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~ Qverview

¢ Look at current state of high
performance computing
»>Past, present and a look ahead

¢ Potential gains by exploiting lower
precision devices
»>GPUs, Cell, SSE2, AltaVec

+ New performance evaluation tools
»HPCS - HPC Challenge
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H. Meuer, H. Simon, E. Stronmaier, & JD

- Listing of the 500 most powerful
Computers in the World
- Yardstick: Rmax from LINPACK MPP
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- Updated twice a year -
SC*xy in the States in November
Meeting in Germany in June

- All data available from www.top500.0rg =
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< Architecture/Systems Continuum

Tightly
Coupled‘

A Custom processor —_

with custom interconnect
> Cray X1

> NEC SX-8

» IBM Regatta

> IBM Blue Gene/L

Commodity processor -
with custom interconnect
> S6I Altix
» Intel Itanium 2
» Cray XT3, XD1
» AMD Opteron
Commodity processor .
with commodity interconnect
» Clusters
» Pentium, Itanium,
Opteron, Alpha
» GigE, Infiniband,
Myrinet, Quadrics
» NEC TX7
» IBM eServer
> Dawning

Loosely
Coupled
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<= Interconnects / Systems
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: The TOP10
26th List: The
Manufacturer Computer ?rrp?sx] Installation Site Country Year | #Proc
BlueGene/L DOE 2005
! BM eServer Blue Gene coo Lawrence Livermore Nat Lab usa custom | 131072
BGW IBM 2005
z BM eServer Blue Gene 91.29 Thomas Watson Research usa custom | 40960
ASC Purple DOE 2005
e IEM Power5 p575 o Lawrence Livermore Nat Lab - custom 10:80
4 Columbia NASA 2004
5 se1 Altix, Itanium/Infiniband 51.87 Ames usA hybrid 10160
Thunderbird DOE 2005
7 bl Pentium/Infiniband | 3527 Sandia Nat Lab USA | commod| 8090
6 Red Storm DOE 2005
g Y Cray XT3 AMD o Sandia Nat Lab USA | nybria | 10880
7 Earth-Simulator . 2002
| NEC X-6 35.86 Earth Simulator Center Japan o 5120
8 MareNostrum Barcelona Supercomputer . 2005
K BM PPC 970/Myrinet 27.91 Center Spain commed| 4800
9 ASTRON 2005
% IBM eServer Blue Gene 27.45 University Groningen Netherlands o 12288
Jaguar DOE 2005
10| Cray Cray XT3 AMD 20.53 Oak Ridge Nat Lab USA hybrid 5200
9
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¢ A PetaFlop Computer by the End of the
“ Decade

+ 10 Companies working on a building a
Petaflop system by the end of the
decade.
> Cray
> IBM
> Sun
> Dawning

> Galactic ghinese.
> Lenovo ompanies

» Hitachi Japanese

> NEC “Life Simulator” (10 Pflop/s)

> Fujitsu

> Bull 11
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We have seen increasing number of gates on a
chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future.

However, the number of gates on a chip will
continue to increase.

13
b}
\{7‘ // — ‘l—\ r— = g
IeL — | ‘ l
| =/
1 Core
S
:EU .8,
0 B ..
s |BE R No Free Lunch For Traditional
o
8 |®Esg Software
g S ;‘§ (Without highly concurrent software it won't get any faster!)
5 |=3s¢e
b Tygo
g @ gé e 2 Cores
g c2S 8 ’
@ LL é; o 7/
c=
IR e 4 Cores
‘q_) C g N O, / - -
S |52 & , _-=" 8 Cores
- = 36— 3GHz, 4 Co 1 H re -
R 2 =4 coree fEEcer ~
q-) NE“ 7 _ - - e e
= S - -
LL NF/ = e - --"
== 14

Additional operations per second if code can take advantage of concurrency

From Craig Mundie, Microsoft
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«- CPU Desktop Trends — Change is Coming

+ Relative processing power will continue to double
every 18 months

¢ 256 logical processors per chip in late 2010

300
]

250+—
00—
150 T

100~

50

2004

2005 2006

Year

2008 2009

2010

Hardware Threads Per Chip
Cores Per Processor Chip
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'S commodity Frocessor Irends
B Bandwidth/Latency is the Critical Issue, not FLOPS

Annual Typical value
increase in 2006
Single-chip
floating-point 59% 4 GFLOP/s
performance
Front-side bus 23 1 6Word/s
bandwidth ° = 0.25 word/flop

Go

Source: Getting Up to Speed: The Future of Supercomputing, National Research Council, 222
pages, 2004, National Academies Press, Washington DC, ISBN 0-309-09502-6.
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That Was the Good News

+ Bad news: the effect of the
hardware change on the existing
software base

¢ Must rethink the design of our
software
> Another disruptive technology

»>Rethink and rewrite the applications,
algorithms, and software

17
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< LAPACK - ScaLAPACK

¢ Numerical libraries
for linear algebra

¢ LAPACK
>Late 1980's

> Sequential and
SMPs

¢ ScaLAPACK
»Early 1990's

>Message passing
systems

18




¢ RigNt-LooKing LU Tactorization
“ (LAPACK)

DGETF2 DLSWP DLSWP

7

X

DTRSM DGEMM

DGETF2 — Unblocked LU
DLSWP — row swaps

A %

DTRSM - triangular solve with
many right-hand sides
DGEMM — matrix-matrix multiply

A%,

N
< Steps in the LAPACK LU

DGETE2 ﬂ LAPACK
DLSWP E l LAPACK
DLSWP % ﬂ LAPACK
% Tl e
NE— X
?z
7
DGEMM g l l l l BLAS
7
%

<
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< LU Timing Profile

LAPACK + BLAS threads

Time for each component

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

1D decomposition and SGI Origin

L
< LU Timing Profile

LAPACK + BLAS threads

Time for each component
Threads — no lookahead

O DGETF2
In this case the performance difference comes from Bl DbLAsSwP(L)
parallelizing row exchanges (DLASWP) and threads in the LU = DLASWP(R)
DTRSM
algorithm. @ DGEMM

1D decomposition and SGI Origin

11
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“ Right-Looking LU Factorization

ARAA
1 /
AARA

&=

T AA

23
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Right-Looking LU with a Lookahead
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£ Pivot Rearrangement and Lookahead
Mor runs

C £ Pivot Rearrangement and Lookahead
16 SMP runs

26
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PlayStation.’ )

°S7 Motivated by...

¢+ The PlayStation 3's CPU based on a chip codenamed "Cell"

+ Each Cell contains 8 APUs.
» An APU is a self contained vector processor which acts independently from the

others.

> 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

» 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
> IEEE format, but only rounds toward zero in 32 bit, overflow set to largest

» According to IBM, the SPE's double precision unit is fully IEEE854 compliant.
Cell APU Architecture

[T b3 g s s Setats haes 5o resiied

3 ciips may R 3 Cats o

Processiag Elermeet (PE]

Processcr Usit (PL)
(stmetning line 4 04)

Cell Processor Architecture
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]
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< GPU Performance

GPU Vendor hes| NVIDIA = — | ATI o

: § A?ﬂ%a%
iﬂaa,.m

Model 6800Ultra |78006TX X1900XTX

Release 2004 2005 2006

Year

32-bit 60 GFLOPS |200 GFLOPS 400 GFLOPS

Performance

64-bir must be emulated in software

Performance

28
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Idea Something Like This...

+ Exploit 32 bit floating point as much as
possible.
> Especially for the bulk of the computation

¢+ Correct or update the solution with
selective use of 64 bit floating point to
provide a refined results

¢+ Intuitively:
» Compute a 32 bit result,
> Calculate a correction to 32 bit result using
selected higher precision and,
> Perform the update of the 32 bit results
with the correction using high precision.

29
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32 and 64 Bit Floating Point Arithmetic

+ Iterative refinement for dense systems can

work this way.

Solve Ax = b in lower precision,
save the factorization (L*U = A*P); O(n%)

Compute in higher precision r = b - A*x; O(n?)

Requires the original data A (stored in high precision)
Solve Az = r; using the lower precision factorization; O(n?)
Update solution x, = x + z using high precision; O(n)
Iterate until converged.

> Wilkinson, Moler, Stewart, & Higham provide error bound
for SP fl pt results when using DP fl pt.

> We can show using this approach that we can compute the
solution to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp: O(108)

15



£ On the Way to Understanding How to Use
the Cell Something Else Happened ...
* R‘?nqllized .:‘OVTQ the Processor and BLAS SGEMM | DGEMM | Speedup
similar situation on i
our commodity Hibrary (GFlop/s) | (GFlopls) | SP/DP
processors. Pentium I11 Katmai 0.98 0.46 213
> Thc}f is, SPDi;, 2X (0.6GHz) Goto BLAS
as fast as On  pentium 111 CopperMine 1.59 0.79 2.01
many systems (0.9GHz) Goto BLAS ' ' '
Pentium Xeon Northwood 7.68 3.88 1.98
¢ Ir’\‘g }ﬂgl g;::';’o"r: (2.4GHz) Goto BLAS
have SSE2 Pentium Xeon Prescott 10.54 5.15 2.05
> 2 flops/cycle DP (3:2GHz) Goto BLAS
> 4 flops/cycle SP  Pentium IV Prescott 11.09 5.61 1.98
(3.4GHz) Goto BLAS
¢+ IBM PowerPC has  AMD Opteron 240 4.89 2.48 1.97
AltiVec (1.4GHz) Goto BLAS
> 8 flops/cycle SP PowerPC G5 18.28 9.98 1.83
> 4 flops/cycle DP (2.7GHz) AltiVec

> No DP on AltiVec

Performance of single precision and double precision 31
matrix multiply (SGEMM and DGEMM) with n=m=k=1000
¢ Speedups (Ratlo of Times)
o Architecture (BLAS) DGEMM | DP Solve | DP Solve | #iter
— ISGEMM | /SP Solve | /lIter Ref

Intel Pentium 1V-M Northwood (Goto) 4000 2.02 1.98 1.54 5
Intel Pentium 111 Katmai (Goto) 3000 212 211 1.79 4
Intel Pentium 111 Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 229 2.05 1.24 5
Cray X1 (libsci) 4000 1.68 157 1.32 7
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 113 1.00 3
SGI Octane (ATLAS) 2000 1.08 113 0.91 4
Architecture (BLAS-MPI) # n DP Solve DP Solve #

procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6 | 2

16



¢ Refinement Technique Using

| Single/Double Precision.
¢ Linear Systems

> LU (dense and sparse)

> Cholesky

» QR Factorization
+ Eigenvalue

> Symmetric eigenvalue problem

> SVD

> Same idea as with dense systems,

> Reduce to tridiagonal/bi-diagonal in lower precision,
retain original data and improve with iterative technique
using the lower precision to solve systems and use higher
precision to calculate residual with original data.

> O(n?) per value/vector
¢ Iterative Linear System
> Relaxed GMRES
> Inner/outer scheme

LAPACK Working Note

‘

r Motivation for Additional Benchmarks

+ From Linpack Benchmark and

Linpack Benchmark Top500: “no single number
+ Good can reflect overall
> One number performance”

> Simple to define & easy to rank
> Allows problem size to change 4 Clearly need something more

with machine and over time than Linpack
¢+ Bad

> Emphasizes only “peak” CPU

speped “nd number of CPUS + HPC Challer‘nge Benchmark
> Does not stress local bandwidth > Test suite stresses not
> Does not stress the network ONIY the processors, but
> Does not test gather/scatter the memory system and
» Ignores Amdahl's Law (Only the interconnect.

does weak scaling) » The real utility of the HPCC
benchmarks are that

> architectures can be
+ Ugly described with a wider
> Benchmarketeering hype range of metrics than just

Flop/s from Linpack.

17
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DARPA’s High Productivity Computing Systems

Adv_anced Test Evaluation
Design & o Framework
Prototypes A
o
&
=5 060
EEERE < New Evaluation
Concept =—="=|MITRE ? Framework
Study .
Phase 1 Phase 2 Phase 3
$10M (2003-2005) (2006-2010)
$50M $100M 35

Half-Way Point
Full Scale Way P Petascale/s Systems
Development
P Technology Vendors

Review

Validated Procurement
Evaluation Methodology

~
<~ Goals HPC Challenge Benchmark

¢ Stress CPU, memory system, interconnect

¢ To complement the Top500 list

+ To provide benchmarks that bound the
performance of many real applications as a
function of memory access characteristics

> e.g., spatial and temporal locality

¢ Allow for optimizations
> Record effort needed for tuning
> Base run requires MPT and BLAS
¢ Provide verification of results
¢ Archive results

36
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“" Tests on Single Processor and System

¢ Local - only a single processor is
performing computations.

¢+ Embarrassingly Parallel - each -
processor in the entire system is
performing computations but they
do no communicate with each
other explicitly.

¢ Global - all processors in the
system are performing
computations and they explicitly
communicate with each other.

£ HPC Challenge

Consists of basically 7 benchmarks;

»  Think of it as a framework or harness for adding benchmarks of interest.

(=Y

HPL (LINPACK) — MPI Global (Ax = b)

N

STREAM — Local; single CPU

hoznal Iytur/itor ELONEfitex

*STREAM — Embarrassingly parallel

m{1l) — (i) i »
B{1) = gy 18 L
i) = W1} & )

a{l) = BQL) + geull) ™

3.  PTRANS (A<« A + BT) — MPI Global

4.  RandomAccess — Local; single CPU
*RandomAccess — Embarrassingly parallel
RandomAccess — MPI Global

5. BW and Latency - MPI

Random integer
read; update; & write

6. FFT - Global, single CPU, and EP

L

7.  Matrix Multiply - single CPU and EP

e
x w

38
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¢ Computational Resources and
___HPC Challenge Benchmarks

CPU

computational
speed

Computational
resources

Node

Interconnect
bandwidth

Memory
bandwidth

39

¢ Computational Resources and
___HPC Challenge Benchmarks

HPL
Matrix Multiply

CPU
computational
speed

Computational
resources

Node

Interconnect
bandwidth

Memory
bandwidth

STREAM

Random & Natural Ring
Bandwidth & Latency

40
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Memory Access Patterns

high
g Computational Radar [p—msas]
Fluid C
> ”‘ _ ross |, .
% - Dynamics Section ==
S . .
& Applications
©
© ‘ _ o
& (g Traveling Digital
4 Sales Signal ,
Person Processing
low Temporal locality high
N
Memory Access Patterns
high,  sTREAM (EP & SP) HPL Linpack (G)
PTRANS (G) Matrix Mult (EP & SP)
’ g Computational Radar [#—mwas|
Fluid Cross
> Q _ S
% - Dynamics Section ‘eem—=
s . .
& Applications
©
© ‘ e .
> " wy# Traveling Digital
o Sales Signal €
Person Processing »
RandomAccess (G, EP, & SP) FFT (G, EP, & SP)
low high

Temporal locality

42
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< http://icl.cs.utk.edu/hpcc/ web

HPC CHALLENGE

Home
HPC Challenge Benchmark
Rules =
News The HPC Challenge benchmark consists of basically 7 benchmarks:
Download
FAQ 1. HPL - the Linpack TPP benchmark which measures the floating point rate of execution for solving a
. linear system of equations.
Links
Collaborators 2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix
FrmrE multiplication.
Upload 3. STREAM - a simple synthetic benchmark program that measures sustainable memory bandwidth (in
Kiviat Diagram GB/s) and the corresponding computation rate for simple vector kernel.
Resul

b

ETRANS (parallel matrix transpose) - exercises the communications where pairs of processors
communicate with each other simultaneously. It is a useful test of the total communications capacity
of the network.

5. RandomAcce:

- measures the rate of integer random updates of memory (GUFS).

6. FEFTE - measures the floating point rate of execution of double precision complex one-dimensional
Discrete Fourier Transform (DFT).

7. Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number
of simultaneous communication patterns; based on b_eff (effective bandwidth benchmark).

43
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http://icl.cs.utk.edu/hpcc/ web

Home
HPC Challenge Benchmark
Rules =
News The HPC Challenge benchmark consists of basically 7 benchmarks:
Download
FAQ 1. HPL - the Linpack TPP benchmark which measures the floating point rate of execution for solving a
. linear system of equations.
Links
Collaborators 2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix
FrmrE multiplication.
Upload 3. STREAM - a simple synthetic benchmark program that measures sustainable memory bandwidth (in
Kiviat Diagram GB/s) and the corresponding computation rate for simple vector kernel.
Results N
4. PTRANS (parallel matrix transpose) - exercises the communications where pairs of processors
communicate with each other simultaneously. It is a useful test of the total communications capacity
of the network.
5. RandomAccess - measures the rate of integer random updates of memory (GUFS).
6. FEFTE - measures the floating point rate of execution of double precision complex one-dimensional
Discrete Fourier Transform (DFT).
7. Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number
of simultaneous communication patterns; based on b_eff (effective bandwidth benchmark).

45
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e Challenge Denchmark
Benchmarks rormal ize Lo the shou the highest performace uith & uslios of §

RandonRing Latency —

SH-STREAN Trisd

W Cray 0L W0 Opteron - 64 procs - 2.2 GHe
1 thresdMP] process (64) - Rapiddrray Intercorrect Susten = 11-22-2004
uuolwmmmoenlmcmwwwum 6 procs - 2.2 Gz
1 thresd P process (64) - Qaetll - L4-0d-2004
0O Sun Fire V20r Cluster ##1 Opkeven - 64 procs - 2.2 G2
1 thresdMPl process (64) - Gigabit Ethernet, Cisco @208 switch - 03-06-2000
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Summary of Current Unmet Needs

Performance / Portability
Fault tolerance
Memory bandwidth/Latency
Adaptability: Some degree of autonomy to self optimize,
test, or monitor.
> Able to change mode of operation: static or dynamic
+ Better programming models
» Global shared address space
» Visible locality
+ Maybe coming soon (incremental, yet offering real benefits):
» Global Address Space (GAS) languages: UPC, Co-Array Fortran,
Titanium, Chapel, X10, Fortress
> “"Minor” extensions to existing languages
> More convenient than MPT
> Have performance transparency via explicit remote memory
references
¢ What's needed is a long-term, balanced investment in
hardware, software, algorithms and applications in the HPC
Ecosystem.

* & o o
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Real Crisis With HPC Is With The Software

Our ability to configure a hardware system capable of

1 PetaFlop (1015 ops/s) is without question just a matter of time and $$.

A supercomputer application and software are usually much more long-
lived than a hardware

> Hardware life typically five years at most... Apps 20-30 years
> Fortran and C are the main programming models (stillll)

The REAL CHALLENGE is Software
» Programming hasn't changed since the 70's
» HUGE manpower investment
» MPI... is that all there is?
» Often requires HERO programming
» Investments in the entire software stack is required (OS, libs, etc.)

Software is a major cost component of modern technologies.

> The tradition in HPC system procurement is to assume that the software is

free.. SOFTWARE COSTS (over and over)

What's needed is a long-term, balanced investment in the HPC
Ecosystem: hardware, software, algorithms and applications.
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