

HPC Challenge Benchmark Suite

Jack Dongarra (UTK/ORNL)
 Piotr Luszczek (ICL/UTK)

1

 Accidental Benchmarking

- ◆ First benchmark report from 1977;
 - Cray 1 to DEC PDP-10
- ◆ Appendix B of the Linpack Users' Guide
 - Designed to help users extrapolate execution time for Linpack software package

Facility	TIME	UNIT	Computer	Type	Compiler
	sec.	secs.			
NCAR	14.0	.049	0.14	CRAY-1	S CFT, Assembly BLAS
LASL	4.61	.148	0.43	CDC 7600	S F77, Assembly BLAS
NCAR	3.5V	.192	0.56	CRAY-1	S CFT
LASL	5.27	.210	0.61	CDC 7600	S F77
Argonne	2.1	.212	0.61	DEC KL-193	D H
NCAR	1.81	.359	1.05	CDC 7600	S Local
Argonne	1.77	.388	1.33	IRM 3033	D H
NASA Langley	1.40	.489	1.42	CDC Cyber 175	S F77
U. Ill. Urbana	1.54	.506	1.47	CDC Cyber 175	S CHAT, No optimize
LLL	1.41	.554	1.61	CDC 7600	S CHAT, Fast mult.
SLAC	1.49	.579	1.69	IBM 370/168	D H Ext., Fast mult.
Michigan	1.52	.594	1.86	IBM 370/170/V6	D H Ext., Fast mult.
Toronto	1.78	.590	2.39	IBM 370/165	D H Ext., Fast mult.
Northwestern	4.77	1.64	4.20	CDC 6600	S F77
Texas	3.54	1.93	5.63	CDC 6600	S RUN
China Lake	.75	1.95	5.69	Univac 1110	S V
Yale	.765	2.59	7.33	DEC KL-20	S F20
Bell Labs	.77	3.46	10.1	Honeywell 6080	S Y
Wisconsin	.77	3.54	10.2	Univac 1110	S Y
Iowa State	.77	3.56	10.2	Int. AS/3 mod3	D H
U. Ill. Chicago	.77	4.14	11.9	IBM 370/158	D G1
Purdue	.79	5.63	16.6	CDC 6500	S FUN
U. C. San Diego	.79	13.1	38.2	Burroughs 6700	S H
Yale	.79	17.1	49.9	DEC KA-10	S F40

* TIME(100) = (100/75)*#3 SGEMM(75) + (100/75)*#2 SGESL(75)

My kids
 Playstation 2
 unoptimized.

My PDA running
 the benchmark in
 Java.

1

Linpack Benchmark Over Time

- ◆ In the beginning there was the Linpack 100 Benchmark (1977)
 - $n=100$ (80KB); size that would fit in all the machines
 - Fortran; 64 bit floating point arithmetic
 - No hand optimization (only compiler options)
- ◆ Linpack 1000 (1986)
 - $n=1000$ (8MB); wanted to see higher performance levels
 - Any language; 64 bit floating point arithmetic
 - Hand optimization OK
- ◆ Linpack TPP (1991) (Top500; 1993)
 - Any size (n as large as you can; $n=1.2M$; 11.5TB; ~3 hours);
 - Any language; 64 bit floating point arithmetic
 - Hand optimization OK
 - Strassen's method not allowed (confuses the op count)
 - Reference implementation available
- ◆ In all cases results are verified by looking at: $\frac{\|Ax-b\|}{\|A\|\|x\|\|n\|\varepsilon} = O(1)$
- ◆ Operations count for factorization $\frac{2}{3}n^3 - \frac{1}{2}n^2$; solve $2n^2$

3

Motivation for Additional Benchmarks

Linpack Benchmark

- ◆ Good
 - One number
 - Simple to define & easy to rank
 - Allows problem size to change with machine and over time
 - Stresses the system with a long running job
- ◆ Bad
 - Emphasizes only "peak" CPU speed and number of CPUs
 - Does not stress local bandwidth
 - Does not stress the network
 - Does not test gather/scatter
 - Ignores Amdahl's Law (Only does weak scaling)
- ◆ Ugly
 - Benchmarkteering hype

- ◆ Perhaps there was a time when this was adequate.
- ◆ From Linpack Benchmark and Top500: "no single number can reflect overall performance"
- ◆ Clearly need something more than Linpack
- ◆ HPC Challenge Benchmark
 - Test suite stresses not only the processors, but the memory system and the interconnect.
 - The real utility of the HPCC benchmarks are that architectures can be described with a wider range of metrics than just Flop/s from Linpack.

4

Tests on Single Processor and System

- ◆ Local - only a single processor is performing computations.
- ◆ Embarrassingly Parallel - each processor in the entire system is performing computations but they do no communicate with each other explicitly.
- ◆ Global - all processors in the system are performing computations and they explicitly communicate with each other.

HPC Challenge Benchmark

Consists of basically 7 benchmarks;

➤ Think of it as a framework or harness for adding benchmarks of interest.

1. HPL (LINPACK) — MPI Global ($Ax = b$)
2. STREAM — Local; single CPU
*STREAM — Embarrassingly parallel
3. PTRANS ($A \leftarrow A + B^T$) — MPI Global
4. RandomAccess — Local; single CPU
*RandomAccess — Embarrassingly parallel
RandomAccess — MPI Global
5. BW and Latency — MPI
6. FFT — Global, single CPU, and EP
7. Matrix Multiply — single CPU and EP

name	benchmark	bytes/iter.	ELBOW/iter.
CHPLB	$m(2) = m(1)$	18	0
SCALB	$m(2) = q^m(2)$	18	1
SMW	$m(4) = m(1) + m(2)$	94	1
TMCDR	$m(2) = m(1) + q^m(2)$	34	2

Random integer read; update; & write

HPCS

Computational Resources and HPC Challenge Benchmarks

9

Computational Resources and HPC Challenge Benchmarks

10

How Does The Benchmarking Work?

- ◆ Single program to download and run
 - Simple input file similar to HPL input
- ◆ Base Run and Optimization Run
 - Base run must be made
 - User supplies MPI and the BLAS
 - Optimized run allowed to replace certain routines
 - User specifies what was done
- ◆ Results upload via website
- ◆ html table and Excel spreadsheet generated with performance results
 - Intentionally we are not providing a single figure of merit (no over all ranking)
- ◆ Goal: no more than 2 X the time to execute HPL.

HPCS ↑

HPC Challenge Languages

Language	HPL	Random Access	STREAM	FFT
Specification	UTK	UTK	UTK	UTK
<i>C</i>	UTK	UTK	UTK	UTK
<i>C & MPI</i>	UTK	UTK	UTK	UTK
<i>C & OpenMP</i>	UTK	UTK	UTK	UTK
<i>UPC</i>		ISI		
<i>C & pthreads</i>				
<i>C++</i>				
<i>Fortran</i>				
<i>Matlab</i>	MIT-LL	MIT-LL	MIT-LL	MIT-LL
<i>Matlab & MPI</i>				
<i>StarP</i>	UCSB	UCSB	UCSB	UCSB
<i>pMatlab</i>	MIT-LL	MIT-LL	MIT-LL	MIT-LL
<i>Octave</i>	OSC	OSC	OSC	OSC
<i>Python</i>				
<i>Python & MPI</i>		UTK	UTK	
<i>Java</i>				
<i>Chapel</i>	Cray	Cray	Cray	Cray
<i>X10</i>		IBM		
<i>Fortress</i>				

14

 [http://icl.cs.utk.edu/hpcc/ web](http://icl.cs.utk.edu/hpcc/web)

HPC CHALLENGE

Home Rules News Download FAQ Links Collaborators Sponsors Upload Kiviat Diagram Results	<p>HPC Challenge Benchmark</p> <p>The HPC Challenge benchmark consists of basically 7 benchmarks:</p> <ol style="list-style-type: none"> 1. HPL - the Linpack TPP benchmark which measures the floating point rate of execution for solving a linear system of equations. 2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix multiplication. 3. STREAM - a simple synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel. 4. PTRANS (parallel matrix transpose) - exercises the communications where pairs of processors communicate with each other simultaneously. It is a useful test of the total communications capacity of the network. 5. RandomAccess - measures the rate of integer random updates of memory (GUPS). 6. FFTE - measures the floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT). 7. Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number of simultaneous communication patterns; based on b_eff (effective bandwidth benchmark).
---	---

15

HPCCHALLENGE

[Home](#) [Rules](#) [News](#) [Download](#) [FAQ](#) [Links](#) [Collaborators](#) [Sponsors](#) [Upload](#) [Results](#)

Condensed Results - Base and Optimized Runs - 76 Systems - Generated on Tue Sep 20 03:47:25 2005

System Information													
System - Processor - Speed - Count - Threads - Processes			Run										
MA/DT/PS/PC/TH/PR/CH/CS/TC/IA/SD			Type	TFlop/s	GFlop/s	C/s	GFlop/s	CR/s	GFlop/s	CR/s	GFlop/s	CR/s	user
Altix Conquest cluster AMD Opteron	1.40GHz	128	1 128 base		0.2326	3.247		208.5	1.629	0.03627	23.48		
Clustervision BV Beastie AMD Opteron	2.40GHz	32	1 32 base		0.1938	0.816	-0.000235	2.15	107.0	3.342	4.195	0.02448	53.23
Cray X1 MSP	0.80GHz	64	1 64 base		0.5216	3.229		959.3	14.990	0.94074	20.34		
Cray X1 MSP	0.80GHz	60	1 60 base		0.5778	30.431		896.2	14.374	1.03251	20.43		
Cray X1 MSP	0.80GHz	120	1 120 base		1.0110	2.460		1019.5	8.496	0.83014	20.12		
Cray T3E Alpha 21164	0.60GHz	1024	1 1024 base		0.5482	10.377		529.2	0.517	0.01174	12.09		
Cray X1 MSP	0.80GHz	232	1 232 base		2.2647	97.408		2730.0	14.914	0.42099	22.27		
Cray X1 MSP	0.80GHz	232	1 350 opt		2.3678	96.137		5470.7	21.741	0.43620	22.64		
Cray X1 MSP	0.80GHz	60	1 60 opt		0.5789	31.072		1306.1	21.768	1.00986	21.16		
Cray X1 MSP	0.80GHz	124	1 124 base		1.2054	39.525		1856.1	14.973	0.70887	20.15		
Cray X1 MSP	0.80GHz	124	1 124 opt		1.1920	39.302		2697.0	21.752	0.80200	20.03		
Cray X1 MSP	0.80GHz	154	1 174 opt		1.1820	39.383		2697.5	21.743	0.80388	20.08		
Cray X1 MSP	0.80GHz	60	1 60 base		0.3087	1.438	-0.003075	3.14	894.2	14.902	10.919	1.16779	14.44
Cray T3E Alpha 21164	0.6750GHz	512	1 512 base		0.2232	9.774	0.028944	15.48	372.2	0.332	0.461	0.03371	8.14
Cray XD1 AMD Opteron	2.20GHz	64	1 64 base		0.2239	10.992	0.023297	16.36	170.0	2.656	4.034	0.22997	1.43
Cray X1 MSP	0.80GHz	32	1 32 base		0.2767	32.461	0.001662	2.96	473.1	14.870	8.238	1.41269	14.94
System Information													
System - Processor - Speed - Count - Threads - Processes			Run										
MA/DT/PS/PC/TH/PR/CH/CS/TC/IA/SD			Type	TFlop/s	CR/s	C/s	GFlop/s	CR/s	CR/s	GFlop/s	CR/s	user	
Cray XT3 AMD Opteron	2.60GHz	1100	1 1100 base		4.7822	217.923	0.137002	266.66	3274.7	4.795	4.811	0.28638	25.94
Cray mpeg2 X16	1.13GHz	248	1 240 opt		3.3888	44.010	1.854730	-1.00	3280.0	13.226	13.344	0.29886	14.38
Cray XD1 AMD Opteron	2.40GHz	128	1 128 base		0.5021	13.515	0.066672	35.52	500.1	3.907	4.334	0.25919	2.06
Cray X16 X16 MSP	1.13GHz	232	1 350 base		3.1941	65.204	0.014666	15.54	2440.0	9.682	14.165	0.36024	14.32
Cray XT3 AMD Opteron	2.40GHz	3744	1 3744 base		14.7440	608.506	0.220296	417.17	1814.6	4.847	4.413	0.16164	25.32
Cray XT3 AMD Opteron	2.40GHz	5200	1 5200 base		20.5270	874.899	0.368583	644.79	26202.8	5.054	4.395	0.14682	25.80
Cray XT3 AMD Opteron	2.40GHz	32	1 32 base		0.1208	7.276	0.060602	9.37	156.4	4.808	4.776	0.37281	0.74
Cray X16	1.13GHz	32	4 32 base		0.3274	18.920	0.009669	5.20	307.6	9.611	11.406	1.40487	12.21
Cray XT2 AMD Opteron	2.60GHz	4096	1 4096 base		16.9793	302.979	0.533072	905.97	20456.3	5.043	4.782	0.14896	9.44
Dalco Opteron/QsNet Linux Cluster AMD Opteron	2.20GHz	64	1 64 base		0.2180	6.320	0.004700	19.55	193.4	2.397	3.879	0.17003	11.44
Dell Poweredge 1600 cluster Intel Xeon EM64T	3.40GHz	64	1 64 base		0.2489	1.692	0.04226	10.39	81.0	1.266	6.061	0.14206	9.61
Dell Poweredge 2650 Cluster Intel Xeon	2.40GHz	32	1 32 base		0.0966	0.910	0.000276	1.94	18.5	0.579	3.818	0.03780	42.23
Dell PowerEdge 2850 Cluster Intel Xeon	2.40GHz	32	1 32 base		0.1002	1.149	0.002338	2.30	18.7	0.583	3.762	0.04771	8.91

16

Condensed Results - Base and Optimized Runs - 76 Systems - Generated on Tue Sep 20 03:45:50 2005																
System Information - Processor - Speed - Count - Threads - Processes				Run	G-HPL	G-PIRANS	G-RandomAccess	G-FFT	G-STREAM	EP-STREAM	EP-DGEMM	RandomRing Bandwidth	RandomRing Latency			
				Type	Tflop/s	GB/s	GB/s	Gflop/s	GB/s	GB/s	GB/s	Gflop/s	GB/s	usec		
Cray XT3 AMD Opteron	2.4GHz	5200	15200	base	20.5270	0.74.099	0.266593	64.473	26020.8	5.004	4.393	0.14682	25.80			
Cray XT3 AMD Opteron	2.60Hz	4096	14096	base	16.9752	302.979	0.533072	905.57	20656.5	5.043	4.782	0.16896	9.44			
Cray XT3 AMD Opteron	2.49Hz	3744	13744	base	14.7040	608.506	0.220296	417.17	10146.4	4.947	4.413	0.16164	25.32			
NEC SX-8	2GHz	576	1 576	base	8.0066	312.720	0.019362	160.35	23555.6	40.895	15.223	0.82924	22.27			
SGI Altix 3700 8x2 Intel Itanium 2	1.60Hz	1008	11008	base	5.1303	105.666	0.032939	15.66	1907.5	1.892	5.804	0.20268	6.82			
Cray XT3 AMD Opteron	2.60Hz	1100	11100	base	4.7923	217.922	0.172002	266.66	5274.7	4.795	4.911	0.28629	25.94			
Cray mfg8 X1E	1.130Hz	248	1 248	opt	3.2099	66.010	1.024750	-1.00	2280.9	13.229	13.564	0.29996	14.59			
Cray X1E X1E MSP	1.130Hz	232	1 232	base	3.1941	85.204	0.014060	15.54	2440.0	9.692	14.195	0.36024	14.93			
Cray X1 MSP	0.80Hz	232	1 232	base	2.2047	97.408			3708.4	14.914		0.42899	22.27			
Cray X1 MSP	0.80Hz	232	1 232	opt	2.2670	96.137			5476.7	21.741		0.42828	22.64			
IBM Blue Gene/L PowerPC 440	0.70Hz	1024	11024	opt	1.4201	27.994	0.124729	49.93	662.9	0.643	2.467	0.02455	4.03			
IBM Blue Gene/L PowerPC 440	0.70Hz	2048	12048	base	1.4075	34.431	0.494052	56.15	1404.6	0.782	0.03005	0.02005	4.10			
NEC SX-6	0.50Hz	192	1 192	base	1.3271	92.068	0.006050	36.13	5051.3	26.309	7.941	0.39777	29.67			
Cray X1 MSP	0.80Hz	124	1 124	base	1.2054	39.525			1865.7	14.973		0.70857	20.15			
Cray X1 MSP	0.80Hz	124	1 124	opt	1.1820	39.363			2697.3	21.752		0.80388	20.48			
Cray X1 MSP	0.80Hz	124	1 124	opt	1.1820	39.363			2697.3	21.752		0.80388	20.48			
System Information - Processor - Speed - Count - Threads - Processes				Run	G-HPL	G-PIRANS	G-RandomAccess	G-FFT	G-STREAM	EP-STREAM	EP-DGEMM	RandomRing Bandwidth	RandomRing Latency			
				Type	Tflop/s	GB/s	GB/s	Gflop/s	GB/s	GB/s	GB/s	Gflop/s	GB/s	usec		
IBM eServer p520 Power 4+	1.70Hz	256	4 64	base	1.0744	29.721	0.005502	10.46	411.7	6.433	17.979	0.72395	8.34			
Cray X1 MSP	0.80Hz	120	1 120	base	1.0410	2.460			1019.5	8.496		0.83014	20.12			
Linux Netware Powell Intel Xeon	2.060GHz	256	1 256	base	1.0303	9.113			198.2	0.774		0.03266	22.27			
NEC SX-6	0.50Hz	120	1 120	base	0.9049	61.492	0.004246	37.16	3437.4	26.858	7.938	0.42924	27.43			
IBM p590 Power 4	1.30Hz	504	1 504	base	0.9030	5.002			864.3	1.715		0.01038	367.48			
IBM Blue Gene/PowerPC 440	0.70Hz	1024	11024	base	0.7301	26.440	0.299617	70.94	765.3	0.747	0.901	0.04480	4.50			
IBM Blue Gene/PowerPC 440	0.70Hz	1024	11024	base	0.7164	27.578	0.134994	48.59	868.4	0.848	0.919	0.03461	4.81			
IBM p590 Power 4	1.30Hz	256	1 256	base	0.6537	0.833			304.6	1.190		0.00456	373.99			
SGI Altix 3700 Intel Itanium 2	1.50Hz	128	1 128	base	0.6308	7.532	0.011243	14.09	276.3	2.138	5.818	0.21068	6.39			
HP AlphaServer SC45 Alpha 21264B	1GHz	484	1 484	base	0.4181	3.739			672.5	1.389		0.02269	39.91			
HP Compaq SC45 Alpha 21264C	1GHz	484	1 484	base	0.5805	6.370	0.008090	5.01	630.9	1.303	1.219	0.03260	39.43			
Cray X1 MSP	0.80Hz	60	1 60	opt	0.5789	31.072			1306.1	21.768		1.00986	21.16			

17

Systems for Kiviat Chart - Base Runs Only - 47 Systems - Generated on Mon Sep 26 08:12:42 2005																
Plot	System Information - Processor - Speed - Count - Threads - Processes				PP-HPL	PP-PIRANS	PP-RandomAccess	PT-SN-STREAM	PP-FFT	PT-SN-DGEMM	RandomRing Bandwidth	RandomRing Latency				
					Tflop/s	GB/s	GB/s	GB/s	Gflop/s	GB/s	GB/s	GB/s	usec			
<input type="checkbox"/> ClusterVision 8 Beastie AMD Opteron	2.40Hz	32	1 32	base	0.003242	0.023498	0.0000724	2.329	(0.06709)	4.200	0.02653	33.23				
<input type="checkbox"/> Cray X1 MSP	0.80Hz	10	1 60	base	0.003479	0.027237	0.00001525	16.21	(0.05241)	10.904	1.1576	14.66				
<input type="checkbox"/> Cray T3E Alpha 21164	0.8750Hz	512	1 512	base	0.004043	0.019090	0.00005654	0.542	(0.03023)	0.680	0.03037	0.14				
<input type="checkbox"/> Cray XD1 AMD Opteron	2.20Hz	64	1 64	base	0.003430	0.165506	0.00034995	2.766	(0.25564)	3.980	0.22270	1.43				
<input type="checkbox"/> Cray X1 MSP	0.80Hz	32	1 32	base	0.005647	0.020644	0.00005194	16.221	(0.09265)	0.459	1.427	14.94				
<input type="checkbox"/> Cray XT3 AMD Opteron	2.60Hz	1100	11000	base	0.004344	0.195112	0.00012455	4.959	(0.24242)	4.811	0.26644	25.94				
<input type="checkbox"/> Cray XD1 AMD Opteron	2.40Hz	128	1 128	base	0.003932	0.103590	0.00002080	4.356	(0.27740)	4.334	0.2592	2.06				
<input type="checkbox"/> Cray X1E X1E MSP	1.130Hz	232	1 232	base	0.01267	0.335111	0.00005900	23.129	(0.06165)	15.156	0.3602	14.93				
<input type="checkbox"/> Cray XT3 AMD Opteron	2.40Hz	3744	1 3744	base	0.003927	0.163282	0.00005884	4.421	(0.11142)	4.414	0.1616	29.32				
<input type="checkbox"/> Cray XT3 AMD Opteron	2.40Hz	5200	15200	base	0.003946	0.164250	0.00001615	4.720	(0.12399)	4.391	0.14688	29.80				
<input type="checkbox"/> Cray xt3 x86 AMD Opteron	2.40Hz	32	1 32	base	0.004337	0.230513	0.00018930	4.888	(0.29776)	4.773	0.9728	8.74				
<input type="checkbox"/> Cray X1E	1.130Hz	32	4 32	base	0.010581	0.391247	0.00028027	5.710	(0.16238)	3.628	1.6049	12.21				
<input type="checkbox"/> Cray XT3 AMD Opteron	2.60Hz	4096	14096	base	0.004146	0.073960	0.00013014	3.04	(0.22109)	4.775	0.1690	9.44				
<input type="checkbox"/> Dell Opteron/Quantel Linux Cluster AMD Opteron	2.20Hz	64	1 64	base	0.003407	0.098742	0.00007344	2.432	(0.21169)	3.893	0.1700	11.44				
<input type="checkbox"/> Dell PowerEdge 1850 cluster Intel Xeon EM64T	3.40Hz	64	1 64	base	0.005431	0.029588	0.00006465	2.844	(0.16332)	6.152	0.1439	9.81				
<input type="checkbox"/> Dell PowerEdge 2650 Cluster Intel Xeon	2.40Hz	32	1 32	base	0.003030	0.028422	0.00008042	1.147	(0.04052)	3.999	0.03379	42.23				
<input type="checkbox"/> Dell SC-40 Alpha 21264B	0.8330Hz	484	1 484	base	0.000996	0.012390	0.00001296	1.219	(0.009922)	1.449	0.0173	50.10				
<input type="checkbox"/> IBM eServer p555 455 Power 4+	1.70Hz	256	4 64	base	0.004197	0.092661	0.00002149	2.912	(0.04087)	4.706	0.7240	0.34				
<input type="checkbox"/> IBM eServer p555 455 Power 4+	1.70Hz	128	4 32	base	0.004154	0.060726	0.00002211	3.009	(0.03424)	4.733	0.7472	7.94				
<input type="checkbox"/> IBM eServer p555 455 Power 4+	1.70Hz	64	4 16	base	0.004093	0.067600	0.00002282	2.847	(0.03048)	4.724	0.7483	7.47				

18

HPCC Kiviat Chart

19

HPCC: A Comparison of 3 Systems

- ◆ Three systems using the same processor and number of processors.
 - AMD Opteron 64 processors 2.2 GHz
- Cray XD1
 - Custom Interconnect
- Dalco Linux Cluster
 - Quadrics Interconnect
- Sun Fire Cluster
 - Gigabit ethernet Interconnect

Cray XD1, Sun cluster, SGI Altix shared memory machine

HPCC Awards 2005 Info and Rules

Class 1 (Objective)

- ◆ **Performance**
 1. **G-HPL \$500**
 2. **G-RandomAccess \$500**
 3. **EP-STREAM system \$500**
 4. **G-FFT \$500**
- ◆ **Only full submissions from HPCC database**

Sponsored by:

Class 2 (Subjective)

- ◆ **Productivity (Elegant Implementation)**
 - Implement at least two tests from Class 1
 - \$1500 (may be split)
 - **Deadline:**
 - October 15, 2005
 - Select 3 as finalists
- ◆ **Submissions format flexible**
 - Finalists will present at SC|05 in the HPCC BOF

Winners (in both classes) will be announced at SC|05 HPCC BOF on Tuesday November 15th at noon.

22

Class 1:

If Awards Given Today, the Winners ...

- ◆ **Global HPL**
 - **Cray XT3 AMD Opteron** ORNL
 - 5200 proc; 2.4 GHz Opteron
 - 20.5 Tflop/s
- ◆ **Global Random Access**
 - **Cray X1E** ORNL
 - 248 proc; **Cray X1E 1.13 GHz**
 - Optimized run using UPC.
 - 1.855 Gup/s
- ◆ **EP-Stream (triad) for the System**
 - **Cray XT3 AMD Opteron** ORNL
 - 5200 proc; 2.4 GHz Opteron
 - 26020 GB/s
- ◆ **Global FFT**
 - **Cray XT3 AMD Opteron** DOD-ERDC
 - 4096 proc; 2.6 GHz Opteron
 - 906 Gflop/s

23

Class 2: Implementation Languages (Subjective)

- ◆ **English (Paper and pencil)**
- ◆ **C/C++**
 - MPI-1, MPI-2, OpenMP, pthreads
- ◆ **Fortran 90/95/03**
- ◆ **Java**
- ◆ **Matlab**
 - MatlabMPI, StarP, pMatlab
- ◆ **Python**
 - MPI
- ◆ **UPC, CAF**
- ◆ **Chapel, X10, Fortress**
- ◆ **HPCC tests**
 - FFT
 - HPL
 - RandomAccess
 - STREAM
- ◆ **Good if 2 of the 4 tests actually run**

24

Committee Members

- ◆ **David Bailey**
 - LBNL NERSC
- ◆ **Jack Dongarra**
(Co-Chair)
 - University of Tenn/ORNL
- ◆ **Jeremy Kepner**
(Co-Chair)
 - MIT Lincoln Lab
- ◆ **David Koester**
 - MITRE
- ◆ **Bob Lucas**
 - ISI
- ◆ **Rusty Lusk**
 - Argonne National Lab
- ◆ **Piotr Luszczek**
 - University of Tennessee
- ◆ **John McCalpin**
 - IBM Austin
- ◆ **Rolf Rabenseifner**
 - HLRS, Stuttgart
- ◆ **Daisuke Takahashi**
 - University of Tsukuba

25

Future Directions

- ◆ Looking at reducing execution time
- ◆ Constructing a framework for benchmarks
- ◆ Developing machine signatures
- ◆ Plans are to expand the benchmark collection
 - Sparse matrix operations
 - I/O
 - Smith-Waterman (sequence alignment)
- ◆ Port to new systems
- ◆ Provide more implementations
 - Languages (Fortran, UPC, Co-Array)
 - Environments
 - Paradigms

26

Collaborators

♦ HPC Challenge

- Piotr Luszczek, U of Tennessee
- David Bailey, NERSC/LBL
- Jeremy Kepner, MIT Lincoln Lab
- David Koester, MITRE
- Bob Lucas, ISI/USC
- Rusty Lusk, ANL
- John McCalpin, IBM, Austin
- Rolf Rabenseifner, HLRS Stuttgart
- Daisuke Takahashi, Tsukuba, Japan

<http://icl.cs.utk.edu/hpcc/>

Web Images Groups News Froogle more » Advanced Search Preferences Language Tools

[Ways to help with tsunami relief](#)

[Advertising Programs](#) · [About Google](#) · [Go to Google.com](#)

[Make Google Your Homepage!](#)

©2006 Google · Searching 8,048,044,661 web pages

27