

An Overview of High- Performance Computing and Challenges for the Future

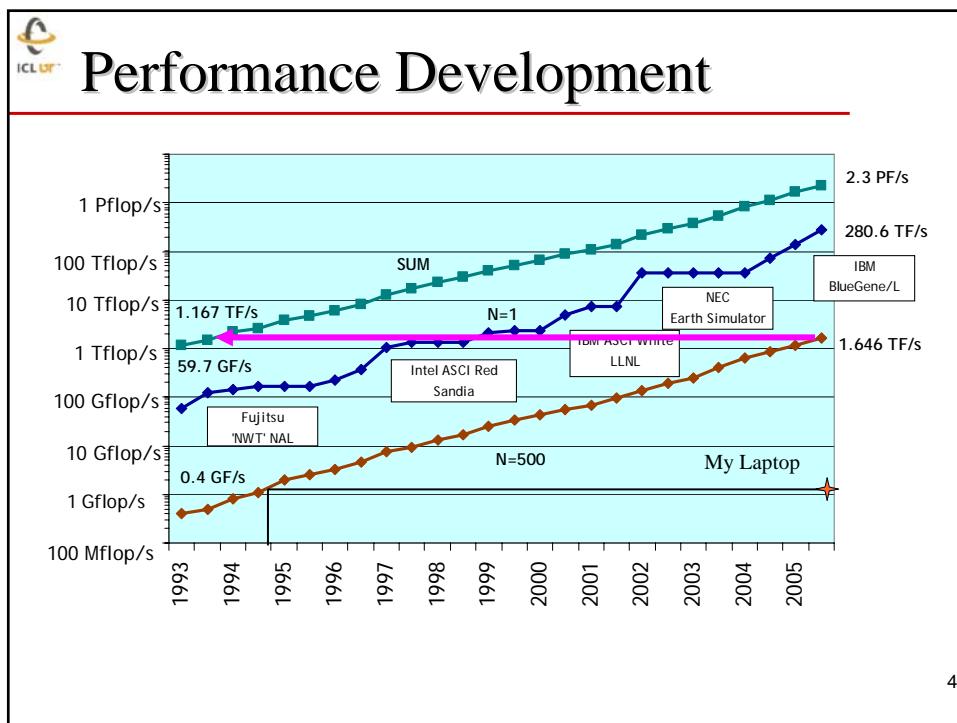
Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

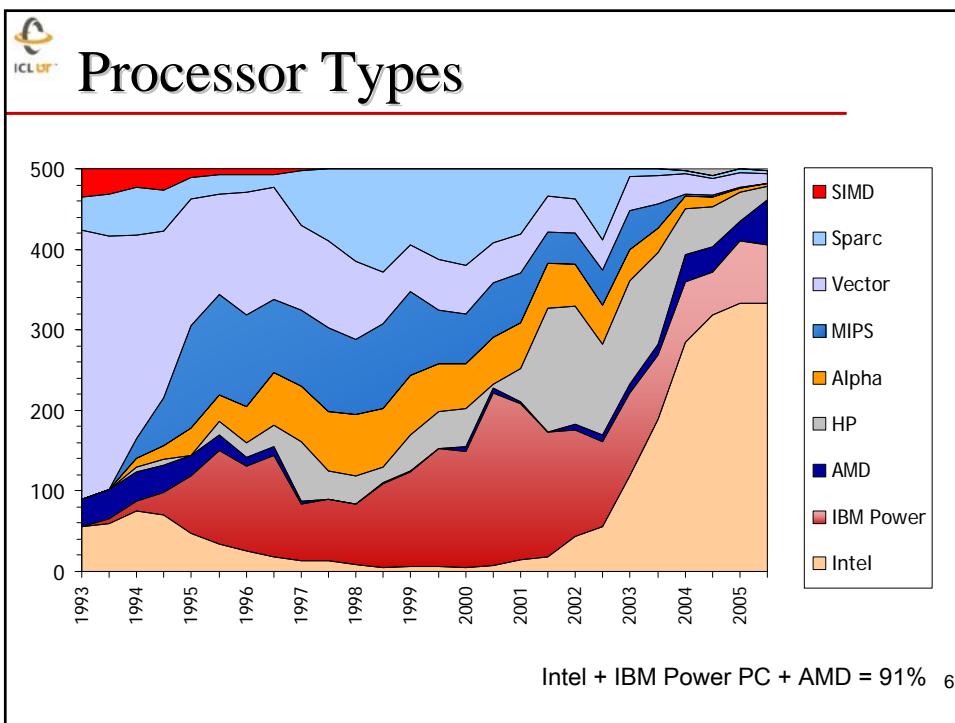
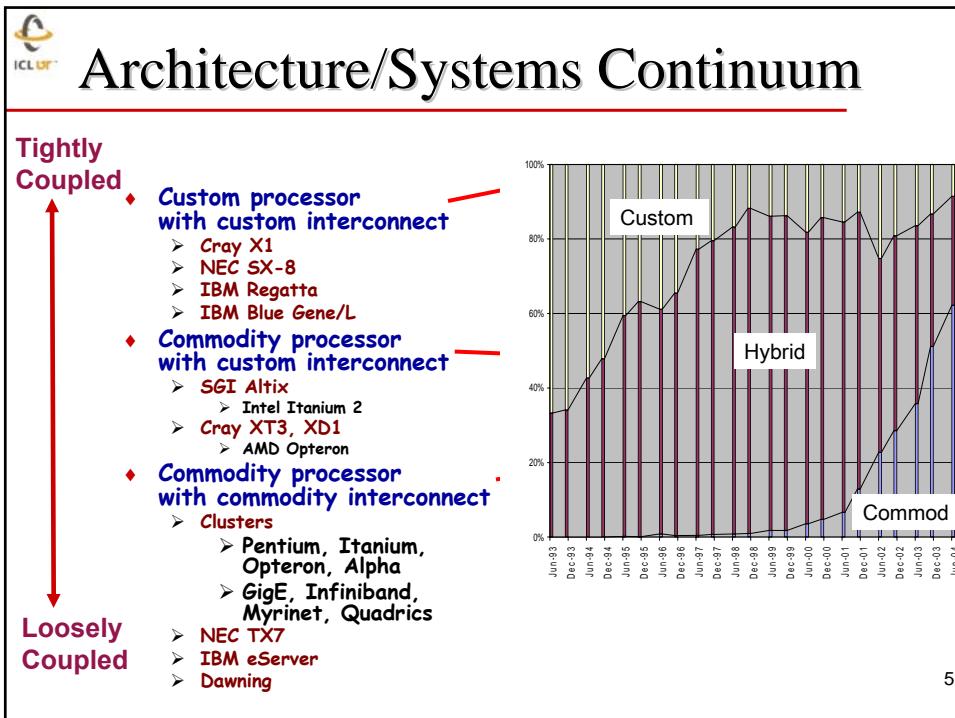
5/10/2006

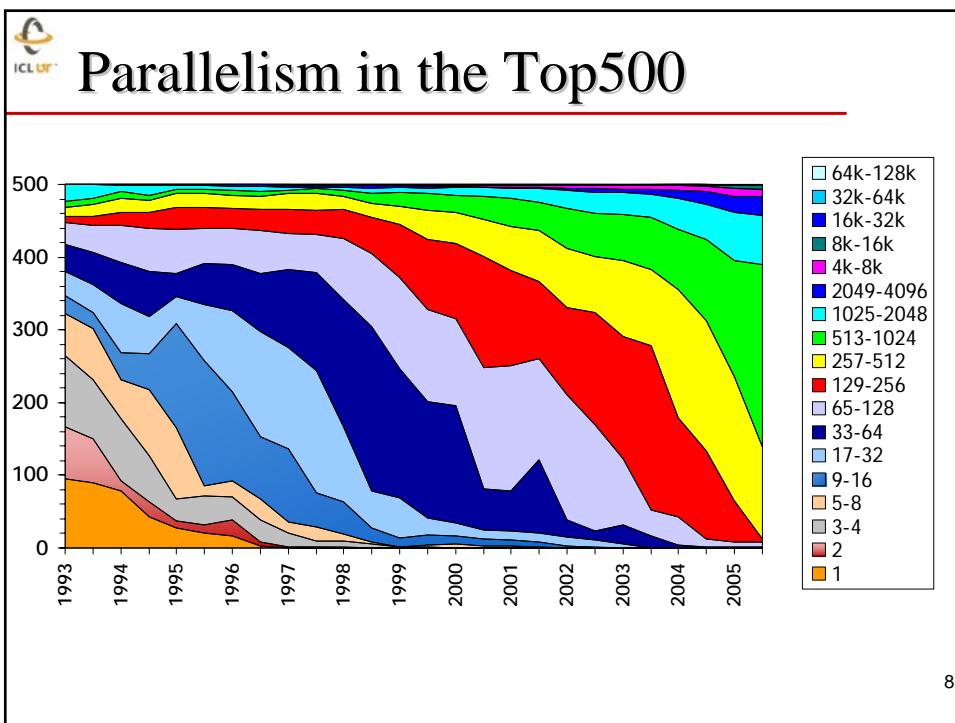
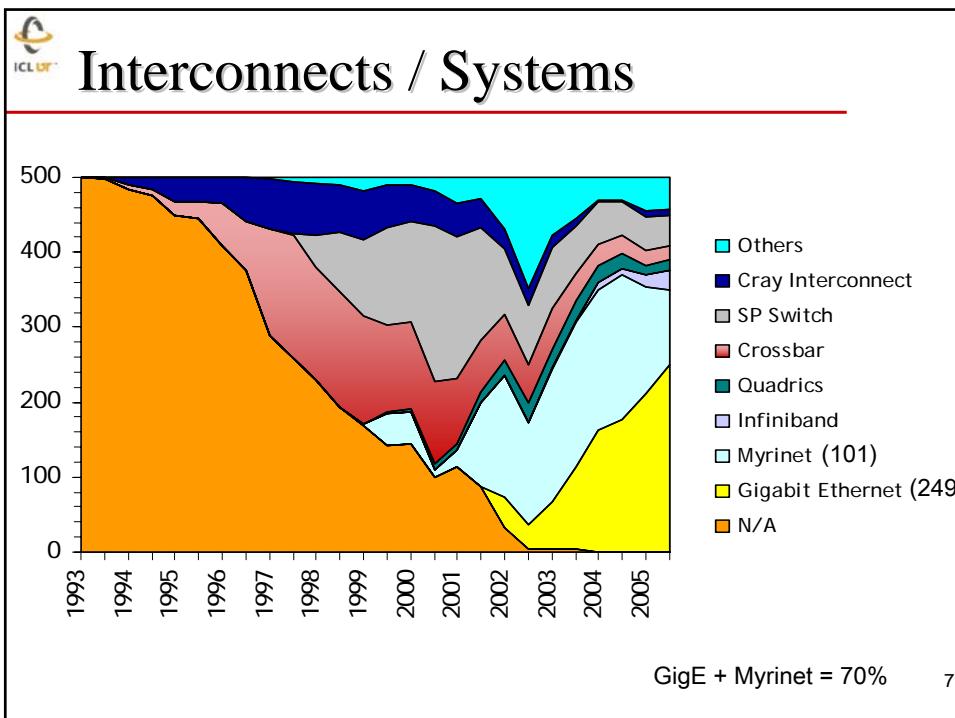
1

Overview

- ◆ Look at current state of high performance computing
 - Past, present and a look ahead
- ◆ Potential gains by exploiting lower precision devices
 - GPUs, Cell, SSE2, AltaVec
- ◆ New performance evaluation tools
 - HPCS - HPC Challenge

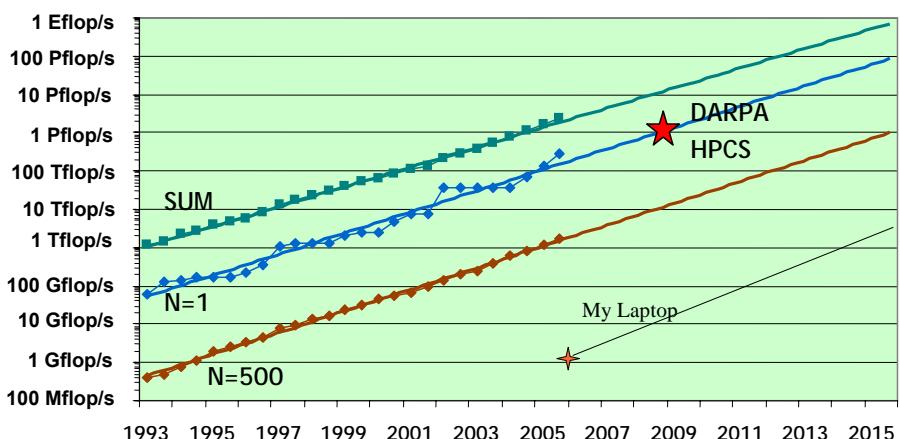

2



TOP500
superCOMPUTER



H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP
 $Ax=b$, *dense problem*
- Updated twice a year
 SC'xy in the States in November
 Meeting in Germany in June
- All data available from www.top500.org

3


26th List: The TOP10

	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Year	#Proc
1	IBM	BlueGene/L eServer Blue Gene	280.6	DOE Lawrence Livermore Nat Lab	USA	2005 custom	131072
2	IBM	BGW eServer Blue Gene	91.29	IBM Thomas Watson Research	USA	2005 custom	40960
3	IBM	ASC Purple Power5 p575	63.39	DOE Lawrence Livermore Nat Lab	USA	2005 custom	10240
4	SGI	Columbia Altix, Itanium/Infiniband	51.87	NASA Ames	USA	2004 hybrid	10160
5	Dell	Thunderbird Pentium/Infiniband	38.27	DOE Sandia Nat Lab	USA	2005 commod	8000
6	Cray	Red Storm Cray XT3 AMD	36.19	DOE Sandia Nat Lab	USA	2005 hybrid	10880
7	NEC	Earth-Simulator SX-6	35.86	Earth Simulator Center	Japan	2002 custom	5120
8	IBM	MareNostrum PPC 970/Myrinet	27.91	Barcelona Supercomputer Center	Spain	2005 commod	4800
9	IBM	eServer Blue Gene	27.45	ASTRON University Groningen	Netherlands	2005 custom	12288
10	Cray	Jaguar Cray XT3 AMD	20.53	DOE Oak Ridge Nat Lab	USA	2005 hybrid	5200

9

Performance Projection

10

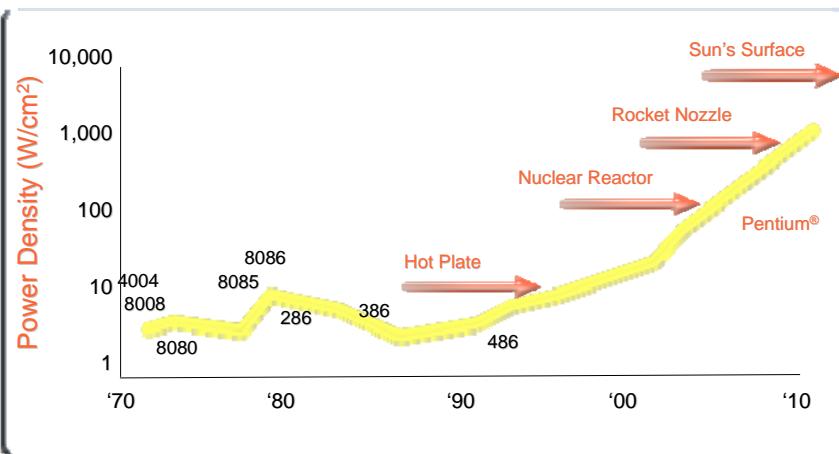
A PetaFlop Computer by the End of the Decade

- ◆ 10 Companies working on a building a Petaflop system by the end of the decade.

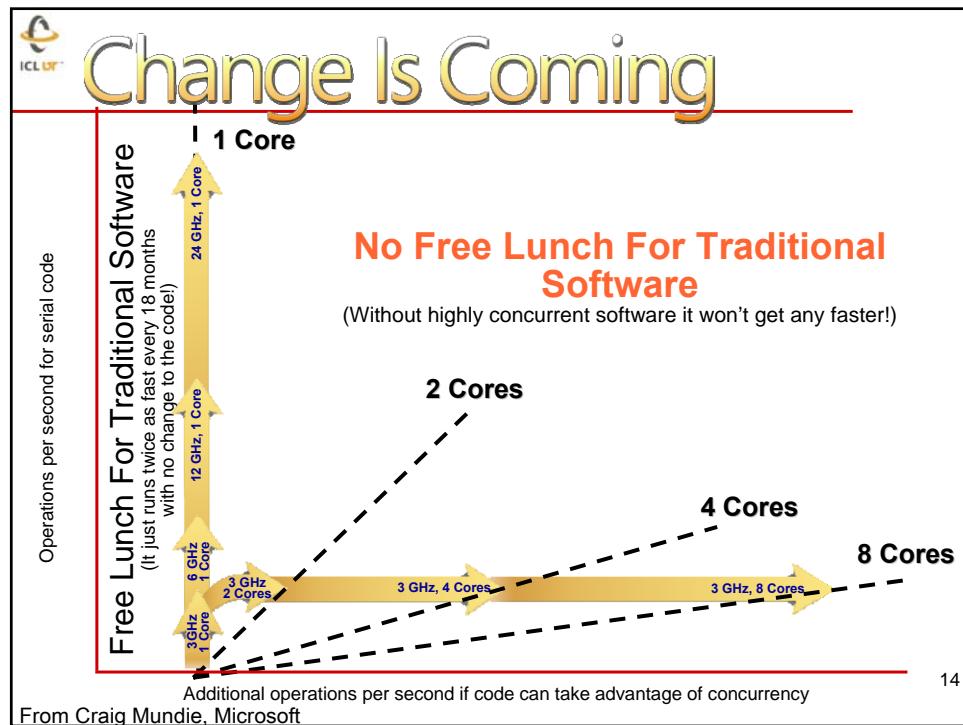
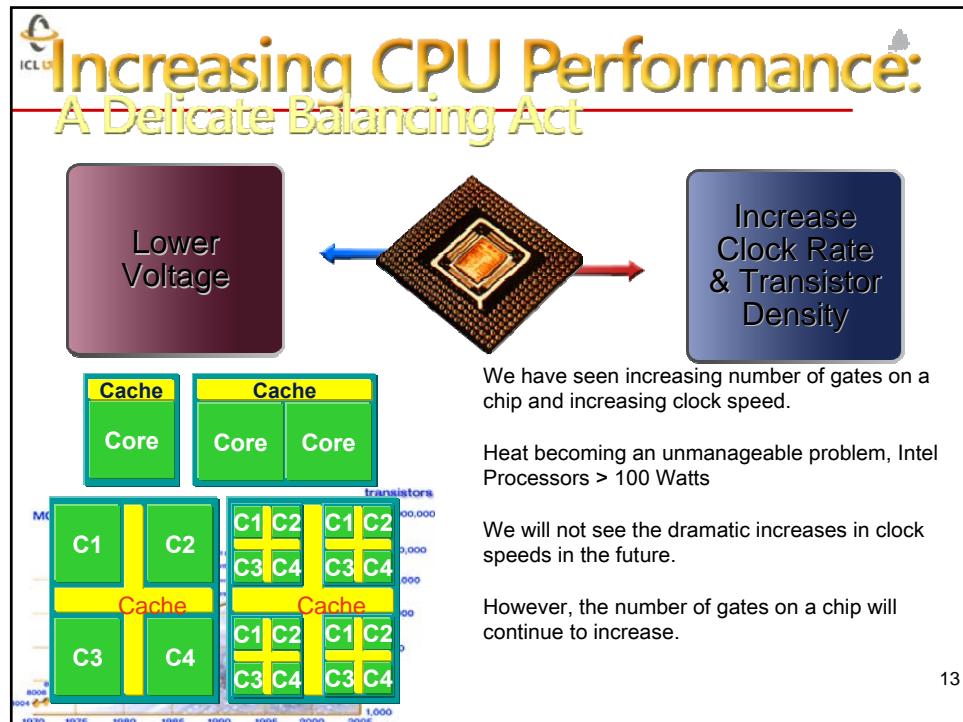
- Cray
- IBM
- Sun
- Dawning
- Galactic
- Lenovo
- Hitachi
- NEC
- Fujitsu
- Bull

} *HPCS* ↑

} Chinese Companies

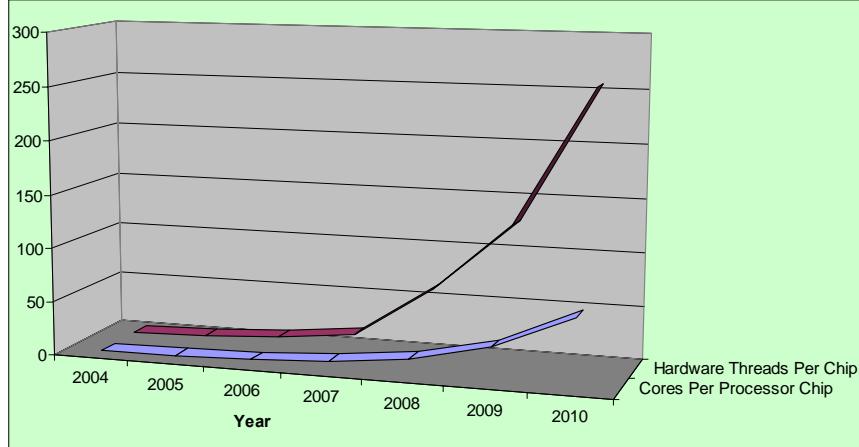

} Japanese "Life Simulator" (10 Pflop/s)

11



Today's CPU Architecture: Heat becoming an unmanageable problem

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

Intel Developer Forum, Spring 2004 - Pat Gelsinger
(Pentium at 90 W)


Square relationship between the cycle time and power

CPU Desktop Trends – Change is Coming

- ◆ Relative processing power will continue to double every 18 months
- ◆ 256 logical processors per chip in late 2010

15

Commodity Processor Trends

Bandwidth/Latency is the Critical Issue, not FLOPS

Got Bandwidth?

	Annual increase	Typical value in 2006
Single-chip floating-point performance	59%	4 GFLOP/s
Front-side bus bandwidth	23%	1 GWord/s = 0.25 word/flop
DRAM latency	(5.5%)	70 ns = 280 FP ops = 70 loads

Source: *Getting Up to Speed: The Future of Supercomputing*, National Research Council, 222 pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.

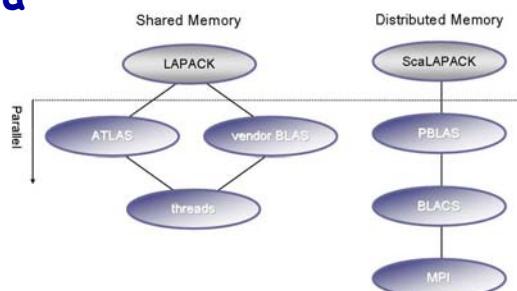
16

That Was the Good News

- ♦ Bad news: the effect of the hardware change on the existing software base
- ♦ Must rethink the design of our software
 - Another disruptive technology
 - Rethink and rewrite the applications, algorithms, and software

17

LAPACK - ScaLAPACK

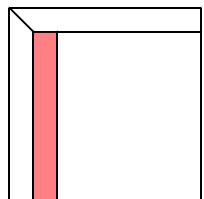

- ♦ Numerical libraries for linear algebra

- ♦ LAPACK

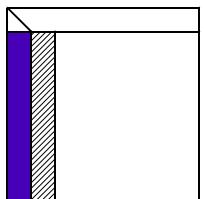
- Late 1980's
- Sequential and SMPs

- ♦ ScaLAPACK

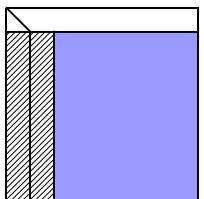
- Early 1990's
- Message passing systems

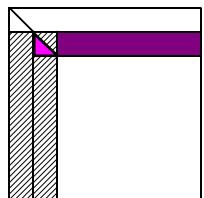


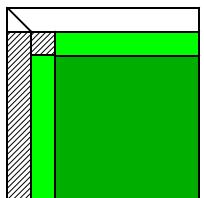
18



Right-Looking LU factorization (LAPACK)

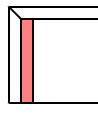

DGETF2


DLSWP


DLSWP

DTRSM

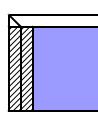
DGEMM


DGETF2 – Unblocked LU
DLSWP – row swaps
DTRSM – triangular solve with
many right-hand sides
DGEMM – matrix-matrix multiply

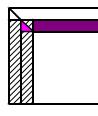
19

Steps in the LAPACK LU

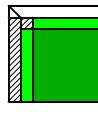
DGETF2


LAPACK

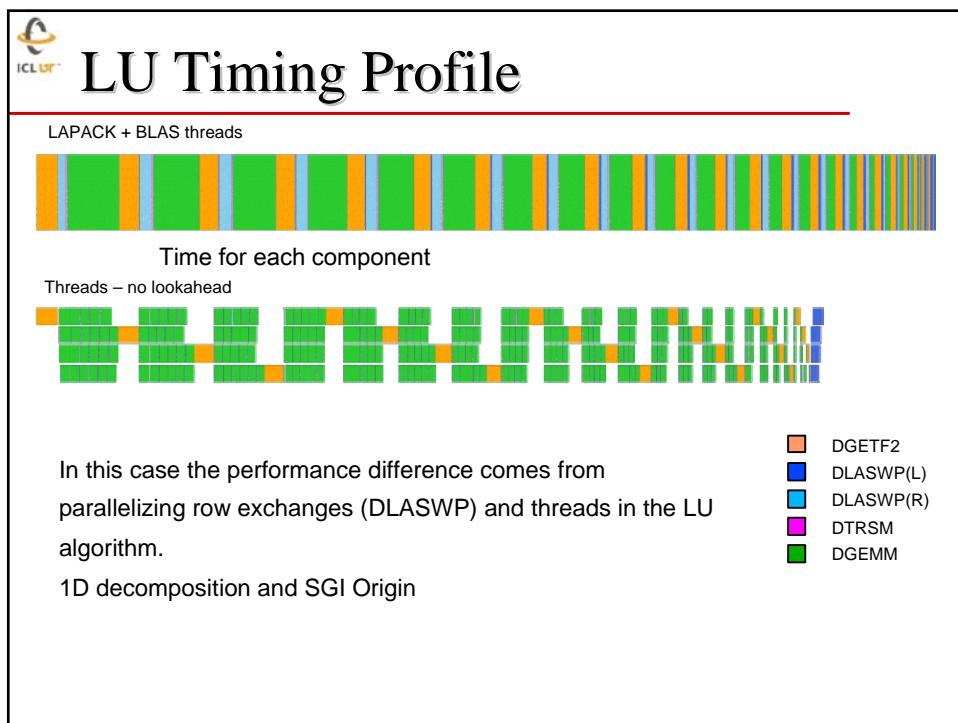
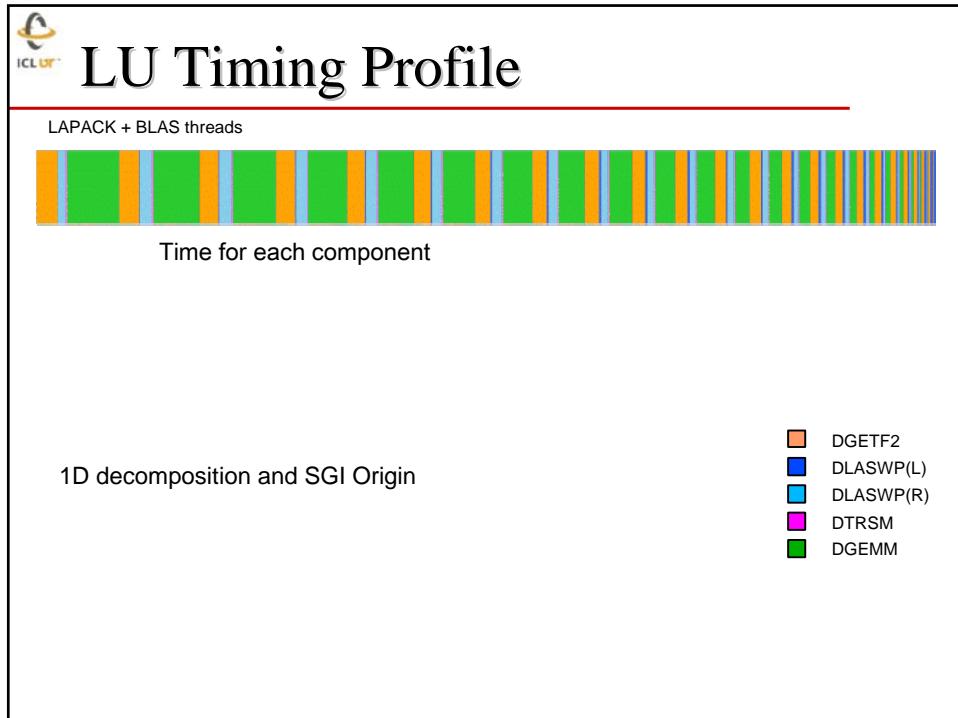
DLSWP


LAPACK

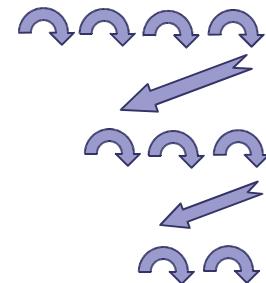
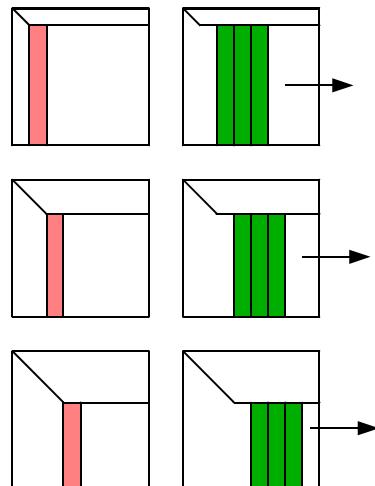
DLSWP


LAPACK

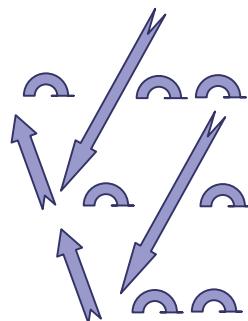
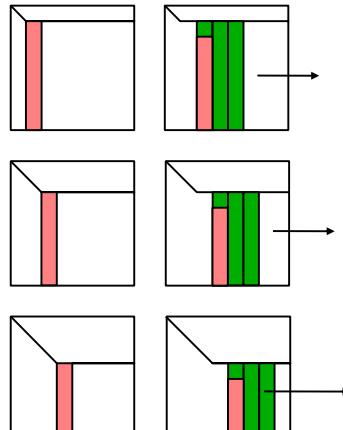
DTRSM

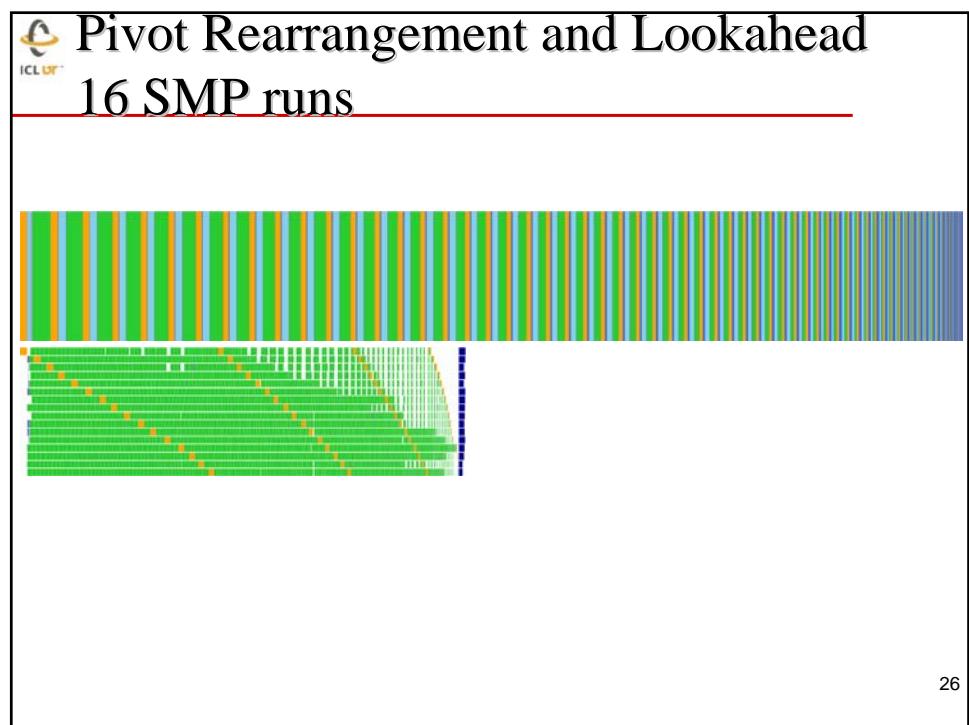


BLAS

DGEMM

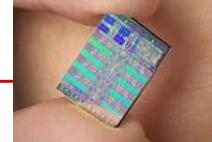


BLAS

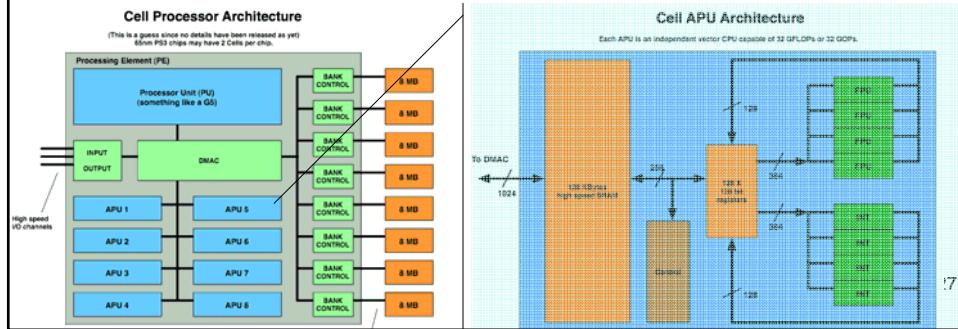
20



Right-Looking LU Factorization




23


Right-Looking LU with a Lookahead



Motivated by...

- ◆ The PlayStation 3's CPU based on a chip codenamed "Cell"
- ◆ Each Cell contains 8 APUs.
 - An APU is a self contained vector processor which acts independently from the others.
 - 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)
 - 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
 - IEEE format, but only rounds toward zero in 32 bit, overflow set to largest
- According to IBM, the SPE's double precision unit is fully IEEE854 compliant.

GPU Performance

GPU Vendor	NVIDIA	NVIDIA	ATI
Model	6800Ultra	7800GTX	X1900XTX
Release Year	2004	2005	2006
32-bit Performance	60 GFLOPS	200 GFLOPS	400 GFLOPS
64-bit Performance	must be emulated in software		

28

Idea Something Like This...

- ◆ Exploit 32 bit floating point as much as possible.
 - Especially for the bulk of the computation
- ◆ Correct or update the solution with selective use of 64 bit floating point to provide a refined results
- ◆ Intuitively:
 - Compute a 32 bit result,
 - Calculate a correction to 32 bit result using selected higher precision and,
 - Perform the update of the 32 bit results with the correction using high precision.

29

32 and 64 Bit Floating Point Arithmetic

- ◆ Iterative refinement for dense systems can work this way.

 Solve $Ax = b$ in lower precision,
save the factorization ($L^*U = A^*P$); $O(n^3)$
Compute in higher precision $r = b - A^*x$; $O(n^2)$
Requires the original data A (stored in high precision)
Solve $Az = r$; using the lower precision factorization; $O(n^2)$
Update solution $x_+ = x + z$ using high precision; $O(n)$
Iterate until converged.

- Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
- We can show using this approach that we can compute the solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
 $O(n^3)$ work is done in lower precision
 $O(n^2)$ work is done in high precision

Problems if the matrix is ill-conditioned in sp; $O(10^8)$

On the Way to Understanding How to Use the Cell Something Else Happened ...

- ♦ **Realized have the similar situation on our commodity processors.**
 - That is, SP is 2X as fast as DP on many systems
- ♦ **The Intel Pentium and AMD Opteron have SSE2**
 - 2 flops/cycle DP
 - 4 flops/cycle SP
- ♦ **IBM PowerPC has AltiVec**
 - 8 flops/cycle SP
 - 4 flops/cycle DP
 - No DP on AltiVec

Processor and BLAS Library	SGEMM (GFlop/s)	DGEMM (GFlop/s)	Speedup SP/DP
Pentium III Katmai (0.6GHz) Goto BLAS	0.98	0.46	2.13
Pentium III CopperMine (0.9GHz) Goto BLAS	1.59	0.79	2.01
Pentium Xeon Northwood (2.4GHz) Goto BLAS	7.68	3.88	1.98
Pentium Xeon Prescott (3.2GHz) Goto BLAS	10.54	5.15	2.05
Pentium IV Prescott (3.4GHz) Goto BLAS	11.09	5.61	1.98
AMD Opteron 240 (1.4GHz) Goto BLAS	4.89	2.48	1.97
PowerPC G5 (2.7GHz) AltiVec	18.28	9.98	1.83

Performance of single precision and double precision matrix multiply (SGEMM and DGEMM) with n=m=k=1000

31

Speedups (Ratio of Times)

Architecture (BLAS)	<i>n</i>	DGEMM /SGEMM	DP Solve /SP Solve	DP Solve /Iter Ref	# iter
Intel Pentium IV-M Northwood (Goto)	4000	2.02	1.98	1.54	5
Intel Pentium III Katmai (Goto)	3000	2.12	2.11	1.79	4
Intel Pentium III Coppermine (Goto)	3500	2.10	2.24	1.92	4
Intel Pentium IV Prescott (Goto)	4000	2.00	1.86	1.57	5
AMD Opteron (Goto)	4000	1.98	1.93	1.53	5
Sun UltraSPARC IIe (Sunperf)	3000	1.45	1.79	1.58	4
IBM Power PC G5 (2.7 GHz) (VecLib)	5000	2.29	2.05	1.24	5
Cray X1 (libsci)	4000	1.68	1.57	1.32	7
Compaq Alpha EV6 (CXML)	3000	0.99	1.08	1.01	4
IBM SP Power3 (ESSL)	3000	1.03	1.13	1.00	3
SGI Octane (ATLAS)	2000	1.08	1.13	0.91	4

Architecture (BLAS-MPI)	# procs	<i>n</i>	DP Solve /SP Solve	DP Solve /Iter Ref	# iter
AMD Opteron (Goto – OpenMPI MX)	32	22627	1.85	1.79	6
AMD Opteron (Goto – OpenMPI MX)	64	32000	1.90	1.83	6

32

Refinement Technique Using Single/Double Precision

♦ Linear Systems

- LU (dense and sparse)
- Cholesky
- QR Factorization

♦ Eigenvalue

- Symmetric eigenvalue problem
- SVD
- Same idea as with dense systems,
 - Reduce to tridiagonal/bi-diagonal in lower precision, retain original data and improve with iterative technique using the lower precision to solve systems and use higher precision to calculate residual with original data.
 - $O(n^2)$ per value/vector

♦ Iterative Linear System

- Relaxed GMRES
- Inner/outer scheme

LAPACK Working Note

33

Motivation for Additional Benchmarks

Linpack Benchmark

♦ Good

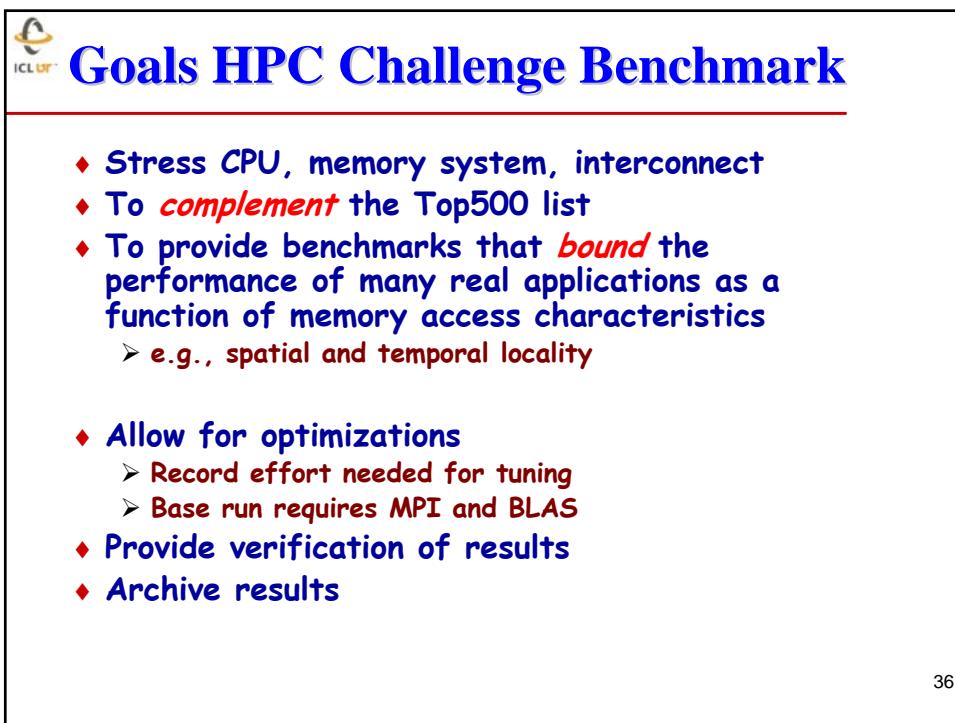
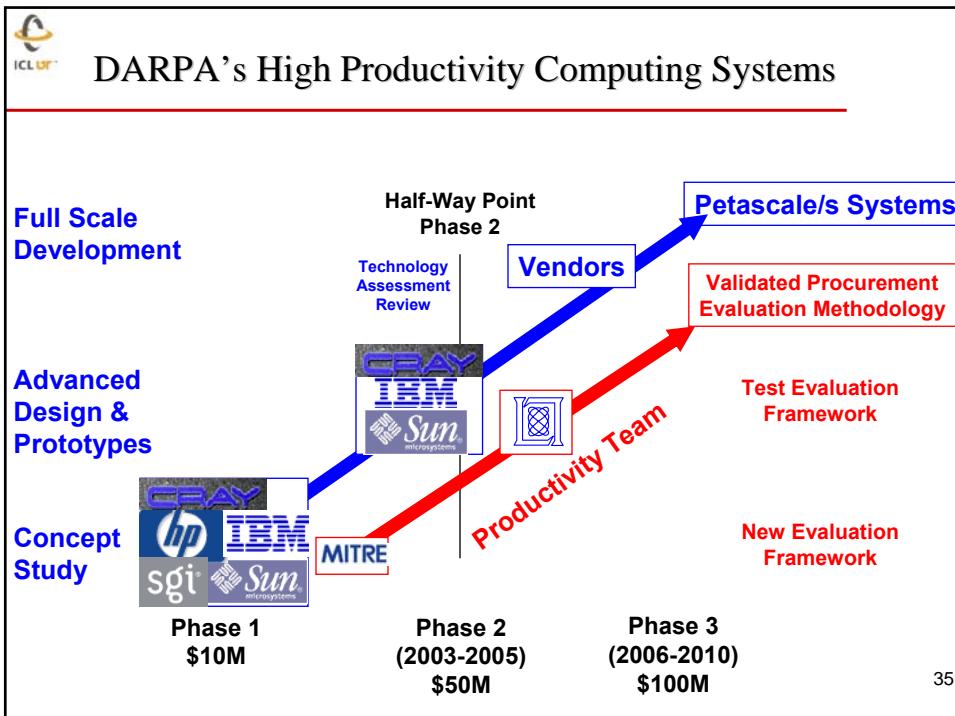
- One number
- Simple to define & easy to rank
- Allows problem size to change with machine and over time

♦ Bad

- Emphasizes only "peak" CPU speed and number of CPUs
- Does not stress local bandwidth
- Does not stress the network
- Does not test gather/scatter
- Ignores Amdahl's Law (Only does weak scaling)
- ...

♦ Ugly

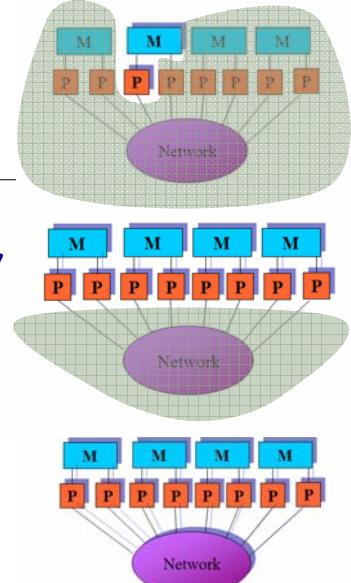
- Benchmarkteering hype



♦ From Linpack Benchmark and Top500: "no single number can reflect overall performance"

♦ Clearly need something more than Linpack

♦ HPC Challenge Benchmark

- Test suite stresses not only the processors, but the memory system and the interconnect.
- The real utility of the HPCC benchmarks are that architectures can be described with a wider range of metrics than just Flop/s from Linpack.


34

Tests on Single Processor and System

- ◆ Local - only a single processor is performing computations.
- ◆ Embarrassingly Parallel - each processor in the entire system is performing computations but they do no communicate with each other explicitly.
- ◆ Global - all processors in the system are performing computations and they explicitly communicate with each other.

HPC Challenge Benchmark *Hpces*

Consists of basically 7 benchmarks;

➤ Think of it as a framework or harness for adding benchmarks of interest.

1. **HPL (LINPACK) — MPI Global ($Ax = b$)**

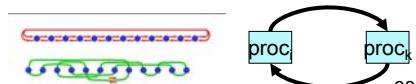
2. **STREAM — Local; single CPU**

*STREAM — Embarrassingly parallel

name	kernel	bytes/iter.	bytes/iter.
CHFMM	$m(2) = m(1)$	1.0	0
SCALMM	$m(2) = q^m(2)$	1.0	1
SMW	$m(4) = m(1) + m(3)$	9.4	1
YKMM	$m(2) = m(1) + q^m(2)$	2.4	2

3. **PTRANS ($A \leftarrow A + B^T$) — MPI Global**

4. **RandomAccess — Local; single CPU**

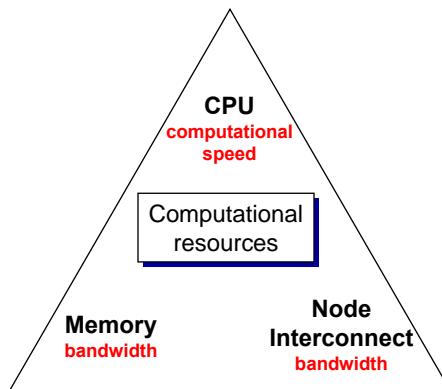

*RandomAccess — Embarrassingly parallel

RandomAccess — MPI Global

Random integer read; update; & write

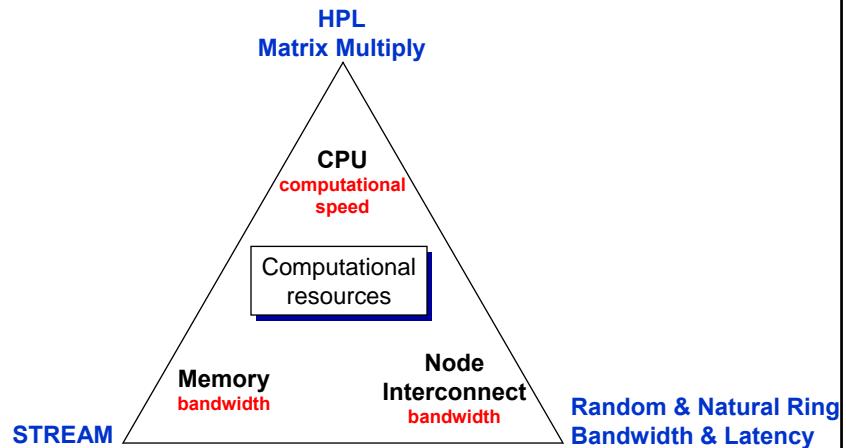
5. **BW and Latency — MPI**

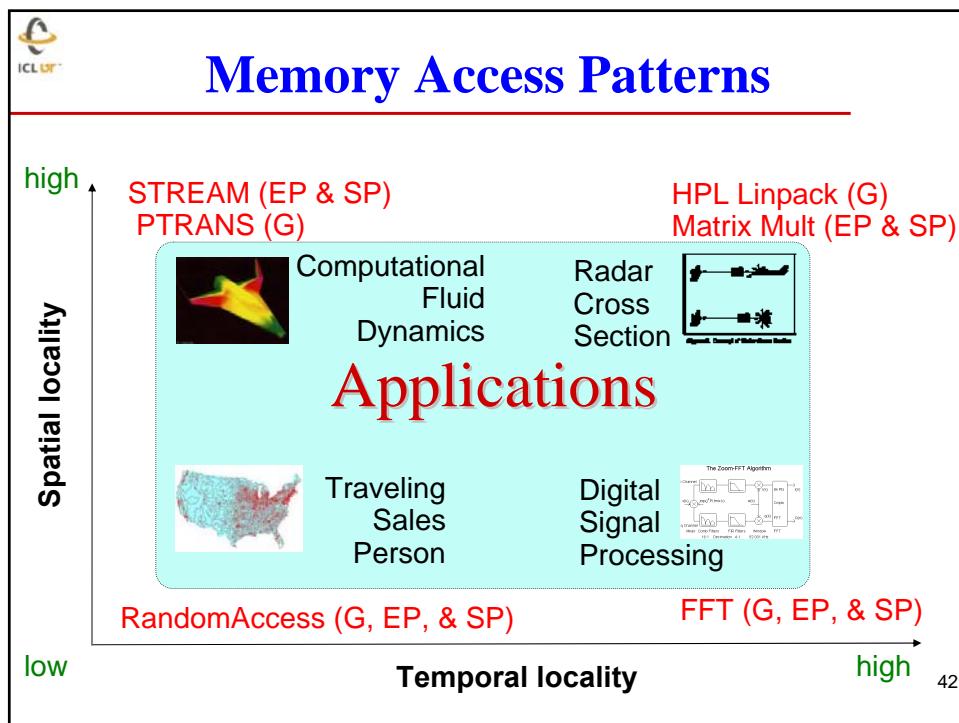
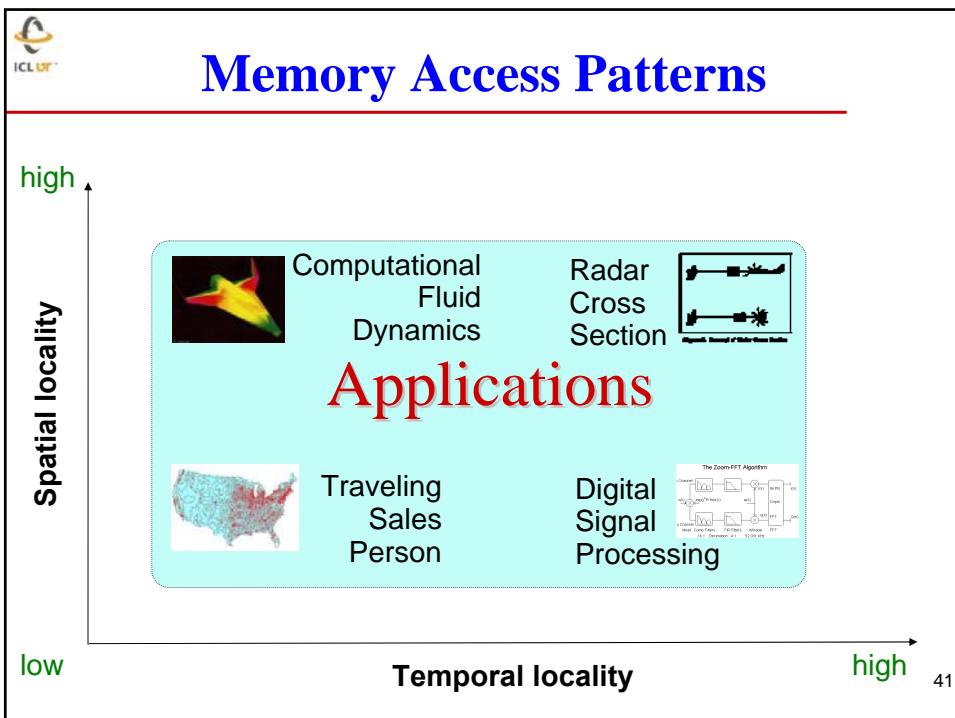
6. **FFT — Global, single CPU, and EP**



7. **Matrix Multiply — single CPU and EP**

38


Computational Resources and HPC Challenge Benchmarks



39

Computational Resources and HPC Challenge Benchmarks

40

[http://icl.cs.utk.edu/hpcc/ web](http://icl.cs.utk.edu/hpcc/web)

HPC CHALLENGE

Home **Rules** **News** **Download** **FAQ** **Links** **Collaborators** **Sponsors** **Upload** **Kiviat Diagram** **Results**

HPC Challenge Benchmark

The HPC Challenge benchmark consists of basically 7 benchmarks:

1. [HPL](#) - The Linpack TPP benchmark which measures the floating point rate of execution for solving a linear system of equations.
2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix multiplication.
3. [STREAM](#) - a simple synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.
4. [PTTRANS](#) (parallel matrix transpose) - exercises the communications where pairs of processors communicate with each other simultaneously. It is a useful test of the total communications capacity of the network.
5. [RandomAccess](#) - measures the rate of integer random updates of memory (GUPS).
6. [FFTE](#) - measures the floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).
7. Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number of simultaneous communication patterns; based on [b_eff](#) (effective bandwidth benchmark).

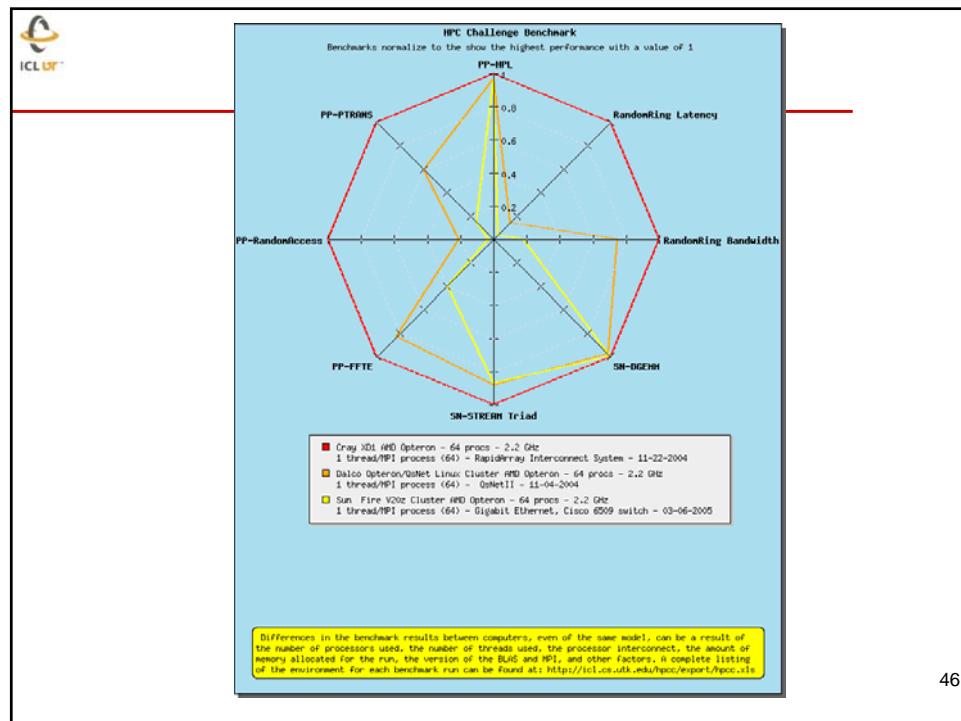
43

Condensed Results - Base Runs Only - 102 Systems - Generated on Sun Apr 30 08:15:43 2006

System Information	System - Processor - Speed - Count - Threads - Processes	G-HPL	G-PTTRANS	G-Random Access	G-FFTE	EP-STREAM Sys	EP-STREAM Triad	EP-DGEMM	RandomBW	RandomRing Bandwidth	RandomRing Latency	
	MA/PI/PS/PC/TH/PR/CH/CS/IC/IA/SD	Tflop/s	GB/s	GB/s	GFlop/s	GB/s	GB/s	GB/s	GB/s	GB/s	usec	
Alpha Conquest cluster AMD Opteron	1.4GHz 128 1 128	0.3292110	3.2471			208.325	1.6291				0.03627	
Clustervision SV Beastie AMD Opteron	2.4GHz 32 1 32	0.1037640	0.8159	0.0002350	3.1470	106.551	3.3422	4.19493	0.02640		53.22	
Cray X1 MSP	0.8GHz 64 1 64	0.5215600	3.2388			955.334	14.9896				0.94074	20.34
Cray X1 MSP	0.8GHz 60 1 60	0.5377790	30.4312			656.446	14.9741				1.0291	20.82
Cray X1 MSP	0.8GHz 120 1 120	1.0699700	2.4403			1019.519	8.4960				0.89014	20.13
Cray X3 Alpha 21164	0.60Hz 1024 1 1024	0.0481695	10.2765			529.242	0.5168				0.02174	12.09
Cray X3 Alpha 21164	0.8GHz 252 1 252	2.3847300	97.4076			3758.404	14.9143				0.42899	22.27
Cray X1 MSP	0.8GHz 124 1 124	1.2054200	39.5252			1856.664	14.9731				0.70857	20.15
Cray X1 MSP	0.8GHz 60 1 40	0.3087430	1.6342	0.0030790	3.1444	894.114	14.9019	10.91320			1.16779	14.44
Cray X3 Alpha 21164	0.6750Hz 512 1 512	0.2231810	9.7741	0.0289464	15.4774	272.186	0.3316	0.646077	0.03371		8.14	
Cray X3 Alpha 21164	0.8GHz 44 1 44	0.2329880	10.9294	0.0223964	16.3611	169.935	2.6533	4.03378	0.22687		1.63	
Cray X1 MSP	0.8GHz 32 1 32	0.2767140	32.6606	0.0016620	2.9649	473.846	14.3702	8.23046	1.41289		14.34	
Cray X3 AMD Opteron	2.6GHz 1100 1 1100	4.7824400	217.9230	0.1370020	266.6600	5274.690	4.7952	4.61050	0.28633		25.94	
Cray X3 AMD Opteron	2.4GHz 128 1 128	0.3020760	13.3133	0.0667622	35.3172	300.063	3.9086	4.33432	0.28919		2.06	
Cray X1 X16 MSP	1.130Hz 252 1 252	3.1949000	85.2040	0.0149064	15.3323	2429.992	9.6922	14.16470	0.36204		14.92	
Cray X3 AMD Opteron	2.4GHz 3744 1 3744	14.7040000	408.85060	0.2202960	417.1720	18146.382	4.8468	4.41330	0.16164		25.32	
Cray X3 AMD Opteron	2.4GHz 5200 1 5200	20.5270000	874.9990	0.2685930	644.7300	26020.800	5.0040	4.93933	0.14862		25.80	
Cray X3 AMD Opteron	2.4GHz 32 1 32	0.1387810	7.3764	0.0666017	5.3603	156.424	4.8883	4.77641	0.57281		6.74	
Cray X16	1.130Hz 32 1 32	0.3373630	18.3198	0.0689484	8.2037	307.565	9.6114	11.40560	1.40487		12.21	
Cray X3 AMD Opteron	2.6GHz 4096 1 4096	16.9752000	302.9790	0.5330720	905.5690	20656.456	5.0431	4.70166	0.16896		9.44	
Cray X3 AMD Opteron	3.6GHz 1100 1 1100	4.7276400	293.3460	0.3033840	328.2860	5161.134	4.6919	4.77446	0.39964		7.39	
Cray Inc XT3 AMD Opteron	2.4GHz 5208 1 5208	20.4086000	944.2270	0.6724210	761.7290	24268.447	4.6598	4.41173	0.20836		9.20	
Cray Inc XT3 AMD Opteron	2.0GHz 10330 1 10330	32.9085000	1813.0600	1.0176500	1118.2900	43561.780	4.2108	3.66719	0.16180		10.32	
Cray Inc. X1 Cray E	1.130Hz 1008 1 1008	12.0283000	198.0190	0.0861199	82.3884	13324.091	19.3989	14.50000	0.12867		16.30	
Cray Inc. XT3 AMD Opteron	2.6GHz 4128 1 4128	16.9421000	674.7360	0.6767990	821.6770	19295.676	4.6743	4.73946	0.22245		8.23	
Dalco Opteron/Quantel Linux Cluster AMD Opteron	2.2GHz 64 1 64	0.2180410	6.3199	0.0047003	19.5481	153.394	2.3968	3.47845	0.17003		11.44	
Dalco Gonzales AMD Opteron	2.4GHz 64 1 64	0.2574150	9.2355	0.0399256	14.0039	224.767	3.5120	4.53587	0.17353		4.65	

[http://icl.cs.utk.edu/hpcc/ web](http://icl.cs.utk.edu/hpcc/web)

HPC CHALLENGE


Home **Rules** **News** **Download** **FAQ** **Links** **Collaborators** **Sponsors** **Upload** **Kiviat Diagram** **Results**

HPC Challenge Benchmark

The HPC Challenge benchmark consists of basically 7 benchmarks:

1. [HPL](#) - the Linpack TPP benchmark which measures the floating point rate of execution for solving a linear system of equations.
2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix multiplication.
3. [STREAM](#) - a simple synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.
4. [PTTRANS](#) (parallel matrix transpose) - exercises the communications where pairs of processors communicate with each other simultaneously. It is a useful test of the total communications capacity of the network.
5. [RandomAccess](#) - measures the rate of integer random updates of memory (GUPS).
6. [FFTE](#) - measures the floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).
7. Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number of simultaneous communication patterns; based on [b_eff](#) (effective bandwidth benchmark).

45

Summary of Current Unmet Needs

- ◆ **Performance / Portability**
- ◆ **Fault tolerance**
- ◆ **Memory bandwidth/Latency**
- ◆ **Adaptability: Some degree of autonomy to self optimize, test, or monitor.**
 - Able to change mode of operation: static or dynamic
- ◆ **Better programming models**
 - Global shared address space
 - Visible locality
- ◆ **Maybe coming soon (incremental, yet offering real benefits):**
 - Global Address Space (GAS) languages: UPC, Co-Array Fortran, Titanium, Chapel, X10, Fortress)
 - "Minor" extensions to existing languages
 - More convenient than MPI
 - Have performance transparency via explicit remote memory references
- ◆ **What's needed is a long-term, balanced investment in hardware, software, algorithms and applications in the HPC Ecosystem.**

47

Real Crisis With HPC Is With The Software

- ◆ **Our ability to configure a hardware system capable of 1 PetaFlop (10^{15} ops/s) is without question just a matter of time and \$\$.**
- ◆ **A supercomputer application and software are usually much more long-lived than a hardware**
 - Hardware life typically five years at most.... Apps 20-30 years
 - Fortran and C are the main programming models (still!!)
- ◆ **The REAL CHALLENGE is Software**
 - Programming hasn't changed since the 70's
 - **HUGE** manpower investment
 - MPI... is that all there is?
 - Often requires **HERO** programming
 - Investments in the entire software stack is required (OS, libs, etc.)
- ◆ **Software is a major cost component of modern technologies.**
 - The tradition in HPC system procurement is to assume that the software is free... **SOFTWARE COSTS** (over and over)
- ◆ **What's needed is a long-term, balanced investment in the HPC Ecosystem: hardware, software, algorithms and applications.**

48

Collaborators / Support

◆ Top500 Team

- Erich Strohmaier, NERSC
- Hans Meuer, Mannheim
- Horst Simon, NERSC

◆ Sca/LAPACK

- Julien Langou
- Jakub Kurzak
- Piotr Luszczek
- Stan Tomov
- Julie Langou

Web Images Groups News Froogle Local New! more »
dongarra Advanced Search Preferences Language Tools

[Advertising Programs](#) - [About Google](#) - [Go to Google.com](#)

[Make Google Your Homepage!](#)

©2005 Google - Searching 8,058,044,651 web pages