
1

1

HPC Challenge Benchmark SuiteHPC Challenge Benchmark Suite

Jack Dongarra (UTK/ORNL)
Piotr Luszczek (ICL/UTK)

2

Accidental Accidental BenchmarkerBenchmarker
♦ First benchmark report from 1977; 

Cray 1 to DEC PDP-10                                 
♦ Appendix B of the Linpack Users’ Guide

Designed to help users extrapolate execution                    
time for Linpack software package

My kids 
Playstation 2 
unoptimized.
My PDA running 
the benchmark in 
Java.



2

3

Linpack Benchmark Over TimeLinpack Benchmark Over Time
♦ In the beginning there was the Linpack 100 Benchmark (1977)

n=100 (80KB); size that would fit in all the machines
Fortran; 64 bit floating point arithmetic 
No hand optimization (only compiler options)

♦ Linpack 1000 (1986)
n=1000 (8MB); wanted to see higher performance levels
Any language; 64 bit floating point arithmetic 
Hand optimization OK

♦ Linpack TPP (1991) (Top500; 1993)
Any size (n as large as you can; n=1.2M; 11.5TB; ~3 hours); 
Any language; 64 bit floating point arithmetic 
Hand optimization OK

Strassen’s method not allowed (confuses the op count)
Reference implementation available

♦ In all cases results are verified by looking at:
♦ Operations count for factorization           ; solve    

|| || (1)
|| || || ||

Ax b O
A x n ε

−
=

  

3 22 1

3 2
n n−

22n

4

Motivation for Additional BenchmarksMotivation for Additional Benchmarks

♦ Perhaps there was a time when 
this was adequate.

♦ From Linpack Benchmark and 
Top500:  “no single number can 
reflect overall performance”

♦ Clearly need something more 
than Linpack

♦ HPC Challenge Benchmark
Test suite stresses not only 
the processors, but the 
memory system and the 
interconnect.  
The real utility of the HPCC 
benchmarks are that 
architectures can be described 
with a wider range of metrics 
than just Flop/s from Linpack.

Linpack Benchmark
♦ Good

One number
Simple to define & easy to rank
Allows problem size to change 
with machine and over time
Stresses the system with a long 
running job

♦ Bad
Emphasizes only “peak” CPU 
speed and number of CPUs
Does not stress local bandwidth
Does not stress the network
Does not test gather/scatter
Ignores Amdahl’s Law (Only 
does weak scaling)

♦ Ugly
Benchmarketeering hype



3

5

DARPADARPA’’ss High Productivity Computing SystemsHigh Productivity Computing Systems

Phase 1
$10M

Phase 2
(2003-2005)

$50M

Phase 3
(2006-2010)

Concept
Study

Advanced
Design &
Prototypes

Full Scale
Development

Petascale/s Systems

Vendors

New Evaluation
Framework

Test Evaluation
Framework

Validated Procurement
Evaluation Methodology

Productivity Team

Half-Way Point
Phase 2

Technology
Assessment

Review

Prototype development

6

Goals HPC Challenge BenchmarkGoals HPC Challenge Benchmark

♦ Stress CPU, memory system, interconnect
♦ To complement the Top500 list
♦ To provide benchmarks that bound the 

performance of many real applications as a 
function of memory access characteristics  

e.g., spatial and temporal locality

♦ Allow for optimizations 
Record effort needed for tuning
Base run requires MPI and BLAS

♦ Provide verification of results
♦ Archive results



4

7

Tests on Single Processor and SystemTests on Single Processor and System

♦ Local - only a single processor is 
performing computations.

♦ Embarrassingly Parallel - each 
processor in the entire system is 
performing computations but they 
do no communicate with each 
other explicitly.

♦ Global - all processors in the 
system are performing 
computations and they explicitly 
communicate with each other.

8

HPC Challenge HPC Challenge 
Benchmark Benchmark 

Consists of basically 7 benchmarks; 
Think of it as a framework or harness for                       
adding benchmarks of interest.

1. HPL (LINPACK) ― MPI Global (Ax = b)

2. STREAM ― Local; single CPU 
*STREAM ― Embarrassingly parallel                                          

3. PTRANS (A    A + BT) ― MPI Global 

4. RandomAccess ― Local; single CPU 
*RandomAccess ― Embarrassingly parallel
RandomAccess ― MPI Global 

5. BW and Latency – MPI

6. FFT - Global, single CPU, and EP

7. Matrix Multiply – single CPU and EP proci prock

Random integer
read; update; & write



5

9

Computational Resources  and Computational Resources  and 
HPC Challenge BenchmarksHPC Challenge Benchmarks

Computational 
resources

Computational 
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

10

Computational Resources  and Computational Resources  and 
HPC Challenge BenchmarksHPC Challenge Benchmarks

Computational 
resources

Computational 
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

HPL
Matrix Multiply

STREAM
Random & Natural Ring 
Bandwidth & Latency



6

11

Memory Access Patterns

12

Memory Access Patterns



7

13

How Does The Benchmarking Work?How Does The Benchmarking Work?
♦ Single program to download and run

Simple input file similar to HPL input
♦ Base Run and Optimization Run

Base run must be made
User supplies MPI and the BLAS

Optimized run allowed to replace certain routines
User specifies what was done

♦ Results upload via website
♦ html table and Excel spreadsheet generated with 

performance results
Intentionally we are not providing a single figure of merit 
(no over all ranking)

♦ Goal: no more than 2 X the time to execute HPL.

14

HPC Challenge LanguagesHPC Challenge Languages

Fortress
IBMX10

CrayCrayCrayCrayChapel
Java

UTKUTKPython & MPI
Python

OSCOSCOSCOSCOctave
MIT-LLMIT-LLMIT-LLMIT-LLpMatlab
UCSBUCSBUCSBUCSBStarP

Matlab & MPI
MIT-LLMIT-LLMIT-LLMIT-LLMatlab

Fortran
C++
C & pthreads

ISIUPC
UTKUTKUTKUTKC & OpenMP
UTKUTKUTKUTKC & MPI

UTKUTKUTKUTKC
UTKUTKUTKUTKSpecification

FFTSTREAMRandom AccessHPLLanguage

Base



8

15

http://icl.cs.utk.edu/hpcc/http://icl.cs.utk.edu/hpcc/ webweb

16



9

17

18



10

19

HPCC HPCC KiviatKiviat Chart Chart 

20

HPCC: A Comparison of 3 SystemsHPCC: A Comparison of 3 Systems

♦ Three systems using                
the same processor 
and number of 
processors.

AMD Opteron 64 
processors 2.2 GHz

Cray XD1
Custom 

Interconnect
Dalco Linux Cluster

Quadrics 
Interconnect

Sun Fire Cluster
Gigabit ethernet

Interconnect



11

21

Cray XD1, Sun cluster, SGI Cray XD1, Sun cluster, SGI AltixAltix shared shared 
memory machinememory machine

SGI Altix
Itanium 1.6 GHz

Cray XD1
AMD 2.2 GHz

Sun GigE
AMD 2.2 GHz

22

HPCC Awards 2005 Info and RulesHPCC Awards 2005 Info and Rules

Class 1 (Objective)
♦ Performance

1.G-HPL $500
2.G-RandomAccess $500
3.EP-STREAM system $500
4.G-FFT $500

♦ Only full submissions 
from HPCC database

Class 2 (Subjective)
♦ Productivity (Elegant 

Implementation) 
Implement at least two 
tests from Class 1
$1500 (may be split)
Deadline: 

October 15, 2005 
Select 3 as finalists

♦ Submissions format 
flexible

Finalists will present at 
SC|05 in the HPCC BOF

Winners (in both classes) will be announced at SC|05
HPCC BOF on Tuesday November 15th at noon.

Winners (in both classes) will be announced at SC|05
HPCC BOF on Tuesday November 15th at noon.

Sponsored by:



12

23

Class 1:Class 1:
If Awards Given Today, the Winners If Awards Given Today, the Winners ……

♦ Global HPL 
Cray XT3 AMD Opteron ORNL
5200 proc; 2.4 GHz Opteron
20.5 Tflop/s

♦ Global Random Access
Cray X1E ORNL
248 proc; Cray X1E 1.13 GHz

Optimized run using UPC.
1.855 Gup/s

♦ EP-Stream (triad) for the System
Cray XT3 AMD Opteron ORNL
5200 proc; 2.4 GHz Opteron
26020 GB/s

♦ Global FFT
Cray XT3 AMD Opteron DOD-ERDC
4096 proc; 2.6 GHz Opteron
906 Gflop/s

24

Class 2: Implementation LanguagesClass 2: Implementation Languages
(Subjective)(Subjective)

♦ English (Paper and pencil)
♦ C/C++

MPI-1, MPI-2, OpenMP, 
pthreads

♦ Fortran 90/95/03
♦ Java
♦ Matlab

MatlabMPI, StarP, pMatlab
♦ Python

MPI
♦ UPC, CAF
♦ Chapel, X10, Fortress

♦ HPCC tests
FFT
HPL
RandomAccess
STREAM

♦ Good if 2 of the 4 
tests actually run



13

25

Committee MembersCommittee Members

♦ David Bailey
LBNL NERSC

♦ Jack Dongarra             
(Co-Chair)

University of 
Tenn/ORNL

♦ Jeremy Kepner           
(Co-Chair)

MIT Lincoln Lab
♦ David Koester

MITRE
♦ Bob Lucas

ISI

♦ Rusty Lusk
Argonne National Lab

♦ Piotr Luszczek
University of 
Tennessee

♦ John McCalpin
IBM Austin

♦ Rolf Rabenseifner
HLRS, Stuttgart

♦ Daisuke Takahashi
University of Tsukuba 

26

Future DirectionsFuture Directions
♦ Looking at reducing execution time
♦ Constructing a framework for benchmarks
♦ Developing machine signatures
♦ Plans are to expand the benchmark collection

Sparse matrix operations
I/O
Smith-Waterman (sequence alignment) 

♦ Port to new systems
♦ Provide more implementations

Languages (Fortran, UPC, Co-Array)
Environments 
Paradigms



14

27

CollaboratorsCollaborators
♦ HPC Challenge

Piotr Łuszczek, U of Tennessee
David Bailey, NERSC/LBL
Jeremy Kepner, MIT Lincoln Lab
David Koester, MITRE
Bob Lucas, ISI/USC
Rusty Lusk, ANL
John McCalpin, IBM, Austin
Rolf Rabenseifner, HLRS Stuttgart
Daisuke Takahashi, Tsukuba, Japan

http://icl.cs.utk.edu/hpcc/


