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OutlineOutline

• Top500 Resultsp
• Four Important Concepts that Will 

Effect Math SoftwareEffect Math Software
Effective Use of Many-Core
Exploiting Mixed Precision in Our Exploiting Mixed Precision in Our 
Numerical Computations
Self Adapting / Auto Tuning of SoftwareSelf Adapting / Auto Tuning of Software
Fault Tolerant Algorithms
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Performance Development
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30th Edition: The TOP10

Manufacturer Computer Rmax 
[TF/s] Installation Site Country Year #Cores

1 IBM
Blue Gene/L

eServer Blue Gene 478
DOE 

L  L  N  L b
USA 2007

C t 212,9921 IBM
Dual Core .7 GHz

478
Lawrence Livermore Nat Lab

USA Custom 212,992

2 IBM
Blue Gene/P

Quad Core .85 GHz
167 Forschungszentrum Jülich Germany 2007

Custom 65,536

3 SGI
Altix ICE 8200 Xeon 

127 SGI/New Mexico Computing USA 2007 14 3363 SGI
Quad Core 3 GHz

127 p g
Applications Center USA Hybrid 14,336

4 HP
Cluster Platform Xeon

Dual Core 3 GHz
118 Computational Research 

Laboratories, TATA SONS India 2007
Commod 14,240

Cluster Platform 20075 HP
Cluster Platform

Dual Core 2.66 GHz
102.8 Government Agency Sweden 2007

Commod 13,728

6 Cray
Opteron

Dual Core 2.4 GHz
102.2

DOE
Sandia Nat Lab

USA 2007
Hybrid 26,569

7 Cray
Opteron

101 7
DOE

USA 2006 23 016Cray
Dual Core 2.6 GHz

101.7
Oak Ridge National Lab

USA Hybrid 23,016

8 IBM
eServer Blue Gene/L
Dual Core .7 GHz

91.2 IBM Thomas J. Watson 
Research Center USA 2005

Custom 40,960

9 C
Opteron

85 4
DOE

USA 2006 19 320

07
5

9 Cray
p

Dual Core 2.6 GHz
85.4

Lawrence Berkeley Nat Lab
USA 2006

Hybrid
19,320

10 IBM
eServer Blue Gene/L
Dual Core .7 GHz

82.1 Stony Brook/BNL, NY Center 
for Computational Sciences USA 2006

Custom 36,864



IBM IBM BlueGeneBlueGene/L /L #1#1 212,992 Cores212,992 Cores

2 6 MW tt (2600 h ) (104 racks, 104x32x32)
212992  procsRack

(32 Node boards, 8x8x16)
2048 processors

2.6 MWatts (2600 homes)
70,000 ops/s/person

Node Board
(32 chips, 4x4x2)

16 Compute Cards

2048 processors

BlueGene/L Compute ASIC

Compute Card
(2 chips, 2x1x1)

16 Compute Cards
64 processors

298/596 TF/s
32 TB DDR

Chip
(2 processors)

4 processors

90/180 GF/s

2.9/5.7 TF/s
0.5 TB DDR

32 TB DDR

Full system total of 
212,992 cores

2.8/5.6 GF/s
4 MB (cache)

5.6/11.2 GF/s
1 GB DDR

90/180 GF/s
16 GB DDR

“Fastest Computer”
BG/L 700 MH 213K

07 6

BG/L 700 MHz 213K proc
104 racks
Peak: 596 Tflop/s
Linpack: 498 Tflop/s
84% of peak

The compute node ASICs include all networking and processor functionality. 
Each compute ASIC includes two 32-bit superscalar PowerPC 440 embedded 
cores (note that L1 cache coherence is not maintained between these cores).
(20.7K sec about 5.7hours; n=2.5M)



Cores per System – November 2007
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Top500 Systems November 2007
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Chips Used in Each of the 500 Systems

72% Intel 
12% IBM 
16% AMD

Intel IA‐32
3%

Intel EM64T
65%

C

NEC
0%

Sun Sparc
0%

16% AMD

HP PA‐RISC
0%

Cray
0% HP Alpha

0%

AMD x86_64
16%

0%

Intel IA‐64
IBM Power

12%
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Interconnects / Systems
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Top500 by Usage

287, 57%

Industry
Research 
Academic

15, 3%

8, 2%

3, 1% Government
Vendor
Classified
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86, 17%
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Countries / Performance (Nov 2007)

60%

7.7% 2.8%
2.7%

12

7.4% 4.2%
3.2%



Power is an Industry Wide ProblemPower is an Industry Wide Problem

G l  f iliti♦ Google facilities
leveraging 
hydroelectric 

“Hiding in Plain Sight, Google Seeks More Power”, 
by John Markoff, June 14, 2006

hydroelectric 
power

old aluminum 
l tplants

>500,000 
servers 
worldwide

13

New Google Plant in The Dulles, Oregon, 
from NYT, June 14, 2006



GflopGflop//KWattKWatt in the Top 20in the Top 20
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Green500Green500
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Performance Projection
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Los Alamos Roadrunner Los Alamos Roadrunner 
A A PetascalePetascale System System in in 20082008

“Connected Unit” cluster
192 Opteron nodes
(180 w/ 2 dual-Cell blades

≈ 13,000 Cell HPC chips
• ≈ 1.33 PetaFlop/s (from Cell)
7 000 d l O t(180 w/ 2 dual Cell blades

connected w/ 4 PCIe x8 links) ≈ 7,000 dual-core Opterons

~18 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s  (DP) Cell chip

Approval by DOE 12/07
First CU being built today
Expect a May Pflop/s run

Full system to LANL in December 2008



IncreaseIncrease

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

Lower Lower 
VoltageVoltage

Increase Increase 
Clock RateClock Rate
& Transistor & Transistor 

DensityDensityDensityDensity

We have seen increasing number of gates on a 
chip and increasing clock speed.Cache Cache

Heat becoming an unmanageable problem, Intel 
Processors > 100 Watts

Core Core Core

C1 C2 C1 C2 We will not see the dramatic increases in clock 
speeds in the future.

However, the number of                                            

C1 C2

Cache

C1 C2

Cache

C1 C2

C3 C4

C1 C2

C3 C4
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gates on a chip will                                                
continue to increase.C3 C4 C3 C4

C1 C2

C3 C4

C1 C2

C3 C4



Power Cost of FrequencyPower Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

P F 3• Power ∝Frequency3
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What’s Next?What’s Next?
All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business 
Scientific

SRAMSRAM

MemoryPoint Cores



80 Core80 Core
• Intel’s 80 

Core chipCore chip
1   Tflop/s
62  Watts62  Watts
1.2 TB/s 
internal BWinternal BW

22



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 

23

g j g
to accommodate this



A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Parallel Linear Algebra Software for MulticoreMulticore Architectures (PLASMA)Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (80’s) Rely on LAPACK (80 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA (00’s) Rely on 
New Algorithms 
(many-core friendly)

- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms 
h l l it th l ll ( lti t l ti )- have a very low granularity, they scale very well (multicore, petascale computing, … )

- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

26
DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)
Threads – no lookahead

1D decomposition and SGI OriginTime for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

28Event Driven MultithreadingEvent Driven Multithreading
Reorganizing 

algorithms to use 
this approach



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

A

C

A

B C

T TT
Fork-Join – parallel BLAS

Time

Experiments on Experiments on 
29

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution

A

C

A

B C

T TT
Fork-Join – parallel BLAS

Time

DAG-based – dynamic scheduling

Experiments on Experiments on 

Time 
saved

30

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested 

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit, 

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the 
others. 

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak
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Performance of Single Precision Performance of Single Precision 
on Conventional Processorson Conventional Processorson Conventional Processorson Conventional Processors

• Realized have the 
similar situation on 
our commodity 

SizeSize SGEMM/SGEMM/
DGEMMDGEMM SizeSize SGEMV/SGEMV/

DGEMVDGEMV
AMD Opteronour commodity 

processors.
• That is, SP is 2X as 

fast as DP on many 
systems

AMD Opteron
246 30003000 2.002.00 50005000 1.701.70

UltraSparc-IIe 30003000 1.641.64 50005000 1.661.66
Intel PIII systems

• The Intel Pentium 
and AMD Opteron
h  SSE2

Coppermine 30003000 2.032.03 50005000 2.092.09

PowerPC 970 30003000 2.042.04 50005000 1.441.44
Intel 

Woodcrest 30003000 1 811 81 50005000 2 182 18have SSE2
• 2 flops/cycle DP
• 4 flops/cycle SP

Woodcrest 30003000 1.811.81 50005000 2.182.18

Intel XEON 30003000 2.042.04 50005000 1.821.82
Intel Centrino

Duo 30003000 2.712.71 50005000 2.212.21

Single precision is faster because:
• Higher parallelism in SSE/vector units

• IBM PowerPC has 
AltiVec
• 8 flops/cycle SP

4 fl / l  DP
g p

• Reduced data motion 
• Higher locality in cache

• 4 flops/cycle DP
• No DP on AltiVec



32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was 

used
S ill d i  i ifi   b  li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1 
Exaflop (1018) ops. 

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

• Mixed precision a possibility
33

• Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.



Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 

34

Perform the update of the 32 bit results with the 
correction using high precision. 



MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x  L\(U\b) ( )
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n )
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
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MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  
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WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n )
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
It can be shown that using this approach we can compute the solution It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision

36

( ) p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motionReduced data motion 

32 bit data instead of 64 bit data
Higher locality in cache

More data items in cache



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

A hi (BLAS MPI) # DP S l DP S l #Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

# 
iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1 90 1.83 6

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motion

1.90 1.83

Reduced data motion 
32 bit data instead of 64 bit data

Higher locality in cache
More data items in cache



What about the Cell?What about the Cell?

Power PC at 3 2 GHz• Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6 Gflop/sp p

• Achieved 10 Gflop/s SGEMM

• 8 SPUs
204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; 
(Single Precision SP) 

d b l lAnd 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 
because of latency issues

39

because of latency issues



Moving Data Around on the Cell

256 KB256 KB

Injection bandwidth
25.6 GB/s

Injection bandwidth Injection bandwidthInjection bandwidth

Worst case memory bound operations (no reuse of data) 
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B)



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200
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Matrix Size



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)
SP Ax=b IBM

30

8 SGEMM (Embarrassingly Parallel)
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DSGESV
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CholeskyCholesky -- Using 2 Cell ChipsUsing 2 Cell Chips
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Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

Payoff in performance
• Faster floating point g p
• Less data to move

• Automatically switch between SP and DP to match 
the desired accuracythe desired accuracy

Compute solution in SP and then a correction to the 
solution in DP

• Potential for GPU  FPGA  special purpose processorsPotential for GPU, FPGA, special purpose processors
What about 16 bit floating point?

• Use as little you can get away with and improve the accuracy

• Applies to sparse direct and iterative linear systems • Applies to sparse direct and iterative linear systems 
and Eigenvalue, optimization problems, where 
Newton’s method is used.

44 Correction = - A\(b – Ax)



Conclusions Conclusions 
• For the last decade or more, the research 

investment strategy has been investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -gy
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.

Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balanceg y
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications
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