3 0.32 6.20E-15 31
wang3 26064 17716@ 84.14 2.40E-14 116.7 79.18 1.60E-14 256.7

Breakdown of Time Across Phases
For the Recursive Sparse Factorization

af23560 ex11  goodwin jpwh 991 mcfe memplus olafu orsreg_1 psmigr_1 raefsky_3 raefsky 4 saylrd sherman3 sherman5 wang3

Different Test Matrices

m Numerical
fact,

0 Ebedded
blocking

O Recursive
CONVErsion

B Block
conversion

@ Symbolical
fact.

[522]

>4



Scal APACK ScalAPACK |

A Software Library for Linear Algebra Computations on Distributed-Memory

L4

L4

L4

ScalLAPACK is a portable distributed
memory numerical library

ED =
Complete numerical library for dense matrix
comgufaﬁons Y
Des:':qned for distributed Fgmr'cxllel computing
(MPP & Clusters) using MPT
One of the first math software packages to
do this
Numerical software that will work on a
heterogeneous platform
Funding from DOE, NSF, and DARPA
In use today by IBM, HP-Convex, Fujitsu,
NEC, Sun, SGI, Cray, NAG, IMSL, ..

> Tailor performance & provide support

69

ScaL APACK

¢+ Library of software dealing with
dense & banded routines

+ Distributed Memory - Message
Passing

¢+ MIMD Computers and Networks of
Workstations

¢ Clusters of SMPs

70

35



Programming Style

¢+ SPMD Fortran 77 with object based design

+ Built on various modules

> PBLAS Interprocessor communication

> BLACS
»PVM, MPI, IBM SP, CRI T3, Intel, TMC
»Provides right level of notation.

> BLAS

+ LAPACK software expertise/quality
> Software approach
> Numerical methods

71

Overall Structure of Software

¢+ Object based - Array descriptor

> Contains information required to establish
mapping between a global array entry and its
corresponding process and memory location.

> Provides a flexible framework to easily
specify additional data distributions or
matrix types.

> Currently dense, banded, & out-of-core
¢+ Using the concept of context

72

515)



PBLAS

+ Similar to the BLAS in functionality and
naming.

+ Built on the BLAS and BLACS

+ Provide global view of matrix

CALL DGEXXX (M, N, A(IA,K JA), LDA,...)

Z

CALL PDGEXXX( M, N, A, TA, JA, DESCA,...)

73

ScaL APACK Structure

Scal APACK
\
PBLAS
Clobal

74

37



Choosing a Data Distribution

¢ Main issues are:

»>Load balancing
»Use of the Level 3 BLAS

75

Possible Data L ayouts

+ 1D block and cyclic column distributions

NEREEERE
EEEEEEERE
NEREEERE
| = o 4] @] o] | =
R
EEEEEEER

w| & nl o n| o n| o
| =] @ af o < @l 4

¢+ 1D block-cycle column and 2D block-cyclic
distribution

+ 2D block-cyclic used in ScaLAPACK for dense
matrices

76

36



Distribution and Storage

¢ Matrix is block-partitioned & maps blocks
+ Distributed 2-D block-cyclic scheme

5x5 matrix partitioned in 2x2 blocks
2x2 process grid point of view

A A Al As | | As  As
Ao A4 | |Ae o || A A
A A} | [A- BB | | [P | [P 7
Ao A | A — e
7 Pe Ad ] A Ao || Ao A

+ Routines available to distribute/redistribute
data.

77

To Use ScaLAPACK aUser Must:

+ Download the package and auxiliary packages (like
PBLAS, BLAS, BLACS, & MPI) to the machines.

¢+ Write a SPMD program which
> Sets up the logical 2-D process grid
> Places the data on the logical process grid

> Calls the numerical library routine in a SPMD fashion
> Collects the solution after the library routine finishes

¢+ The user must allocate the processors and decide

the number of processes the application will run on

¢+ The user must start the application
> “mpirun -np N user_app”

> Note: the number of processors is fixed by the user before

the run, if problem size changes dynamically ...

¢+ Upon completion, return the processors to the pool

of resources

29



ScaL APACK Cluster Enabled

+ Implement a version of a ScaLAPACK
library routine that runs on clusters.
> Make use of resources at the user’s disposal
> Provide the best time to solution
> Proceed without the user's involvement

¢+ Make as few changes as possible to the
numerical software.

79

LAPACK For Clusters

+ Developing middleware which couples cluster
system information with the specifics of a
user problem to launch cluster based
applications on the "best” set of resource
available. sampie computing environment...

Users, etc.
100 Mbit
1 Gbit Switch,
(Iully connected)

Network File System,
SUN’s NFS (RPC/UDP)

100 Mbit Switch,
(fully connected)

Remote Memory Server,
<.g. TBP (TCP/IP)

+ Using ScaLAPACK as the prototype software

&0

40



Big Picture...

Natural 1 Natura
Data (A,b) Answer (X)

Structured
Data(A’,b")

Structured
Answer (X’)

&1

Numerical Libraries for Clusters

Stage data to disk

&2

41



Numerical Libraries for Clusters

e

Numerical Libraries for Clusters

5 o= ==

42



Numerical Libraries for Clusters

i
Alb

Uses Grid infrastructure, i.e.Globus’NWS, but doesn’t haveto.

Resource Selector

¢ Use information on
Bandwidth/Latency/Load/Memory/CPU performance

» 2 matrices (bw,lat) 3 arrays (load, cpu, memory available)
¢+ Generated dynamically by library routine

CPU
Bandwidth

Latency Load Memory performance
XXX [ X[ X] [ X] [ X] [X] [X
XXX [ X[ X] | X] [ X] [X] [X
XX (x| [ XX Ix]| [X] |X] [X

&6

43



Ax=Db

Cluster of 8 Pentium 1l 933 MHz

10000
— =8| APACK; Proc = 1
© 1000 + = scaLAPACK: Proc = [3.3,8,8,8.8
> ——LFC; Proc = [2,3,4,6,8,8]
> 100 -
0p]
S 10 -
o))
£ 1
— [ [ [ [
— /
0.1 P o
RN I N SN

LAPACK For Clusters (LFC)

¢+ LFC will automate
much of the decisions
in the Cluster
environment to
provide best time to
solution.
> Adaptivity to the

dynamic environment.

> As the complexities of
the Clusters and 6Grid
increase need to
develop strategies for
self adaptability.

> Handcrafted developed
leading to an
automated design.

+ Developing a basic
infrastructure for
computational science
applications and
software in the Cluster
and 6rid environment.

» Lack of tools is hampering
development today.

¢ Plan to do suite: LU,
Cholesky, QR,
Symmetric eigenvalue,
and Nonsymmetric
eigenvalue

¢ Model for more general
framework

44



FT-MPI

¢+ Current MPT applications live under the MPI
fault tolerant model of no faults allowed.
> This is great on an MPP as if you lose a node
you generally lose a partition/job anyway.

> Makes reasoning about results easy. If there
was a fault you might have received
incomplete/incorrect values and hence have the
wrong result anyway.

> Planning a version of MPT with some extension
which will all the user to recover from system
errors, take corrective action, and carry one.

> Plan to be finished by the end of summer with
the beta release.

&9

Fault Tolerance in the Message Passing

¢ Critical for many 6rid and Cluster
applications

¢+ MPI wasn't designed to be fault
tolerant

¢ Number of projects
»FT-MPI at University of Tennessee

20

45



Algorithmic Fault Tolerance

¢ Important that this is built into the algorithms.
+ Not good enough to have it in the message passing.

¢+ Alpha version
» Limited number of MPTI functions supported

¢ Currently working on getting PETSC (the Portable, Extensible
Toolkit for Scientific Computation from ANL) working in a FT mode
> Target of 86 functions by end of summer 2002.
> Covers all major classes of functions in MPI.

¢+ Future work

> Templates for different classes of MPI applications so users can build on
our work

> Some MPI-2 support (PIO?)

+ Working on numerical library design for ScaLAPACK
and PETSc that will be fault tolerant.

91

Fault Tolerance - Diskless (RAID) Checkpointing
- Built into Software (J. Plank, J. Dongarra)

¢ Maintain a system checkpoint in memory
> All processors may be roll back if necessary

> Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored

> No reliance on disk

¢ Checksum and reverse communication
> Checkpoint less frequently
> Reverse the computation of the non-failed processors
back to previous checkpoint
¢ Idea to build into library routines
> System or user can dial it up

> Working prototype for MM, LU, LLT, QR, sparse
solvers

92

40



Use Diskless Checkpointing (PL94b):

- The N application processors each
maintain their own checkpoints locally.

- m extra processors maintain coding
information so that if 1 or more

processors die, they can be replaced.

- Will describe for m = 1 (parity)

)

What “Algorithm-based” means

Algorithm-based == non-transparent

Reasons against transparency:
- No synchronization worries
- Minimize checkpoint state

- Heterogeny

94

47



Cholesky Factorization

Factor a dense, symmetric, positive definite
matrix A into two matrices:

A=LLT

This is done in place:

N

Before After .
Blocking the Matrix
The matrix is partitioned into square block:
of a specified block size b
The processors are (logically) configured into
a p by g mesh, and the blocks are doled among
the processors in panels of p*q blocks.
.PU P.f;‘Po P!”PUI‘PL
P,|P,|[P,| Py| P3| Py
Fo P.fj‘Po Py .PoiPJ
P | P;|| P | Py || P | P
.PU ‘[,[;“DL? P!”PUIPI_
ARRRIRRT
A b
96

45



Top-looking Cholesky Factorization

(i) (i)
Juactored . Jactored
column l’_ col-blki column

blocks bl o_c.!'\-'s

97

Diskless Checkpointing: Starting State

For each panel of the matrix, maintain a
block in the checkpointing processor
that holds the bitwise parity of
all blocks in that panel

If a single processor fails, then its state
may be restored from the remaining live ones

928

49



Diskless Checkpointing:
at the beginning of step i

column
block

i
. panel

with
column
block
i

Processors Processor n
0 through (n-1)

D:A D:L D:LT DZPLH"I'{)-‘

929
Diskless Checkpointing: step i
Make a copy of column-block i
e D
Processors Processor n
0 through (n-1)
| |=Aa []=r [ |=r" [ =Parity
100

50



Diskless Checkpointing: step i

Culculate and update the parity of column-block i,
Step i is finished.

i

Processors Processor n
0 through (n-1)

| I=A [[]=r [ |=L" [B = Parity

101
Diskless Checkpointing: Step |
If a failure occurs, the system can
always roll back to the beginning
of step i
Processor n
E = Parity
102

51



[OOISTOr
Performance Evaluation

+ Timing and performance evaluation has
been an art
> Resolution of the clock
> Issues about cache effects
> Different systems
» Can be cumbersome and inefficient with
traditional tools
+ Situation about to change
> Today's processors have internal counters

103

Performance Counters

+ Almost all high performance processors
include hardware performance counters.

¢+ Some are easy to access, others not
available to users.

¢+ On most platforms the APIs, if they
exist, are not appropriate for the end
user or well documented.

+ Existing performance counter APIs

» Compaq Alpha EV 6 & 6/7 > TA-64
> SGI MIPS R10000

> IBM Power Series > H?-PA,RISC
> CRAY T3E > Hitachi

> Sun Solaris > Fujitsu

> Pentium Linux and Windows » NEC

52



Performance Daia
That May Be Available

> Cycle count

> Floating point
instruction count

> Integer instruction
count

» Instruction count
> Load/store count

» Branch taken / not
taken count

> Branch mispredictions

> Pipeline stalls due to
memory subsystem

> Pipeline stalls due to
resource conflicts

> I/D cache misses for
different levels

» Cache invalidations
> TLB misses
» TLB invalidations

105

Low Level AP

¢+ Increased efficiency and
functionality over the high level

PAPI interface

¢+ There's about 40 functions

¢ Obtain information about the
executable and the hardware.

¢ Thread safe

106

53



High Level AP

¢ Meant for application programmers
wanting coarse-grained
measurements

¢ Calls the lower level API
+ Not thread safe at the moment
¢+ Only allows PAPI Presets events

107

High Level Functions

+ PAPTI_flops()
¢+ PAPI_num_counters()

> Number of counters in the system
¢+ PAPI_start_counters()

+ PAPI_stop_counters()

> Enable counting of events and describes what
to count

¢+ PAPI_read_counters()
» Returns event counts

106

54



Perfometer Features

+ Platform independent visualization of
PAPI metrics

+ Flexible interface
¢ Quick interpretation of complex results

¢+ Small footprint
> (compiled code size < 15k)

¢+ Color coding to highlight selected
procedures

¢+ Trace file generation or real time
viewing.

109

PAPI Implementation

Machine
Specific
Layer

Portable PAPI High Level
Layer
T

110

55



PAPI - Supported Processors

¢+ Intel Pentium, II,III, 4, Itanium,
> Linux 2.4, 2.2, 2.0 and perf kernel patch
+ IBM Power 3,604,604e (Power 4 coming)
» For AIX 4.3 and pmtoolkit (in 4.3.4 available)
> (laderose@us.ibm.com)
¢ Sun UltraSparc I, II, & III
> Solaris 2.8
¢+ SGI IRIX/MIPS
¢+ AMD Athlon
> Linux 2.4 and perf kernel patch
¢+ Cray T3E, SV1, sv2
¢+ Windows 2K and XP
¢+ To download software see:
http://icl.cs.utk.edu/papi/
Work in progress on Compaq Alpha
Fortran, C, and MATLAB bindings

m

Early Users of PAPI

&\

+ DEEP/PAPTI (Pacific Sierra) Nkl

Pacific-Sierra Research

http://www.psrv.com/deep papi top.html ; X
+ TAU (Allen Mallony, U of Oregon) H%‘_A

http://Iwww.cs.uoregon.edu/research/paracomp/tau/

+ SvPablo (Dan Reed, U of Illinois) #able’

Sralstile Perfarmun e Tm;h

http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm wil

+ Cactus (Ed Seidel, Max Plank/U of Illinois)

http://lwww.aei-potsdam.mpg.de

+ Vprof (Curtis Janssen, Sandia Livermore Lab)
http://aros.ca.sandia.gov/~cljanss/perf/vprof/

¢ Cluster Tools (Al Geist, ORNL)
+ DynaProf

0
ali)
m

12

56



What is DynaProf?

¢ A portable tool to dynamically
instrument a running executable with
Probes that monitor application
performance.

+ Simple command line interface.
+ Java based GUI interface.
+ Open Source Software.

+ Built on and in collaboration with Bart
Miller and Jeff Hollingsworth Paradyn
project at U. Wisconsin and Dyninst
proiect at U. Marvland

13

Dynamic I nstrumentation:

+ Operates on a running executable.

+ Identifies instrumentation points where code
can be inserted.

+ Inserts code snippets at selected points.

+ Snippets can collect and monitor performance
information.

¢ Snippets can be removed and reinserted
dynamically.

+ Source code not required, just executable

14

57



- Perrometer’ Dynarror

Machine info

s

] ot [ ot | L o | ] |63

ops issued
: Flop/s Rate

Polling inferval: 100 ms Drawing delay: 8 ms

sk lOP/s Instantaneous Rate

Process &
Real time

15

Next version of
Perfometer I mplementation

55



PAPI's Parallel Interface

el Perfometer

Connection Options

7}];{ Connect Local | {{) Connect to Net ‘.&‘E,D;s(unnect | Select Metric| Ri';}} ;ﬁ;:(;«;

[ SWImO. swiml swim2 | swim3 | swimd swim$ swimé swim?

sssssssss mo
Machine: yogi0, 2 2 CPU R12000 at 270.0 Mhz
|Real time 8998 s Total: 16800.0 FP ins. MFLOPS: 0.001869158

|Process time: B98800431.. null 20.223346622415956 Polling interval: 0 ms Drawing delay: ..

Pause Graph Type: |FILLEDLINE v

17

Futures for Numerical Algorithms
and Software on Clusters and Grids

¢ Retargetable Libraries - Numerical software
will be adaptive, exploratory, and intelligent

+ Determinism in numerical computing will be
gone.

3

> After dll, its not reasonable to ask for exactness in numerical computations.

> Auditability of the computation, reproducibility at a
cost

+ Importance of floating point arithmetic will be
undiminished.
> 16, 32, 64, 128 bits and beyond.

¢+ Reproducibility, fault tolerance, and auditability

¢ Adaptivity is a key so applications can
effectively use the resources.

18

59



Contributorsto These Ideas

+ Top500
> Erich Strohmaier, LBL
> Hans Meuer, Mannheim U

¢+ ATLAS For additional
» Antoine Petitet, UTK information see...

» Clint Whaley, UTK .
. . . ) +op500
+ Recursive factorization www.netlib.org/top /

> Piotr Luszczek UTK icl.cs.utk.edu/atlas/
> Victor Eijkhout, UTK icl.cs.utk.edu/papi/
+ PAPI www.cs.utk.edu/~dongarra/

> Shirley Browne, UTK
> Kevin London, UTK

» Phil Mucci, UTK

> Keith Seymour, UTK
> Dan Terpstra, UTK

Many opportunities within the
group at Tennessee 119

60



