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+ Performance issues

+ Self Adapting Software for
Optimization
»ATLAS and other examples

¢ Recursive Factorization
>LU

¢+ Performance Monitoring Tools
»>PAPT




High Performance Computers

¢+ ~ 20 years ago
» 1x106 Floating Point Ops/sec (Mflop/s)
> Scalar based
¢+ ~ 10 years ago
» 1x10° Floating Point Ops/sec (Gflop/s)
> Vector & Shared memory computing, bandwidth aware
> Block partitioned, latency tolerant
+ ~ Today
» 1x10'2 Floating Point Ops/sec (Tflop/s)
» Highly parallel, distributed processing, message passing, network based
> data decomposition, communication/computation
+ ~ 10 years away
> 1x1015 Floating Point Ops/sec (Pflop/s)
> Many more levels MH, combination/grids&HPC

> More adaptive, LT and bandwidth aware, fault tolerant,
extended precision, attention to SMP nodes
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Where Does the Performance Go? or
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Optimizing Computation and
Memory Use

¢+ Computational optimizations
> Theoretical peak:(# fpus)*(flops/cycle) * Mhz

» Pentium III: (1 fpu)*(1 flop/cycle)*(850 Mhz) = 850 MFLOP/s
> Pentium 4: (1 fpu)*(2 flops/cycle)*(2.53 Ghz) = 5060 MFLOP/s
> Athlon: (2 fpu)*(1flop/cycle)*(600 Mhz) = 1200 MFLOP/s
> Power3: (2 fpu)*(2 flops/cycle)*(375 Mhz) = 1500 MFLOP/s
+ Operations like:
> a=xTy: 2 operands (16 Bytes) needed for 2 flops:

at 850 Mflop/s will requires 1700 MW/s bandwidth

» y =ax+y 3 operands (24 Bytes) needed for 2 flops:
at 850 Mflop/s will requires 2650 MW/s bandwidth

¢+ Memory optimization
» Theoretical peak: (bus width) * (bus speed)

> Pentium III: (32 bits)*(133 Mhz) = 532 MB/s = 66.5 MW/s
> Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s = 266 MW/s
> Athlon: (64 bits)*(133 Mhz) = 1064 MB/s = 133 MW/s 5
> Power3: (128 bits)*(100 Mhz) = 1600 MB/s = 200 MW/s

Memory Hierarchy

+ By taking advantage of the principle of locality:

> Present the user with as much memory as is available in
the cheapest technology.

> Provide access at the speed offered by the fastest

technology.
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Level 1, 2and 3BLAS

¢ Level 1 BLAS .

Vector-Vector = H + H
operations -

¢+ Level 2 BLAS .
Matrix-Vector = . H
operations .

¢+ Level 3 BLAS

Matrix-Matrix o N D L
operations

Why Higher Level BLAS?

¢+ Can only do arithmetic on data at
the top of the hierarchy

¢+ Higher level BLAS lets us do this

BLAS Memory |Flops Flops/

Refs Memory
Refs
Level1 3n 2n 213
y=y+ux
Level2 [|n? 2n? 2
y=y+Ax
Level 3 |4 n? 2n® nl/?2

C=C+AB




BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz

2000 + Level 3 BLAS
1500 +
é 1000 +
500 - Level 2 BLAS
P Level 1BLAS
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10 100 200 300 400 500

Order of vector/Matrices

+ Development of blocked algorithms
important for performance

6 Variations of Matrix Multiple

for = 1in;
for _ = 1in;
for = 1in;
G, < G +AB
end
end
end




6 Variations of Matrix Multiple

Ciy~ A
for_ = 1in; [ aaa ] {_] Ul"”
for _ = 1.n;
for_ = 1:n;
C, < G, *+AB,
end
end
end

6 Variations of Matrix Multiple

Ci,j - Al,k Bk,j
ijk
for = 1.n;
f =1 p—
o= g (=) (=
G, < C] +A,ka<1
end
end




6 Variations of Matrix Multiple

Ci,j e Al,k Bk,j
for_ = 1.n; K
for_ = 1in; ki
for_ = 1:n;
G < G *ALB K [EJ{ : } [_}
end
end
end

6 Variations of Matrix Multiple

Ci,j - Al,k Bk,j
for = 1.n; Ik
for = 1:n ki
for _ = 1:n
Cl,j - C.j +A,ka<,j Kij
end
end G (-] [
end




6 Variations of Matrix Multiple

ik
for _ = 1.n; !
for _ = 1.n; ki
for _ = 1.n;
G, < G +AB Kij
end
end
end ki

Ci,J“ALk Bk,j

AR
) (3 )

6 Variations of Matrix Multiple

iik
for = 1n; ]
for = 1:n ki
for _ = 1:n
Cl,j — C.j +A,ka<,j Kij
end
end
end ki
jik

Ci,J“ALk Bk,j
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6 Variations of Matrix Multiple

o in ik [ aaaaa ] _} U ||”
forf;r_: . v . i (=] (B
C,-C,*AB, W (=} i) [—]

o o (CE
end ja 1R[]
- ik [FHE1)

6 Variations of Matrix Multiple

for_ = 1in . [ vvvvv ] —} U "”
for = 1.n; ikj [—}“[} [E}
g [EMi)[—

o o (-1
end g (R[5
Fcortran /Jik [ : }[E} [ | }

However, only part of the story




Matrices in Cache

For a Pentium III 933 MHz
L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

v16KB/8 = 45

¢+ L2 cache 256 KB

> 5qrt(256K/8) = 179

For a Pentium 11l 550 MHz
L1 data cache 16 KB (also has a L1 instruction cache 16 KB)

* L2 cache 512 KB

Sqrt(512K/8) = 252

Pentium 111 933 MHz
77 -03

ik
ik

iki
ki
- kij
ik

—+—atlas
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Pentium 111 933 MHz
77 -03

ik
=ik
i
s kji
s kij
ik
——atlas
TCHSIRE8ILABIEN R8RSR EEEIEABEEILEEEE
order
Pentium 11 550 MHz
77 -03
ik
—=—jik
ki
—kji
—xkji
——ikj
——dgemm
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 561 581 22

Order
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Pentium 11 550 MHz
77 -03

400
350

300

100
50 1§

0

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253

| 25
Matrix Multiply
Assumption Datain Cache
+ Inner loop:
>2 loads, 2
. . operations,
+ DOT version - in cache sﬁbopﬁmal.
DO 32; 2=01f CAI " >»No reuse of
8O 10 K S L registers
C(T.T) = C(T.T) + ACLKY*B(K,T)
10 CONTINUE
20 CONTINUE
30 CONTINUE
24
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How to Get Near Peak

DO30JT =1, M2 ¢+ Inner loop:
DO20I+1, M, 2
Til=¢x J) >4 loads, 8
T12 = (T, J+1) :
T21 - CI1.7 ) operahons,
T22 = C(T+1,J+1) optimal.
DO10K=1,L

T11 = T11 + AT, K) *B(K,T ) >Reuse dOTO in
T12 = T12 + A(T, K) *B(K,J+1) pegisfer-s
T21 = T21 + A(I+1,K)*B(K,T )
T22 = T22 + A(T+1 K)*B(K,J+1)
10 CONTINUE
cIT, T )=Ti1
CET. J+1) = T12

C(I+1,7 )= T21 = J=>
C(T+1,T+1) = T22 [ = K
20  CONTINUE °o

30 CONTINUE | =1
! l

¢ For a Pentium IITI 933 MHz
»Peak 933 Mflop/s

»>Best can do around 2/3 peak, has to do with the stack
architecture

»2 level of cache 16KB and 256KB

+ Note 4 different performance levels
»Bad cache use
»>Level 1 cache, then exceeds
»>Level 2 cache, then exceeds
»>Putting it all together

¢+ Problems too large for cache, do blocking
¢+ Unrolling for register reuse critical

15



Mairix Multiply
(blocked, or tiled)

Consider A,B,C to be N by N matrices of b by b subblocks
where b=n/N is called the blocksize

fori=11to N
for j=11to N
{read block C(i,j) into fast memory}
fork=1to N
{read block A(i k) into fast memory}
{read block B(k,j) into fast memory}
€(i.j) = C(i.j) + AG.K) * B(k,j) {do a
matrix multiply on blocks}
{write block C(i,j) back to slow memory}

Ai,K)
S
= + * | mek

C(i.j) C(i.)
o =

27

n is the size of the matrix, N blocks of size b; n = N*b

Adaptive Approach for Level 3

+ Do a parameter study of the operation
on the target machine, done once.

¢+ Only generated code is Level 1 Cache
multiply

+ BLAS operation written in terms of
generated on-chip multiply

¢+ All tranpose cases coerced through data
copy to 1 case of on-chip multiply

> Only 1 case generated per platform
N

K N

14



elf-Adapting Numerical Software
(SANS)

Today's processors can achieve high-performance, but
this requires extensive machine-specific hand tuning.

Operations like the BLAS require many man-hours /
platform

+ Software lags far behind hardware introduction

* Only done if financial incentive is there

Hardware, compilers, and software have a large
design space w/many parameters

> Blocking sizes, loop nesting permutations, loop unrolling
depths, software pipelining strategies, register allocations,
and instruction schedules.

> Complicated interactions with the increasingly sophisticated
micro-architectures of new microprocessors.
Need for quick/dynamic deployment of optimized routines.

ATLAS - Automatic Tuned Linear Algebra Software .

300

Software Generation / S N

Strategy

¢ Level 1 cache multiply

optimizes for:

> TLB access
» L1 cache reuse

> FP unit usage

> Memory fetch
> Register reuse
> Loop overhead

minimization

¢+ Takes about 30 minutes
to run.

+ "New" model of high
performance programming
where critical code is
machine generated using
parameter optimization.

200

[E
0
100
5

50 10

0 15

—_—
=0 18 10 5 o &

¢+ Code is iteratively

generated & timed until
optimal case is found.
We try:

> Differing NBs

> Breaking false
dependencies

> M, N and K loop unrolling
Designed for RISC arch
> Super Scalar

> Need reasonable C
compiler

¢+ Today ATLAS in use by

Matlab, Mathematica,
Octave, Maple, Debian,
Scyld Beowulf, SuSE, ..

15



| libraries provided by the vendor

ATLAS (DGEMM n=500)

3500.0
3000.0
2500.0

2000.0

MFLOP/S

1500.0

1000.0

N )

+ ATLAS is faster than ail other ;ortable BLAS
implementations and it is comparable with machine-specific

X

31

MATLAB

¢+ Currently over 500,000 MATLAB licenses
+ Matlab gives simplicity and power but not
performance
»>Codes prototyped in MATLAB
»>User would rewrite in Fortran or C later

+ Well...

¢+ Today MATLAB uses ATLAS BLAS and
LAPACK
»>6reat performance for these operations
»>But no interoperation optimization in MATLAB

+ Demo

32
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Some Automatic Tuning Projects

¢+ ATLAS (www.netlib.org/atlas) (Dongarra, Whaley)

¢ PHIPAC (www.icsi.berkeley.edu/~bilmes/phipac)
(Bilmes, Asanovic, Vuduc, Demmel)

+ Sparse matrix operations, (Yelick, Im & Dongarra, Eijkhout)
+ Communication topologies (Dongarra)
+ FFTs and Signal Processing
»FFTW (www.fftw.org)
> Won 1999 Wilkinson Prize for Numerical Software
» SPIRAL (www.ece.cmu.edu/~spiral)
> Extensions to other transforms, DSPs
»UHFFT
> Extensions to higher dimension, parallelism

33

Penfium 4 - SSEZ
Today’s “ Sweet Spot” in Price/Performance

¢+ 2.53 6Hz, 400 MHz system bus, 16K L1 &
256K L2 Cache, theoretical peak of 2.53
Gflop/s, high power consumption

+ Streaming SIMD Extensions 2 (SSE2)

> which consists of 144 new instructions

» includes SIMD IEEE double precision floating point
» Peak for 64 bit floating point 2X (5.06 Gflop/s)
» Peak for 32 bit floating point 4X (10.12 Gflop/s)

> SIMD 128-bit integer

> new cache and memory management instructions.

> Intel's compiler supports these instructions today

> ATLAS was trained to probe and detect SSE2

34
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ATLAS Matrix Multiply
Intel Pentium 4 at 2.53GHz — using SSE2

8000
7000
6000
5000
o 4000
3000
2000
1000

2-bit fl pt using SSE2

p/s

it fl pt using SSE2

Mfl

——Intel P4 2.53 GHz 32-bit SSE2

—=—Intel P4 2.53GHz 64-bit SSE2

Multi-Threaded DGEMM
Intel PI11 550 MHz

800
700
600
2 500
S 400
= 300
200
100

S
D

—o—Intel BLAS 1 proc ——ATLAS 1proc = Intel BLAS 2 proc —sk—ATLAS 2 proc

Q O O QOSSO S QS D
PSS S
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Experiments with C, Fortran, and
Javafor ATLAS (DGEMM kernel)

800
700 ﬂ

600 [ |
® 500 -
& 400
£ 300-
200 -
100
0 |
periom 1 2P0 81 pow er
A00MH 3 375 MHz
- FO rt ran Linux anzdszoj(')z’ailz
OcC 'B'\lekl-s Java 2
SDK 1.2.2
D Ja va w ith Fast
VM1.2.2
Recursive Approacn Tor
Other Level 3BLAS
¢+ Recur down to L1 Recursive TRMM
cache block size
¢+ Need kernel at N
bottom of
recursion N

> Use gemm-based \\
kernel for

portability W\

28
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Intel Pl 933 MHz
MKL 5.0 vsATLAS 3.2.0 using Windows 2000

800
W Vendor BLAS

700 W ATLAS BLAS

600
0 500
5
O 400 1
LL
= 300 -

200 |

100 +

0 . . . . .
DGEMM DSYMM DSYRK DSYR2K DTRMM DTRSM

BLAS

¢+ ATLAS is faster than all other portable BLAS
implementations and it is comparable with

machine-specific libraries provided by the vendor.

[ IVIACTTIITTIE-ASIIEU APPITCAlIun
Development and Adaptation

¢+ Communication libraries

»Optimize for the specifics of one's
configuration.

¢+ Algorithm layout and implementation

»>Look at the different ways to express
implementation

40
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Work in Progress.
ATLAS like Approach Applied to Broadcast

[ (PIT 8" Way CIUStEr WitlT 100 V1S SWitCHed TIetwWor K)

R

Sequentia Binary Binomia
Ring
T broaccast o) ‘ . M essage Size Optimal algorithm Buffer Size
automatically tuned broadcast —— (bytes) (bytes)
D2 44 F mpich broadcast —+—
8 binomial 8
131072 F 16 binomial 16
32 binary 32
B5536 64 binomial 64
_ 128 binomial 128
5 wves 256 binomial 256
B 512 binomial 512
E 16384 1K sequential 1K
2K binary 2K
8192 ¢ 4K binary 2K
8K binary 2K
4086 16K binary 4K
048 32K b_mary 4K
64K ring 4K
1024 ¢ X . . . ‘ . 128K ring K
16 B4 D5R 104 4096 1GGA4 BSSRG PAPIADMASASOR 256K ring 4K
Message Size [bytes] 512K ring 4K
M binary 4K

Reformulating/Rearranging/Reuse

+ Example is the reduction to narrow band
from for the SVD

A, =A-uy' —w'
— AT
Yiew = Au
Wnew = A‘IGNV
¢+ Fetch each entry of A once
+ Restructure and combined operations

+ Results in a speedup of > 30%

42
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CG VdATas Dy DYTIATIC
Selection at Run Time

Classical

¢+ Variants combine
inﬂel" pr‘OdUCfS 1’0 Pra‘con i;onanwph‘cun‘ou:
reduce o -
communication
bottleneck at the
expense of more

scalar ops.

Inner products 1:

+ Same number of Sl
iterations, no e
advantage on a e Eroduct:

Sequenfia' processor Preconditioner application:

+ With a large number #merproduicts2:
of processor and a
high-latency network
may be advantages. )

'S Improvemenfs can Residual updte:

r+r—aldp

range from 15% t0  Supamte taner producss”
50% depending on

size. 45
Classical Saad/Meurant Chronopoulos/Gear  Eijkhout
+ Variants combine ’V-'
o error = rfr
inner products to ppnmou.- . _
reduce LT sedr
A id
Commun‘caflon Inner products 1: A !
bottleneck at the — PRy
ervor = vrtr
expense of more AT e grar
scalar ops. ¢« s'az e (M1 (Ap)
* Same numbEr Of B« p[poia B = ppredict/ Pord B+ p/poa id
iterations, no S;”Z"JTZZ"” e id id id
. A
Matrix-v duct:
advanfa_ge on a P WS T e
Sequen*ha' processor Preconditioner application: .
. g+ M ap
¢ With a large number fnerproducis2i -
of processor and a D
. P ‘ 4= apq o _gx - E
high-latency network ervor = Vr'r o cors
may be advantages. Pirve = 27
a=p/7 +«Porue - - a=pfw
¢+ Improvements can  Residual ypdte: . . .
o 71— adp id id id
range from 15% to 3 separate inner products 4 combined 3 combined 4 combined
50% depending on 1 extra vector update id id
size w
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[ TS0y O BIroCK Fartitnorreu
Algorithms

¢ Early algorithms involved use of
small main memory using tapes as
secondary storage.

+ Recent work centers on use of
vector registers, level 1 and 2
cache, main memory, and “out of
core” memory.

45

Blocked Partitioned Algorithms

+ Orthogonal
reduction to:

> (upper) Hessenberg

¢+ LU Factorization

+ Cholesky
factorization

form
+ Symmetric indefinite  » symmetric tridiagonal
factorization form
+ Matrix inversion > bidiagonal form
+ QR, QL, RQ, LQ ¢ Block QR iteration
factorizations for nonsymmetric
+ Form Q or Q'C eigenvalue problems

46
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LAPACK

¢+ Linear Algebra library in Fortran 77
> Solution of systems of equations
> Solution of eigenvalue problems

+ Combine algorithms from LINPACK and
EISPACK into a single package

+ Efficient on a wide range of computers
> RISC, Vector, SMPs

+ User interface similar to LINPACK
> Single, Double, Complex, Double Complex

¢ Built on the Level 1, 2, and 3 BLAS

47

LAPACK

¢ Most of the parallelism in the
BLAS.

+ Advantages of using the BLAS for
parallelism:
»>Clarity
»Modularity
>Performance
»>Portability

48
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Derivaiion of Blocked ATgorithms
Cholesky Factorization A = UTU

il

Au a; A13 UlTl 0 0 U11 U, U13
aj a; al| ={u u 0| 0 u 4
A1T3 aj %3 UlTs H, U3T3 0 0 Us
Equating coefficient of the j*h column, we obtain
117
— (7 2
a. =uu +u°
ji i i
Hence, if Uy has already been computed, we can
compute uand u; from the equations:

T —

2 o _.T
U =a; — U u;

49

LINPACK Implementation

¢+ Here is the body of the LINPACK
routine SPOFA which implements the

method:

DO30J=1,N
INFO=J
S=0.0E0
M1=J3-1
IF(JM1LT.1) GO TO 20
DO 10K =1, JM1
T=A(K,J)-SDOT(K-1,A(LK ), LA(1,J) 1)
T=T/A(K,K)
A(K,J)=T
S=S+T*T
10  CONTINUE
20 CONTINUE
S=A(J,J)-S
C  LEXIT
IF( SLE.0.0E0) GO TO 40
A(J,J)=SQRT(S)
30 CONTINUE

50
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LAPACK Implementation

DO10J=1,N

CALL STRSV('Upper', 'Transpose', 'Non-Unit’, J-1, A, LDA,A(1,J),1)
S=A(J,J)-SDOT(J-1,A(1,J),1,A(1,J),1)
IF(SLE.ZERO)GO TO 20
A(J,J)=SQRT(S)
10 CONTINUE

+ This change by itself is sufficient to
significantly improve the performance on a
number of machines.

¢+ From 238 to 312 Mflop/s for a matrix of
order 500 on a Pentium 4-1.7 GHz.

+ However on peak is 1,700 Mflop/s.
+ Suggest further work needed.

51

Derivation of Blocked Algorithms

Al A Ag U, 0 0)(U, U, Uy,
AiTz A, A, =|U 1Tz U 2Tz 0 0 U, U 2Ts iﬁ%
us, U, UL O 0 U,

As A A
Equating coefficient of second block of columns, we obtain
— T
A&Z - U 11U 12
— T T
Ay =URUL +URU
Hence, if Uy, has already been computed, we can
compute U, as the solution of the following equations

by acall to the Levgl S BLAS routine STRSM:
Ullu 12 = Aﬁ.Z

U2TzU22 = A, _U1T2U12

52
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LAPACK Blocked Algorithms

DO 10J=1,N,NB
CALL STRSM('Left', "Upper', 'Transpose','Non-Unit', J-1, JB, ONE, A, LDA,

$ A(1,J),LDA)
CALL SSYRK ('Upper, ‘Transpose, JB, J-1,-ONE, A( 1,J), LDA, ONE,
$ A(J,3),LDA)

CALL SPOTF2('Upper', JB, A(J,J), LDA, INFO )
IF(INFO.NE.O) GO TO 20
10 CONTINUE

On Pentium 4, L3 BLAS squeezes a lot more out of 1 proc

Intel Pentium 4 1.7 GHz | Rate of Execution
N = 500
Linpack variant (L1B) 238 Mflop/s

Level 2 BLAS Variant 312 Mflop/s

Level 3 BLAS Variant 1262 Mflop/s 53

LAPACK Contents

+ Combines algorithms from LINPACK and
EISPACK into a single package. User
interface similar to LINPACK.

¢ Built on the Level 1, 2 and 3 BLAS, for
high performance (manufacturers optimize
BLAS)

¢+ LAPACK does not provide routines for
structured problems or general sparse
matrices (i.e sparse storage formats such
as compressed-row, -column, -diagonal,
skyline ...).

54
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LU Factorization
Pentium 4, 1.5 GHz, using SSE2

100
300
500
700
0
1200
1600
2000
2400
2800

Gaussian Elimination

D

— 0

Standard Way LINPACK

subtract a multiple of a row apply sequence to a column

ar3
) %

4| a3

22 =L 22

nb LAPACK b Az=2z"2y ap
apply sequence to nb then apply nb to rest of matrix

56
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GausSian Elfminalion viaa
Recursive Algorithm

F. Gustavson and S. Toledo

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)
if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part
3: Apply transformations to right part
(triangular solve A,,= LA, and
matrix multiplication A,,=A,, -Az*As,)
4: Apply LU Algorithm to right part
L AIZ
AZ] AZZ N
Most of the work in the matrix multiply7
Matrices of size n/2,n/4,n/8, ..

Recursive Factorizations

+ Just as accurate as conventional method
+ Same number of operations
+ Automatic variable blocking
> Level 1 and 3 BLAS only !
¢+ Extreme clarity and simplicity of expression
+ Highly efficient

¢+ The recursive formulation is just a
rearrangement of the point-wise LINPACK
algorithm

¢+ The standard error analysis applies (assuming
the matrix operations are computed the
“conventional” way).

55
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Pentium I11 550 MHz Dual Processor
LU Factorization

FAPACK

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Order

Dense recursive factorization

+ The algorithm:

function rlu(A)

begin
rlu(Ay); recursive call
Ay <Ay UYAL; XxTRSM() on upper triangular submatrix
Ay, <LiY(Ay) - Ay XTRSM() on lower triangular submatrix
Az —AgrAyrAy XGEMM()
rlu(A,y); recursive call

end.

+ Replace xTRSM and xGEMM with sparse
implementations that are themselves recursive

30



Recursive LU Factorization

function RLU(A)
begin
RLU(A,,)
A=Ay Ut (Ay)
DTRSM()

Ap =Lt (Ap) Ap
DTRSM()

Ap=Ap—AyAp
DGEMM()

RLU(A,,)

o1

Sparse Factorization Assumptions

¢+ Sparse recursive LU factorization

>Based on recursive formulation of LU
factorization
»No partial pivoting during factorization
»>Diagonal zeros replaced with small elements,
eg. €l|All
»>Iterative refinement used to regain precision
>Locate dense blocks, performance comes
from the use of BLAS Level 3

»Aimed at improving time to solution - memory
usage may suffer

62
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Sparse Recursive Factorization Algorithm

¢ Solutions - continued

»>fast sparse xGEMM() is two-level algorithm
>recursive operation on sparse data structures

»>dense xGEMM() call when recursion reaches
single block

¢+ Uses Reverse Cuthill-McKee ordering
causing fill-in around the band

+ No partial pivoting
>use iterative improvement or
>pivot only within blocks

63

2. Symbolic Factorization
3. Search for Dense blocks

® original nonzero value
zero value introduced due to fill-in

zero value introduced due to blocking oa

22



Recursive Factorizaiion Applied 1o
Sparse Direct Methods

L ayout of sparse recur sive matrix
in storage follows recursion

Symbolic Factorization

Search for blocks that

contain non-zeros || [ au

Conversion o sparse ]

recursive storage } a

Search for embedded s

blocks ! =

Numerical factorization N N } N
21 22 12

A2
o

SuperL U - High Performance Sparse
Solvers

¢ SuperLU: X. Li and J. Demmel
> Solve sparse linear system Ax=b using Gaussian
elimination.
> Efficient and portable implementation on
modern architectures:
> Sequential SuperLU : PC and workstations
> Achieved up to 40% peak Megaflop
rate
> SuperLU_MT : shared-memory parallel
machines
» Achieved up to 10 fold speedup
> SuperLU_DIST : distributed-memory
parallel machines
> Achieved up to 100 fold speedup
> Support real and complex matrices, fill-
reducing orderings, equilibration, numerical
pivoting, condition estimation, iterative
refinement, and error bounds.
¢+  Enabled Scientific Discovery
» First solution to quantum scattering of 3
charged particles. [Recigno, Baertschy, Isaacs
& McCurdy, Science, 24 Dec 1999]
> SuperLU solved complex unsymmetric systems
of order up to 1.79 million, on the ASCI Blue
Pacific Computer at LLNL.
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Comparison with SuperLU on Pentium 111

SuperLU Recursion

Name N nonzeros |Time[s] 'FERR  |L+U Time[s] [FERR  |L+U

af23560 23560 460598 44.19 5.80E-14 132.2 31.34 1.80E-14 149.7
ex11 16614 1096948  109.67 2.50E-05 210.2 55.3 1.30E-06 150.6
goodwin 73200 324772 6.49) 1.20E-08 313 6.74/ 4.60E-06 35
jpwh_991 991 6027, 0.19/ 2.90E-15 1.4 0.25/ 2.60E-15 2.3
mcfe 765 24382 0.07 1.20E-13 0.9 0.22 9.10E-13 1.8
memplus 17758 126150 0.29 2.10E-12 5.9 12.67 6.60E-13 195.7
olafu 16146 1015156 26.16 1.10E-06 83.9 22.1 3.70E-09 96.1
orsreg_1 2205 14133 0.46/ 1.30E-13 3.6 0.45 2.10E-13 39

psmigr_1 3140 543162 110.79 7.90E-11 64.6 88.61 1.20E-05 78.4
raefsky3 21200 1488768 62.07 1.40E-09 147.2 69.67 4.40E-13 193.9
raefsky4 19779 1316789 82.45 2.30E-06 156.2| 104.29 3.50E-06 234.4

saylrd 3564 22316 0.85 3.20E-11 6 0.95 1.20E-11 7.2
sherman3 5005 20033 0.61| 6.00E-13 5 0.67 4.80E-13 7.3
sherman5 33120 20793 0.28| 1.40E-13 3 0.32 6.20E-15 31
wang3 26064 17716@ 84.14 2.40E-14 116.7 79.18 1.60E-14 256.7

Breakdown of Time Across Phases
For the Recursive Sparse Factorization

af23560 ex11  goodwin jpwh 991 mcfe memplus olafu orsreg_1 psmigr_1 raefsky_3 raefsky 4 saylrd sherman3 sherman5 wang3

Different Test Matrices

m Numerical
fact,

0 Ebedded
blocking

O Recursive
CONVErsion

B Block
conversion

@ Symbolical
fact.
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Scal APACK ScalAPACK |

A Software Library for Linear Algebra Computations on Distributed-Memory

L4

L4

L4

ScalLAPACK is a portable distributed
memory numerical library

ED =
Complete numerical library for dense matrix
comgufaﬁons Y
Des:':qned for distributed Fgmr'cxllel computing
(MPP & Clusters) using MPT
One of the first math software packages to
do this
Numerical software that will work on a
heterogeneous platform
Funding from DOE, NSF, and DARPA
In use today by IBM, HP-Convex, Fujitsu,
NEC, Sun, SGI, Cray, NAG, IMSL, ..

> Tailor performance & provide support

69

ScaL APACK

¢+ Library of software dealing with
dense & banded routines

+ Distributed Memory - Message
Passing

¢+ MIMD Computers and Networks of
Workstations

¢ Clusters of SMPs

70
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Programming Style

¢+ SPMD Fortran 77 with object based design

+ Built on various modules

> PBLAS Interprocessor communication

> BLACS
»PVM, MPI, IBM SP, CRI T3, Intel, TMC
»Provides right level of notation.

> BLAS

+ LAPACK software expertise/quality
> Software approach
> Numerical methods

71

Overall Structure of Software

¢+ Object based - Array descriptor

> Contains information required to establish
mapping between a global array entry and its
corresponding process and memory location.

> Provides a flexible framework to easily
specify additional data distributions or
matrix types.

> Currently dense, banded, & out-of-core
¢+ Using the concept of context

72
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PBLAS

+ Similar to the BLAS in functionality and
naming.

+ Built on the BLAS and BLACS

+ Provide global view of matrix

CALL DGEXXX (M, N, A(IA,K JA), LDA,...)

Z

CALL PDGEXXX( M, N, A, TA, JA, DESCA,...)

73

ScaL APACK Structure

Scal APACK
\
PBLAS
Clobal

74
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Choosing a Data Distribution

¢ Main issues are:

»>Load balancing
»Use of the Level 3 BLAS

75

Possible Data L ayouts

+ 1D block and cyclic column distributions

NEREEERE
EEEEEEERE
NEREEERE
| = o 4] @] o] | =
R
EEEEEEER

w| & nl o n| o n| o
| =] @ af o < @l 4

¢+ 1D block-cycle column and 2D block-cyclic
distribution

+ 2D block-cyclic used in ScaLAPACK for dense
matrices

76
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Distribution and Storage

¢ Matrix is block-partitioned & maps blocks
+ Distributed 2-D block-cyclic scheme

5x5 matrix partitioned in 2x2 blocks
2x2 process grid point of view

A A Al As | | As  As
Ao A4 | |Ae o || A A
A A} | [A- BB | | [P | [P 7
Ao A | A — e
7 Pe Ad ] A Ao || Ao A

+ Routines available to distribute/redistribute
data.

77

To Use ScaLAPACK aUser Must:

+ Download the package and auxiliary packages (like
PBLAS, BLAS, BLACS, & MPI) to the machines.

¢+ Write a SPMD program which
> Sets up the logical 2-D process grid
> Places the data on the logical process grid

> Calls the numerical library routine in a SPMD fashion
> Collects the solution after the library routine finishes

¢+ The user must allocate the processors and decide

the number of processes the application will run on

¢+ The user must start the application
> “mpirun -np N user_app”

> Note: the number of processors is fixed by the user before

the run, if problem size changes dynamically ...

¢+ Upon completion, return the processors to the pool

of resources

29



ScaL APACK Cluster Enabled

+ Implement a version of a ScaLAPACK
library routine that runs on clusters.
> Make use of resources at the user’s disposal
> Provide the best time to solution
> Proceed without the user's involvement

¢+ Make as few changes as possible to the
numerical software.

79

LAPACK For Clusters

+ Developing middleware which couples cluster
system information with the specifics of a
user problem to launch cluster based
applications on the "best” set of resource
available. sampie computing environment...

Users, etc.
100 Mbit
1 Gbit Switch,
(Iully connected)

Network File System,
SUN’s NFS (RPC/UDP)

100 Mbit Switch,
(fully connected)

Remote Memory Server,
<.g. TBP (TCP/IP)

+ Using ScaLAPACK as the prototype software

&0
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Big Picture...

Natural 1 Natura
Data (A,b) Answer (X)

Structured
Data(A’,b")

Structured
Answer (X’)

&1

Numerical Libraries for Clusters

Stage data to disk

&2
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Numerical Libraries for Clusters

e

Numerical Libraries for Clusters

5 o= ==
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Numerical Libraries for Clusters

i
Alb

Uses Grid infrastructure, i.e.Globus’NWS, but doesn’t haveto.

Resource Selector

¢ Use information on
Bandwidth/Latency/Load/Memory/CPU performance

» 2 matrices (bw,lat) 3 arrays (load, cpu, memory available)
¢+ Generated dynamically by library routine

CPU
Bandwidth

Latency Load Memory performance
XXX [ X[ X] [ X] [ X] [X] [X
XXX [ X[ X] | X] [ X] [X] [X
XX (x| [ XX Ix]| [X] |X] [X

&6
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Ax=Db

Cluster of 8 Pentium 1l 933 MHz

10000
— =8| APACK; Proc = 1
© 1000 + = scaLAPACK: Proc = [3.3,8,8,8.8
> ——LFC; Proc = [2,3,4,6,8,8]
> 100 -
0p]
S 10 -
o))
£ 1
— [ [ [ [
— /
0.1 P o
RN I N SN

LAPACK For Clusters (LFC)

¢+ LFC will automate
much of the decisions
in the Cluster
environment to
provide best time to
solution.
> Adaptivity to the

dynamic environment.

> As the complexities of
the Clusters and 6Grid
increase need to
develop strategies for
self adaptability.

> Handcrafted developed
leading to an
automated design.

+ Developing a basic
infrastructure for
computational science
applications and
software in the Cluster
and 6rid environment.

» Lack of tools is hampering
development today.

¢ Plan to do suite: LU,
Cholesky, QR,
Symmetric eigenvalue,
and Nonsymmetric
eigenvalue

¢ Model for more general
framework
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FT-MPI

¢+ Current MPT applications live under the MPI
fault tolerant model of no faults allowed.
> This is great on an MPP as if you lose a node
you generally lose a partition/job anyway.

> Makes reasoning about results easy. If there
was a fault you might have received
incomplete/incorrect values and hence have the
wrong result anyway.

> Planning a version of MPT with some extension
which will all the user to recover from system
errors, take corrective action, and carry one.

> Plan to be finished by the end of summer with
the beta release.

&9

Fault Tolerance in the Message Passing

¢ Critical for many 6rid and Cluster
applications

¢+ MPI wasn't designed to be fault
tolerant

¢ Number of projects
»FT-MPI at University of Tennessee

20
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Algorithmic Fault Tolerance

¢ Important that this is built into the algorithms.
+ Not good enough to have it in the message passing.

¢+ Alpha version
» Limited number of MPTI functions supported

¢ Currently working on getting PETSC (the Portable, Extensible
Toolkit for Scientific Computation from ANL) working in a FT mode
> Target of 86 functions by end of summer 2002.
> Covers all major classes of functions in MPI.

¢+ Future work

> Templates for different classes of MPI applications so users can build on
our work

> Some MPI-2 support (PIO?)

+ Working on numerical library design for ScaLAPACK
and PETSc that will be fault tolerant.

91

Fault Tolerance - Diskless (RAID) Checkpointing
- Built into Software (J. Plank, J. Dongarra)

¢ Maintain a system checkpoint in memory
> All processors may be roll back if necessary

> Use m extra processors to encode checkpoints so that
if up to m processors fail, their checkpoints may be
restored

> No reliance on disk

¢ Checksum and reverse communication
> Checkpoint less frequently
> Reverse the computation of the non-failed processors
back to previous checkpoint
¢ Idea to build into library routines
> System or user can dial it up

> Working prototype for MM, LU, LLT, QR, sparse
solvers

92
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Use Diskless Checkpointing (PL94b):

- The N application processors each
maintain their own checkpoints locally.

- m extra processors maintain coding
information so that if 1 or more

processors die, they can be replaced.

- Will describe for m = 1 (parity)

)

What “Algorithm-based” means

Algorithm-based == non-transparent

Reasons against transparency:
- No synchronization worries
- Minimize checkpoint state

- Heterogeny

94
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Cholesky Factorization

Factor a dense, symmetric, positive definite
matrix A into two matrices:

A=LLT

This is done in place:

N

Before After .
Blocking the Matrix
The matrix is partitioned into square block:
of a specified block size b
The processors are (logically) configured into
a p by g mesh, and the blocks are doled among
the processors in panels of p*q blocks.
.PU P.f;‘Po P!”PUI‘PL
P,|P,|[P,| Py| P3| Py
Fo P.fj‘Po Py .PoiPJ
P | P;|| P | Py || P | P
.PU ‘[,[;“DL? P!”PUIPI_
ARRRIRRT
A b
96
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Top-looking Cholesky Factorization

(i) (i)
Juactored . Jactored
column l’_ col-blki column

blocks bl o_c.!'\-'s

97

Diskless Checkpointing: Starting State

For each panel of the matrix, maintain a
block in the checkpointing processor
that holds the bitwise parity of
all blocks in that panel

If a single processor fails, then its state
may be restored from the remaining live ones

928
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Diskless Checkpointing:
at the beginning of step i

column
block

i
. panel

with
column
block
i

Processors Processor n
0 through (n-1)

D:A D:L D:LT DZPLH"I'{)-‘

929
Diskless Checkpointing: step i
Make a copy of column-block i
e D
Processors Processor n
0 through (n-1)
| |=Aa []=r [ |=r" [ =Parity
100
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Diskless Checkpointing: step i

Culculate and update the parity of column-block i,
Step i is finished.

i

Processors Processor n
0 through (n-1)

| I=A [[]=r [ |=L" [B = Parity

101
Diskless Checkpointing: Step |
If a failure occurs, the system can
always roll back to the beginning
of step i
Processor n
E = Parity
102
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[OOISTOr
Performance Evaluation

+ Timing and performance evaluation has
been an art
> Resolution of the clock
> Issues about cache effects
> Different systems
» Can be cumbersome and inefficient with
traditional tools
+ Situation about to change
> Today's processors have internal counters

103

Performance Counters

+ Almost all high performance processors
include hardware performance counters.

¢+ Some are easy to access, others not
available to users.

¢+ On most platforms the APIs, if they
exist, are not appropriate for the end
user or well documented.

+ Existing performance counter APIs

» Compaq Alpha EV 6 & 6/7 > TA-64
> SGI MIPS R10000

> IBM Power Series > H?-PA,RISC
> CRAY T3E > Hitachi

> Sun Solaris > Fujitsu

> Pentium Linux and Windows » NEC
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Performance Daia
That May Be Available

> Cycle count

> Floating point
instruction count

> Integer instruction
count

» Instruction count
> Load/store count

» Branch taken / not
taken count

> Branch mispredictions

> Pipeline stalls due to
memory subsystem

> Pipeline stalls due to
resource conflicts

> I/D cache misses for
different levels

» Cache invalidations
> TLB misses
» TLB invalidations

105

Low Level AP

¢+ Increased efficiency and
functionality over the high level

PAPI interface

¢+ There's about 40 functions

¢ Obtain information about the
executable and the hardware.

¢ Thread safe

106
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High Level AP

¢ Meant for application programmers
wanting coarse-grained
measurements

¢ Calls the lower level API
+ Not thread safe at the moment
¢+ Only allows PAPI Presets events

107

High Level Functions

+ PAPTI_flops()
¢+ PAPI_num_counters()

> Number of counters in the system
¢+ PAPI_start_counters()

+ PAPI_stop_counters()

> Enable counting of events and describes what
to count

¢+ PAPI_read_counters()
» Returns event counts

106
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Perfometer Features

+ Platform independent visualization of
PAPI metrics

+ Flexible interface
¢ Quick interpretation of complex results

¢+ Small footprint
> (compiled code size < 15k)

¢+ Color coding to highlight selected
procedures

¢+ Trace file generation or real time
viewing.

109

PAPI Implementation

Machine
Specific
Layer

Portable PAPI High Level
Layer
T

110
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PAPI - Supported Processors

¢+ Intel Pentium, II,III, 4, Itanium,
> Linux 2.4, 2.2, 2.0 and perf kernel patch
+ IBM Power 3,604,604e (Power 4 coming)
» For AIX 4.3 and pmtoolkit (in 4.3.4 available)
> (laderose@us.ibm.com)
¢ Sun UltraSparc I, II, & III
> Solaris 2.8
¢+ SGI IRIX/MIPS
¢+ AMD Athlon
> Linux 2.4 and perf kernel patch
¢+ Cray T3E, SV1, sv2
¢+ Windows 2K and XP
¢+ To download software see:
http://icl.cs.utk.edu/papi/
Work in progress on Compaq Alpha
Fortran, C, and MATLAB bindings

m

Early Users of PAPI

&\

+ DEEP/PAPTI (Pacific Sierra) Nkl

Pacific-Sierra Research

http://www.psrv.com/deep papi top.html ; X
+ TAU (Allen Mallony, U of Oregon) H%‘_A

http://Iwww.cs.uoregon.edu/research/paracomp/tau/

+ SvPablo (Dan Reed, U of Illinois) #able’

Sralstile Perfarmun e Tm;h

http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm wil

+ Cactus (Ed Seidel, Max Plank/U of Illinois)

http://lwww.aei-potsdam.mpg.de

+ Vprof (Curtis Janssen, Sandia Livermore Lab)
http://aros.ca.sandia.gov/~cljanss/perf/vprof/

¢ Cluster Tools (Al Geist, ORNL)
+ DynaProf

0
ali)
m

12
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What is DynaProf?

¢ A portable tool to dynamically
instrument a running executable with
Probes that monitor application
performance.

+ Simple command line interface.
+ Java based GUI interface.
+ Open Source Software.

+ Built on and in collaboration with Bart
Miller and Jeff Hollingsworth Paradyn
project at U. Wisconsin and Dyninst
proiect at U. Marvland

13

Dynamic I nstrumentation:

+ Operates on a running executable.

+ Identifies instrumentation points where code
can be inserted.

+ Inserts code snippets at selected points.

+ Snippets can collect and monitor performance
information.

¢ Snippets can be removed and reinserted
dynamically.

+ Source code not required, just executable

14
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- Perrometer’ Dynarror

Machine info

s

] ot [ ot | L o | ] |63

ops issued
: Flop/s Rate

Polling inferval: 100 ms Drawing delay: 8 ms

sk lOP/s Instantaneous Rate

Process &
Real time

15

Next version of
Perfometer I mplementation
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PAPI's Parallel Interface

el Perfometer

Connection Options

7}];{ Connect Local | {{) Connect to Net ‘.&‘E,D;s(unnect | Select Metric| Ri';}} ;ﬁ;:(;«;

[ SWImO. swiml swim2 | swim3 | swimd swim$ swimé swim?

sssssssss mo
Machine: yogi0, 2 2 CPU R12000 at 270.0 Mhz
|Real time 8998 s Total: 16800.0 FP ins. MFLOPS: 0.001869158

|Process time: B98800431.. null 20.223346622415956 Polling interval: 0 ms Drawing delay: ..

Pause Graph Type: |FILLEDLINE v

17

Futures for Numerical Algorithms
and Software on Clusters and Grids

¢ Retargetable Libraries - Numerical software
will be adaptive, exploratory, and intelligent

+ Determinism in numerical computing will be
gone.

3

> After dll, its not reasonable to ask for exactness in numerical computations.

> Auditability of the computation, reproducibility at a
cost

+ Importance of floating point arithmetic will be
undiminished.
> 16, 32, 64, 128 bits and beyond.

¢+ Reproducibility, fault tolerance, and auditability

¢ Adaptivity is a key so applications can
effectively use the resources.

18
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Contributorsto These Ideas

+ Top500
> Erich Strohmaier, LBL
> Hans Meuer, Mannheim U

¢+ ATLAS For additional
» Antoine Petitet, UTK information see...

» Clint Whaley, UTK .
. . . ) +op500
+ Recursive factorization www.netlib.org/top /

> Piotr Luszczek UTK icl.cs.utk.edu/atlas/
> Victor Eijkhout, UTK icl.cs.utk.edu/papi/
+ PAPI www.cs.utk.edu/~dongarra/

> Shirley Browne, UTK
> Kevin London, UTK

» Phil Mucci, UTK

> Keith Seymour, UTK
> Dan Terpstra, UTK

Many opportunities within the
group at Tennessee 119
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