

High-Performance Computing Today

Jack Dongarra
Innovative Computing Laboratory
University of Tennessee
and
Oak Ridge National Laboratory

<http://www.cs.utk.edu/~dongarra/>

1

Outline

- ? Look at trends in HPC
 - ✉ Top500 statistics
- ? Performance of Super-Scalar Processors
 - ✉ ATLAS
- ? Performance Monitoring
 - ✉ PAPI
- ? NetSolve
 - ✉ Example of grid middleware

In pioneer days, they used oxen for heavy pulling, and when one ox couldn't budge a log they didn't try to grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.-- Grace Hopper

2

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

3

High Performance Computers & Numerical Libraries

- ? 20 years ago
 - ✉ 1×10^6 Floating Point Ops/sec (Mflop/s)
 - » Scalar based
 - » Loop unrolling
- ? 10 years ago
 - ✉ 1×10^9 Floating Point Ops/sec (Gflop/s)
 - » Vector & Shared memory computing, bandwidth aware
 - » Block partitioned, latency tolerant
- ? Today
 - ✉ 1×10^{12} Floating Point Ops/sec (Tflop/s)
 - » Highly parallel, distributed processing, message passing, network based
 - » data decomposition, communication/computation
- ? 10 years away
 - ✉ 1×10^{15} Floating Point Ops/sec (Pflop/s)
 - » Many more levels MH, combination/grids&HPC
 - » More adaptive, LT and bandwidth aware, fault tolerant, extended precision, attention to SMP nodes

4

TOP500

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

$$Ax=b, \text{ dense problem}$$

- Updated twice a year
SC'xy in the States in November
Meeting in Mannheim, Germany in June
- All data available from www.top500.org

5

Fastest Computer Over Time

In 1980 a computation that took 1 full year to complete
can now be done in 1 month!

Fastest Computer Over Time

In 1980 a computation that took 1 full year to complete can now be done in 4 days!

Fastest Computer Over Time

In 1980 a computation that took 1 full year to complete can today be done in 1 hour!

Top 10 Machines (June 2000)

Rank	Company	Machine	Procs	Gflop/s	Place	Country	Year
1	Intel	ASCI Red	9632	2380	Sandia National Labs Albuquerque	USA	1999
2	IBM	ASCI Blue-Pacific SST, IBM SP 604e	5808	2144	Lawrence Livermore National Laboratory Livermore	USA	1999
3	SGI	ASCI Blue Mountain	6144	1608	Los Alamos National Laboratory Los Alamos	USA	1998
4	Hitachi	SR8000-F1/112	112	1035	Leibniz Rechenzentrum Muenchen	Germany	2000
5	Hitachi	SR8000-F1/100	100	917	High Energy Accelerator Research Organization /KEK Tsukuba	Japan	2000
6	Cray Inc.	T3E1200	1084	892	Government	USA	1998
7	Cray Inc.	T3E1200	1084	892	US Army HPC Research Center at NCS Minneapolis	USA	2000
8	Hitachi	SR8000/128	128	874	University of Tokyo Tokyo	Japan	1999
9	Cray Inc.	T3E900	1324	815	Government	USA	1997
10	IBM	SP Power3 375 MHz	1336	723	Naval Oceanographic Office (NAVOCEANO) Poughkeepsie	USA	2000

Performance Development

High-Performance Computing Directions: Beowulf-class PC Clusters

Definition:

- ? **COTS PC Nodes**
 - ✗ Pentium, Alpha, PowerPC, SMP
- ? **COTS LAN/SAN Interconnect**
 - ✗ Ethernet, Myrinet, Gigabit, ATM
- ? **Open Source Unix**
 - ✗ Linux, BSD
- ? **Message Passing Computing**
 - ✗ MPI, PVM
 - ✗ HPF

Advantages:

- ? Best price-performance
- ? Low entry-level cost
- ? Just-in-place configuration
- ? Vendor invulnerable
- ? Scalable
- ? Rapid technology tracking

Enabled by PC hardware, networks and operating system achieving capabilities of scientific workstations at a fraction of the cost and availability of industry standard message passing libraries.

14

Where Does the Performance Go? or Why Should I Cares About the Memory Hierarchy?

Optimizing Computation and Memory Use

? Computational optimizations

☞ Theoretical peak:

$$(\# \text{ fpus}) * (\text{flops/cycle}) * \text{Mhz}$$

» PIII: $(1 \text{ fpu}) * (1 \text{ flop/cycle}) * (650 \text{ Mhz}) = 650 \text{ MFLOP/s}$

» Athlon: $(2 \text{ fpu}) * (1 \text{ flop/cycle}) * (600 \text{ Mhz}) = 1200 \text{ MFLOP/s}$

» Power3: $(2 \text{ fpu}) * (2 \text{ flops/cycle}) * (375 \text{ Mhz}) = 1500 \text{ MFLOP/s}$

? Memory optimization

☞ Theoretical peak: (bus width) * (bus speed)

» PIII : $(32 \text{ bits}) * (133 \text{ Mhz}) = 532 \text{ MB/s} = 66.5 \text{ MW/s}$

» Athlon: $(64 \text{ bits}) * (200 \text{ Mhz}) = 1600 \text{ MB/s} = 200 \text{ MW/s}$

» Power3: $(128 \text{ bits}) * (100 \text{ Mhz}) = 1600 \text{ MB/s} = 200 \text{ MW/s}$

? Memory about an order of magnitude slower

16

Memory Hierarchy

- ? **By taking advantage of the principle of locality:**
 - ↗ Present the user with as much memory as is available in the cheapest technology.
 - ↗ Provide access at the speed offered by the fastest technology.

How To Get Performance From Commodity Processors?

- ? Today's processors can achieve high-performance, but this requires extensive machine-specific hand tuning.
- ? Hardware and software have a large design space w/many parameters
 - Blocking sizes, loop nesting permutations, loop unrolling depths, software pipelining strategies, register allocations, and instruction schedules.
 - Complicated interactions with the increasingly sophisticated micro-architectures of new microprocessors.
- ? Until recently, no tuned BLAS for Pentium for Linux.
- ? Need for quick/dynamic deployment of optimized routines.
- ? ATLAS - Automatic Tuned Linear Algebra Software
 - PhiPac from Berkeley
 - FFTW from MIT (<http://www.fftw.org>)

18

ATLAS

? An adaptive software architecture

❑ High-performance

❑ Portability

❑ Elegance

? ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

19

ATLAS Across Various Architectures (DGEMM n=500)

? ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

20

Code Generation Strategy

- ? On-chip multiply optimizes for:
 - ✉ TLB access
 - ✉ L1 cache reuse
 - ✉ FP unit usage
 - ✉ Memory fetch
 - ✉ Register reuse
 - ✉ Loop overhead minimization
- ? Takes a 30 minutes to a hour to run.
- ? New model of high performance programming where critical code is machine generated using parameter optimization.

- ? Code is iteratively generated & timed until optimal case is found. We try:
 - ✉ Differing NBs
 - ✉ Breaking false dependencies
 - ✉ M, N and K loop unrolling
- ? Designed for RISC arch
 - ✉ Super Scalar
 - ✉ Need reasonable C compiler

21

Plans for ATLAS

- ? Software Release, available today:
 - ✉ Level 1, 2, and 3 BLAS implementations
 - ✉ See: www.netlib.org/atlas/
- ? Next Version:
 - ✉ Multi-treading
 - ✉ Java generator
- ? Futures:
 - ✉ Optimize message passing system
 - ✉ Runtime adaptation
 - » Sparsity analysis
 - » Iterative code improvement
 - ✉ Specialization for user applications
 - ✉ Adaptive libraries

22

Tools for Performance Evaluation

- ? **Timing and performance evaluation has been an art**
 - ✉ Resolution of the clock
 - ✉ Issues about cache effects
 - ✉ Different systems
- ? **Situation about to change**
 - ✉ Today's processors have internal counters

23

Performance Counters

- ? **Almost all high performance processors include hardware performance counters.**
- ? **Some are easy to access, others not available to users.**
- ? **On most platforms the APIs, if they exist, are not appropriate for a common user, functional or well documented.**
- ? **Existing performance counter APIs**
 - ✉ Cray T3E
 - ✉ SGI MIPS R10000
 - ✉ IBM Power series
 - ✉ DEC Alpha pfm pseudo-device interface
 - ✉ Windows 95, NT and Linux

24

Performance Data That May Be Available

- ✉ Cycle count
- ✉ Floating point instruction count
- ✉ Integer instruction count
- ✉ Instruction count
- ✉ Load/store count
- ✉ Branch taken / not taken count
- ✉ Branch mispredictions
- ✉ Pipeline stalls due to memory subsystem
- ✉ Pipeline stalls due to resource conflicts
- ✉ I/D cache misses for different levels
- ✉ Cache invalidations
- ✉ TLB misses
- ✉ TLB invalidations

25

PAPI's Graphical Tools Perfometer Usage

- ? Application is instrumented with PAPI
 - ✉ call perfometer()
- ? Will be layered over the best existing vendor-specific APIs for these platforms
- ? Sections of code that are of interest are designated with specific colors
 - ✉ Using a call to set_perfometer('color')
- ? Application is started, at the call to performeter a task is spawned to collect and send the information to a Java applet containing the graphical view.

Trends in Computational Science and Engineering

- ? **Multi-scale, Multi-physics, Multi-dimensional simulations of realistic complexity**
- ? **Growing use of dynamic adaptive algorithms**
- ? **Strong interplay between observation and simulation (e.g., cosmology, weather)**
- ? **Impact of the WWW**
 - ✉ accelerated pace of research due to electronic publishing
 - ✉ proliferation of digital archives
 - ✉ emergence of workbenches and portals

29

Grid Computing

- ? **To treat CPU cycles and software like commodities, an application should be:**
 - ✉ **Ubiquitous** -- able to interface to the system at any point and leverage whatever is available
 - ✉ **Resource Aware** -- capable of managing heterogeneity
 - ✉ **Adaptive** -- able to tailor its behavior dynamically so that it gets maximum performance benefit from the services and resources at hand

30

Motivation for NetSolve

Design an easy-to-use tool to provide efficient and uniform access to a variety of scientific packages on UNIX and Windows platforms

Basics

- ? Client-Server Design
- ? Non-hierarchical system
- ? Load Balancing and Fault Tolerance
- ? Heterogeneous Environment Supported
- ? Multiple and simple client interfaces
- ? Built on standard components

3.3

NetSolve - The Big Picture

NetSolve

? Three deployment scenarios:

- ✉ Client, servers and agents anywhere on Internet (3(10)-150(80-ws/mpp)-Mcell)
- ✉ Client, servers and agents on an Intranet
- ✉ Client, server and agent on the same machine

? 'Blue Collar' Grid Based Computing

- ✉ User can set things up, no "su" required
- ✉ Does not require deep knowledge of network programming

? Smart Libraries

- ✉ 'Rent' access to routines
- ✉ Decouple interface

35

NetSolve Usage Scenarios

? Grid based library routines

- ✉ Users doesn't have to have library routines on their machine

? Task farming applications

- ✉ 'Pleasantly parallel' execution
- ✉ eg Parameter studies

? Remote application execution

- ✉ Complete packages with user specifying input parameters

36

NetSolve - MATLAB Interface

Synchronous Call

```
>> define sparse matrix A
>> define rhs
>> [x, its] = netsolve('itmeth','petsc', A, rhs, 1.e-6, 50);
...
>> [x, its] = petsc(A, rhs); % for PETSc
>> [x, its] = aztec(A, rhs); % for AZTEC
>> [x] = superlu(A, rhs); % for SuperLU
>> [x] = ma28(A, rhs); % for MA28
```

Asynchronous Calls also available

NetSolve - FORTRAN Interface

Easy to ‘switch’ to NetSolve

```
parameter( MAX = 100)
double precision A(MAX,MAX), B(MAX)
integer IPIV(MAX), N, INFO, LWORK
integer NSINFO

call DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)

call NETSL('DGESV()',NSINFO,
          N,1,A,MAX,IPIV,B,MAX,INFO)
```

Hiding the Parallel Processing

? User maybe unaware of parallel processing

? NetSolve takes care of the starting the message passing system, data distribution, and returning the results.

39

MCell: 3-D Monte-Carlo Simulation of Neuro-Transmitter Release in Between Cells

- Developed at: Salk Institute (T. Bartol), Cornell U. (J. Stiles)
- Study how neurotransmitters diffuse and activate receptors in synapses
- blue unbounded, red singly bounded, green doubly bounded closed, yellow doubly bounded open

NetSolve & IPARS

- ? **Integrated Parallel Accurate Reservoir Simulator.**
 - ✉ Mary Wheeler's group, UT-Austin
- ? **Reservoir and Environmental Simulation.**
 - ✉ models black oil, waterflood, compositions
 - ✉ 3D transient flow of multiple phase
- ? **Integrates Existing Simulators.**
- ? **Framework simplified development**
 - ✉ Provides solvers, handling for wells, table lookup.
 - ✉ Provides pre/postprocessor, visualization.
- ? **Full IPARS access without Installation.**
- ? **IPARS Interfaces Now Available:**
 - ✉ C, FORTRAN, Matlab, Mathematica, and Web.

41

NetSolve Applications and Interactions

- ? **Tool integration**
 - ✉ Globus - Middleware infrastructure (ANL/SSI)
 - ✉ Condor - Workstation farm (U Wisconsin)
 - ✉ NWS - Network Weather Service (U Tennessee)
 - ✉ SCIRun - Computational steering (U Utah)
 - ✉ Ninf - NetSolve-like system, (ETL,Tsukuba)
- ? **Library usage**
 - ✉ LAPACK/ScaLAPACK - Parallel dense linear solvers
 - ✉ SuperLU/MA28 - Parallel sparse direct linear solvers(UCB/RAL)
 - ✉ PETSc/Aztec - Parallel iterative solvers (ANL/SNL)
 - ✉ Other areas as well (not just linear algebra)
- ? **Applications**
 - ✉ MCell - Microcellular physiology (UCSD/Salk)
 - ✉ IPARS - Reservoir Simulator (UTexas, Austin)
 - ✉ Virtual Human - Pulmonary System Model (ORNL)
 - ✉ RSICC - Radiation Safety sw/simulation (ORNL)
 - ✉ LUCAS - Land usage modeling (U Tennessee)
 - ✉ ImageVision - Computer Graphics and Vision (Graz U)

42

Conclusion

- ? Exciting time to be in scientific computing
- ? Network computing is here
- ? The Grid offers tremendous opportunities for collaboration
- ? Important to develop algorithms and software that will work effectively in this environment

43

Contributors to These Ideas

- ? **Top500**
 - ✉ Erich Strohmaier, UTK
 - ✉ Hans Meuer, Mannheim U
- ? **ATLAS**
 - ✉ Antoine Petitet, UTK
 - ✉ Clint Whaley, UTK
- ? **PAPI**
 - ✉ Shirley Browne, UTK
 - ✉ Nathan Garner, UTK
 - ✉ Kevin London, UTK
 - ✉ Phil Mucci, UTK
- ? **NetSolve**
 - ✉ Dorian Arnold, UTK
 - ✉ Susan Blackford, UTK
 - ✉ Henri Casanova, UCSD
 - ✉ Michelle Miller, UTK
 - ✉ Sathish Vadhiyar, UTK

For additional information see...

www.netlib.org/top500/
www.netlib.org/atlas/
icl.cs.utk.edu/projects/papi/
www.netlib.org/netsolve/
www.cs.utk.edu/~dongarra/

Many opportunities within group

44

