Architecture-Aware Algorithms and Software for Peta and Exascale Computing
(Learning from the Past)

Jack Dongarra
University of Tennessee
Oak Ridge National Laboratory
University of Manchester
First ...

• Thank a number of people who have helped with this work
 ▪ Emmanuel Agullo, George Bosilca, Aurelien Bouteiller, Anthony Danalis, Jim Demmel, Tingxing "Tim" Dong, Mathieu Faverge, Azzam Haidar, Thomas Herault, Mitch Horton, Jakub Kurzak, Julien Langou, Julie Langou, Pierre Lemarinier, Piotr Luszczek, Hatem Ltaief, Stanimire Tomov, Asim YarKhan, ...

• Much of what I will describe has been done before, at least in theory.
H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP
 \[Ax = b, \text{ dense problem} \]

- Updated twice a year
 SC‘xy in the States in November
 Meeting in Germany in June

- All data available from www.top500.org
Performance Development

- My Laptop (6 Gflop/s)
- My iPad2 (620 Mflop/s)
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
<th>Country</th>
<th>Cores</th>
<th>Rmax [Pflops]</th>
<th>% of Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nat. SuperComputer Center in Tianjin</td>
<td>Tianhe-1A, NUDT Intel + Nvidia GPU + custom</td>
<td>China</td>
<td>186,368</td>
<td>2.57</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>DOE / OS Oak Ridge Nat Lab</td>
<td>Jaguar, Cray AMD + custom</td>
<td>USA</td>
<td>224,162</td>
<td>1.76</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Nat. Supercomputer Center in Shenzhen</td>
<td>Nebulea, Dawning Intel + Nvidia GPU + IB</td>
<td>China</td>
<td>120,640</td>
<td>1.27</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>Tusbame 2.0, HP Intel + Nvidia GPU + IB</td>
<td>Japan</td>
<td>73,278</td>
<td>1.19</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>DOE / OS Lawrence Berkeley Nat Lab</td>
<td>Hopper, Cray AMD + custom</td>
<td>USA</td>
<td>153,408</td>
<td>1.054</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>Commissariat a l’Energie Atomique (CEA)</td>
<td>Tera-10, Bull Intel + IB</td>
<td>France</td>
<td>138,368</td>
<td>1.050</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>DOE / NNSA Los Alamos Nat Lab</td>
<td>Roadrunner, IBM AMD + Cell GPU + IB</td>
<td>USA</td>
<td>122,400</td>
<td>1.04</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>NSF / NICS U of Tennessee</td>
<td>Kraken, Cray AMD + custom</td>
<td>USA</td>
<td>98,928</td>
<td>.831</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Forschungszentrum Juelich (FZJ)</td>
<td>Jugene, IBM Blue Gene + custom</td>
<td>Germany</td>
<td>294,912</td>
<td>.825</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>DOE / NNSA LANL & SNL</td>
<td>Cielo, Cray AMD + custom</td>
<td>USA</td>
<td>107,152</td>
<td>.817</td>
<td>79</td>
</tr>
<tr>
<td>Rank</td>
<td>Site</td>
<td>Computer</td>
<td>Country</td>
<td>Cores</td>
<td>Rmax [Pflops]</td>
<td>% of Peak</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>Nat. SuperComputer Center in Tianjin</td>
<td>Tianhe-1A, NUDT Intel + Nvidia GPU + custom</td>
<td>China</td>
<td>186,368</td>
<td>2.57</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>DOE / OS Oak Ridge Nat Lab</td>
<td>Jaguar, Cray AMD + custom</td>
<td>USA</td>
<td>92,166</td>
<td>1.76</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Nat. Supercomputer Center in Shenzhen</td>
<td>Nebulea, Dawning Intel + Nvidia GPU + IB</td>
<td>China</td>
<td>20,640</td>
<td>1.27</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>DOE / OS Institute of Technology</td>
<td>Tusbame 2.0, HP Intel + Nvidia GPU + IB</td>
<td>Japan</td>
<td>73,278</td>
<td>1.19</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>DOE / OS Lawrence Berkeley Nat Lab</td>
<td>Hopper, Cray AMD + custom</td>
<td>USA</td>
<td>153,408</td>
<td>1.054</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>Commissariat a l'Energie Atomique (CEA)</td>
<td>Tera-10, Bull Intel + IB</td>
<td>France</td>
<td>138,368</td>
<td>1.050</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>DOE / NNSA Los Alamos Nat Lab</td>
<td>Roadrunner, IBM AMD + Cell GPU + IB</td>
<td>USA</td>
<td>122,400</td>
<td>1.04</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>NSF / NICS U of Tennessee</td>
<td>Kraken, Cray AMD + custom</td>
<td>USA</td>
<td>98,928</td>
<td>.831</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Forschungszentrum Juelich (FZJ)</td>
<td>Jugene, IBM Blue Gene + custom</td>
<td>Germany</td>
<td>294,912</td>
<td>.825</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>DOE / NNSA LANL & SNL</td>
<td>Cielo, Cray AMD + custom</td>
<td>USA</td>
<td>107,152</td>
<td>.817</td>
<td>79</td>
</tr>
</tbody>
</table>

Quiz: How Many of the Top500 systems use GPUs?
Performance Development in Top500

- Gordon Bell Winners

- N=1
- N=500
Potential System Architecture

<table>
<thead>
<tr>
<th>Systems</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>System peak</td>
<td>2 Pflop/s</td>
</tr>
<tr>
<td>Power</td>
<td>7 MW</td>
</tr>
<tr>
<td>System memory</td>
<td>0.3 PB</td>
</tr>
<tr>
<td>Node performance</td>
<td>125 GF</td>
</tr>
<tr>
<td>Node memory BW</td>
<td>25 GB/s</td>
</tr>
<tr>
<td>Node concurrency</td>
<td>12</td>
</tr>
<tr>
<td>Total Node Interconnect BW</td>
<td>3.5 GB/s</td>
</tr>
<tr>
<td>System size (nodes)</td>
<td>18,700</td>
</tr>
<tr>
<td>Total concurrency</td>
<td>225,000</td>
</tr>
<tr>
<td>Storage</td>
<td>15 PB</td>
</tr>
<tr>
<td>IO</td>
<td>0.2 TB</td>
</tr>
<tr>
<td>MTTI</td>
<td>days</td>
</tr>
</tbody>
</table>
Potential System Architecture with a cap of $200M and 20MW

<table>
<thead>
<tr>
<th>Systems</th>
<th>2011</th>
<th>2018</th>
<th>Difference Today & 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>System peak</td>
<td>2 Pflop/s</td>
<td>1 Eflop/s</td>
<td>O(1000)</td>
</tr>
<tr>
<td>Power</td>
<td>7 MW</td>
<td>~20 MW</td>
<td></td>
</tr>
<tr>
<td>System memory</td>
<td>0.3 PB</td>
<td>32 - 64 PB</td>
<td>O(100)</td>
</tr>
<tr>
<td>Node performance</td>
<td>125 GF</td>
<td>1,2 or 15TF</td>
<td>O(10) - O(100)</td>
</tr>
<tr>
<td>Node memory BW</td>
<td>25 GB/s</td>
<td>2 - 4TB/s</td>
<td>O(100)</td>
</tr>
<tr>
<td>Node concurrency</td>
<td>12</td>
<td>O(1k) or 10k</td>
<td>O(100) - O(1000)</td>
</tr>
<tr>
<td>Total Node Interconnect BW</td>
<td>3.5 GB/s</td>
<td>200-400GB/s</td>
<td>O(100)</td>
</tr>
<tr>
<td>System size (nodes)</td>
<td>18,700</td>
<td>O(100,000) or O(1M)</td>
<td>O(10) - O(100)</td>
</tr>
<tr>
<td>Total concurrency</td>
<td>225,000</td>
<td>O(billion)</td>
<td>O(10,000)</td>
</tr>
<tr>
<td>Storage</td>
<td>15 PB</td>
<td>500-1000 PB (>10x system memory is min)</td>
<td>O(10) - O(100)</td>
</tr>
<tr>
<td>IO</td>
<td>0.2 TB</td>
<td>60 TB/s (how long to drain the machine)</td>
<td>O(100)</td>
</tr>
<tr>
<td>MTTI</td>
<td>days</td>
<td>O(1 day)</td>
<td>- O(10)</td>
</tr>
</tbody>
</table>
Exascale \((10^{18} \text{ Flop/s}) \) Systems: Two Possible Swim Lanes

- **Light weight processors (think BG/P)**
 - \(~1 \text{ GHz processor} \ (10^9)\)
 - \(~1 \text{ Kilo cores/socket} \ (10^3)\)
 - \(~1 \text{ Mega sockets/system} \ (10^6)\)

- **Hybrid system (think GPU based)**
 - \(~1 \text{ GHz processor} \ (10^9)\)
 - \(~10 \text{ Kilo FPUs/socket} \ (10^4)\)
 - \(~100 \text{ Kilo sockets/system} \ (10^5)\)
Commodity plus Accelerators

Quiz: How Many of the Top500 systems use GPUs?

Answer: Today only 17 systems on the TOP500 use GPUs
We Have Seen This Before

- Intel Math Co-processor (1980)
- Weitek Math Co-processor (1981)
Balance Between Data Movement and Floating point

- **FPS-164 and VAX (1976)**
 - 11 Mflop/s; transfer rate 44 MB/s
 - Ratio of flops to bytes of data movement: 1 flop per 4 bytes transferred

- **Nvidia Fermi and PCI-X to host**
 - 500 Gflop/s; transfer rate 8 GB/s
 - Ratio of flops to bytes of data movement: 62 flops per 1 byte transferred

- **Flop/s are cheap, so are provisioned in excess**
Future Computer Systems

- Most likely be a hybrid design
 - Think standard multicore chips and accelerator (GPUs)
- Today accelerators are attached
- Next generation more integrated
- Intel’s MIC architecture “Knights Ferry” and “Knights Corner” to come.
 - 48 x86 cores
- AMD’s Fusion in 2012 - 2013
 - Multicore with embedded graphics ATI
- Nvidia’s Project Denver plans to develop an integrated chip using ARM architecture in 2013.
The High Cost of Data Movement

- Flop/s or percentage of peak flop/s become much less relevant

Approximate power costs (in picoJoules)

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP FMADD flop</td>
<td>100 pJ</td>
</tr>
<tr>
<td>DP DRAM read</td>
<td>4800 pJ</td>
</tr>
<tr>
<td>Local Interconnect</td>
<td>7500 pJ</td>
</tr>
<tr>
<td>Cross System</td>
<td>9000 pJ</td>
</tr>
</tbody>
</table>

Source: John Shalf, LBNL

- Algorithms & Software: minimize data movement; perform more work per unit data movement.
Factors that Necessitate Redesign of Our Software

- Steepness of the ascent from terascale to petascale to exascale
- Extreme parallelism and hybrid design
 - Preparing for million/billion way parallelism
- Tightening memory/bandwidth bottleneck
 - Limits on power/clock speed implication on multicore
 - Reducing communication will become much more intense
 - Memory per core changes, byte-to-flop ratio will change
- Necessary Fault Tolerance
 - MTTF will drop
 - Checkpoint/restart has limitations
 - shared responsibility

Software infrastructure does not exist today
Major Changes to Software

• Must rethink the design of our software
 ▪ Another disruptive technology
 • Similar to what happened with cluster computing and message passing
 ▪ Rethink and rewrite the applications, algorithms, and software
Emerging Architectures

- Are needed by applications
- Applications are given (as function of time)
- Architectures are given (as function of time)
- Algorithms and software must be adapted or created to bridge to (hostile) architectures for the sake of the complex applications
Exascale algorithms that expose and exploit multiple levels of parallelism

- **Synchronization-reducing algorithms**
 - Break Fork-Join model

- **Communication-reducing algorithms**
 - Use methods which have lower bound on communication

- **Fault resilient algorithms**
 - Implement algorithms that can recover from failures

- **Mixed precision methods**
 - 2x speed of ops and 2x speed for data movement

- **Reproducibility of results**
 - Today we can’t guarantee this
Fork-Join Parallelization of LU and QR.

Parallelize the update:

- Easy and done in any reasonable software.
- This is the $2/3n^3$ term in the FLOPs count.
- Can be done efficiently with LAPACK+multithreaded BLAS.
Parallel Tasks in $LU/LL^T/QR$

- Break into smaller tasks and remove dependencies
Data Layout is Critical

- Tile data layout where each data tile is contiguous in memory
- Decomposed into several fine-grained tasks, which better fit the memory of the small core caches
PLASMA: Parallel Linear Algebra s/w for Multicore Architectures

• Objectives
 - High utilization of each core
 - Scaling to large number of cores
 - Shared or distributed memory

• Methodology
 - Dynamic DAG scheduling (QUARK)
 - Explicit parallelism
 - Implicit communication
 - Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

Diagram showing DAG scheduling with nodes labeled POTRF, TRSM, SYRK, and GEMM.
Synchronization Reducing Algorithms

- Regular trace
- Factorization steps pipelined
- Stalling only due to natural load imbalance
- Dynamic
- Out of order execution
- Fine grain tasks
- Independent block operations

The colored area over the rectangle is the efficiency

Tile LU factorization; Matrix size 4000x4000, Tile size 200
8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz
Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000, tile size is 200 x 200,
POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)
Big DAGs: No Global Critical Path

- DAGs get very big, very fast
 - So windows of active tasks are used; this means no global critical path
 - Matrix of NBxNB tiles; NB^3 operation
 - NB=100 gives 1 million tasks
PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

- Tile LU factorization
- 10 x 10 tiles
- 300 tasks
- 100 task window
PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

- Tile LU factorization
- 10 x 10 tiles
- 300 tasks
- 100 task window
PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

- Tile LU factorization
- 10 x 10 tiles
- 300 tasks
- 100 task window
PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

- Tile LU factorization
- 10 x 10 tiles
- 300 tasks
- 100 task window
PLASMA
(On Node)

Number of tasks in DAG:

\[O(n^3) \]

- Cholesky: \(\frac{1}{3} n^3 \)
- LU: \(\frac{2}{3} n^3 \)
- QR: \(\frac{4}{3} n^3 \)

DPLASMA
(Distributed System)

Number of tasks in parameterized DAG:

\[O(1) \]

- Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)
- LU: 4 (GETRF, GESSM, TSTRF, SSSSM)
- QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized

small enough to store on each core in every node = Scalable
for \(i, j = 0..N\)

\[
\text{QUARK}_{\text{Insert}}(\text{GEMM}, A[i, j],\text{INPUT}, \ B[j, i],\text{INPUT}, \ C[i,i],\text{INOUT})
\]

\[
\text{QUARK}_{\text{Insert}}(\text{TRSM}, A[i, j],\text{INPUT}, \ B[j, i],\text{INOUT})
\]

Start with PLASMA

Parse the C source code to Abstract Syntax Tree

Analyze dependencies with Omega Test

\[
\{ 1 < i < N : \text{GEMM}(i, j) \Rightarrow \text{TRSM}(j) \}
\]

Generate Code which has the Parameterized DAG

Loops & array references have to be affine
Example: Cholesky 4x4

- RT is using the symbolic information from the compiler to make scheduling, message passing, & RT decisions
- Data distribution: regular, irregular
- Task priorities
- No left looking or right looking, more adaptive or opportunistic
81 nodes
Dual socket nodes
Quad core Xeon L5420
Total 648 cores at 2.5 GHz
ConnectX InfiniBand DDR 4x

DSBP = Distributed Square Block Packed
Goal: Algorithms that communicate as little as possible

Jim Demmel and company have been working on algorithms that obtain a provable minimum communication. (M. Anderson yesterday)

Direct methods (BLAS, LU, QR, SVD, other decompositions)
- Communication lower bounds for all these problems
- Algorithms that attain them (all dense linear algebra, some sparse)

Iterative methods - Krylov subspace methods for $Ax=b$, $Ax=\lambda x$
- Communication lower bounds, and algorithms that attain them (depending on sparsity structure)

For QR Factorization they can show:

<table>
<thead>
<tr>
<th># flops</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(mn^2)$</td>
<td></td>
</tr>
<tr>
<td>$\Theta(\frac{mn^2}{\sqrt{W}})$</td>
<td></td>
</tr>
<tr>
<td>$\Theta(\frac{mn^2}{W^{3/2}})$</td>
<td></td>
</tr>
</tbody>
</table>
• We have a $m \times n$ matrix A we want to reduce to upper triangular form.
• We have a $m \times n$ matrix A we want to reduce to upper triangular form.
We have a $m \times n$ matrix A we want to reduce to upper triangular form.

\[A = Q_1 Q_2 Q_3 R = QR \]
Communication Avoiding QR Example

Communication Avoiding QR Example

Communication Reducing QR Factorization

Graph showing performance comparison of SP-CAQR, PLASMA, and ScaLAPACK with theoretical peak performance.
Mixed Precision Methods

• Mixed precision, use the lowest precision required to achieve a given accuracy outcome
 ▪ Improves runtime, reduce power consumption, lower data movement
 ▪ Reformulate to find correction to solution, rather than solution; Δx rather than x.
• Exploit 32 bit floating point as much as possible.
 ▪ Especially for the bulk of the computation

• Correct or update the solution with selective use of 64 bit floating point to provide a refined results

• Intuitively:
 ▪ Compute a 32 bit result,
 ▪ Calculate a correction to 32 bit result using selected higher precision and,
 ▪ Perform the update of the 32 bit results with the correction using high precision.
Iterative refinement for dense systems, $Ax = b$, can work this way.

\begin{align*}
L U &= lu(A) & O(n^3) \\
x &= L(U\backslash b) & O(n^2) \\
r &= b - Ax & O(n^2) \\
\text{WHILE} & \quad ||r|| \text{ not small enough} \\
z &= L(U\backslash r) & O(n^2) \\
x &= x + z & O(n^1) \\
r &= b - Ax & O(n^2) \\
\text{END}
\end{align*}

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Mixed-Precision Iterative Refinement

- Iterative refinement for dense systems, $Ax = b$, can work this way.

\[
\begin{align*}
L U &= Lu(A) & \text{SINGLE} & O(n^3) \\
x &= L\backslash(U\backslash b) & \text{SINGLE} & O(n^2) \\
r &= b - Ax & \text{DOUBLE} & O(n^2)
\end{align*}
\]

\begin{verbatim}
WHILE || r || not small enough
 z = L\backslash(U\backslash r) & \text{SINGLE} & O(n^2)
 x = x + z & \text{DOUBLE} & O(n^1)
 r = b - Ax & \text{DOUBLE} & O(n^2)
\end{verbatim}

\[
\begin{align*}
\end{align*}
\]

- Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
- It can be shown that using this approach we can compute the solution to 64-bit floating point precision.

- Requires extra storage, total is 1.5 times normal;
- $O(n^3)$ work is done in lower precision
- $O(n^2)$ work is done in high precision
- Problems if the matrix is ill-conditioned in sp; $O(10^8)$
Ax = b

FERMI
Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s
Ax = b

FERMI
Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

Direct solvers
- Factor and solve in working precision

Mixed Precision Iterative Refinement
- Factor in single (i.e. the bulk of the computation in fast arithmetic) and use it as preconditioner in simple double precision iteration, e.g.
 \[x_{i+1} = x_i + (LU_{SP})^{-1} P (b - Ax_i) \]

![Graph showing performance of direct solvers and mixed precision iterative refinement for different matrix sizes. The graph compares single precision, mixed precision, and double precision performance. The FERMI Tesla C2050's CUDA cores are noted with a peak performance of 1030 / 515 GFlop/s.]
Reproducibility

• For example $\sum x_i$ when done in parallel can’t guarantee the order of operations.
• Lack of reproducibility due to floating point nonassociativity and algorithmic adaptivity (including autotuning) in efficient production mode
• Bit-level reproducibility may be unnecessarily expensive most of the time
• Force routine adoption of uncertainty quantification
 ▪ Given the many unresolvable uncertainties in program inputs, bound the error in the outputs in terms of errors in the inputs
Conclusions

• For the last decade or more, the research investment strategy has been overwhelmingly biased in favor of hardware.

• This strategy needs to be rebalanced - barriers to progress are increasingly on the software side.

• Moreover, the return on investment is more favorable to software.
 - Hardware has a half-life measured in years, while software has a half-life measured in decades.

• High Performance Ecosystem out of balance
 - Hardware, OS, Compilers, Software, Algorithms, Applications
 • No Moore’s Law for software, algorithms and applications
Last ...

• Thank a number of people who have helped with this work
 ▪ Emmanuel Agullo, George Bosilca, Aurelien Bouteiller, Anthony Danalis, Jim Demmel, Tingxing "Tim" Dong, Mathieu Faverge, Azzam Haidar, Thomas Herault, Mitch Horton, Jakub Kurzak, Julien Langou, Julie Langou, Pierre Lema"n"ier, Piotr Luszczek, Hatem Ltaief, Stanimire Tomov, Asim YarKhan

• More details tomorrow Session 21 on Numerical Algorithms
"We can only see a short distance ahead, but we can see plenty there that needs to be done."

- Alan Turing (1912–1954)