
1

1

Tools for High Performance Tools for High Performance
Numerical Kernels, and Numerical Kernels, and
Performance MeasurementPerformance Measurement

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory
http://www.cs.utk.edu/~http://www.cs.utk.edu/~dongarradongarra//

HPC-ASIA 2000
The Fourth International Conference/Exhibition on

High Performance Computing in Asia-Pacific Region
May 14-17, 2000

Friendship Hotel, Beijing, China

2

OutlineOutline

? Automatically Tuned Linear Algebra
Software (ATLAS)

? Standards and Tools for
Performance Monitoring (PAPI)

4

7

ATLASATLAS

? An adaptive software architecture
?High-performance
?Portability
?Elegance

? ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the vendor.

8

ATLAS ATLAS (DGEMM n = 500)(DGEMM n = 500)

? ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the vendor.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

AMD Athl
on

-60
0

DEC
 ev

56
-53

3

DEC
 ev

6-5
00

HP9
00

0/7
35

/13
5

IBM PP
C60

4-1
12

IBM Pow
er2

-16
0

IBM Pow
er3

-20
0

Pen
tiu

m Pro-
20

0

Pen
tiu

m II-
26

6

Pen
tiu

m III
-55

0

SG
I R

10
00

0ip
28

-20
0

SG
I R

12
00

0ip
30

-27
0

Sun
 U

ltra
Spa

rc2
-20

0

Architectures

M
FL

O
P

S

Vendor BLAS
ATLAS BLAS
F77 BLAS

5

9

Why ATLAS Is Fast?Why ATLAS Is Fast?
? ATLAS does not implement a single fixed algorithm.
? The code is generated by a program that tests,

probes, and runs 100’s of experiments on the
target sw/hw architecture.

? During installation the program generator
determines an efficient implementation
? Probes systems for critical parameters
? Measures the speed of different code strategies and

chooses the best using an adaptive procedure.
? This leads to a new model of high performance

programming in which performance critical code is
machine generated using parameter optimization.

? Done once to build the library, then used on that
machine.

10

Code GenerationCode Generation
StrategyStrategy

? Code is iteratively
generated & timed until
optimal case is found.
We try:
? Differing NBs
? Breaking false

dependencies
? M, N and K loop unrolling

? Designed for RISC arch
? Super Scalar
? Need reasonable C

compiler

? On-chip multiply optimizes
for:
? TLB access
? L1 cache reuse
? FP unit usage
? Memory fetch
? Register reuse
? Loop overhead

minimization
? Takes a 30 minutes to a

hour to run.
? New model of high

performance programming
where critical code is
machine generated using
parameter optimization.

9

17

Plans for ATLASPlans for ATLAS
? Software Release, available today:
?Level 1, 2, and 3 BLAS implementations
?See: www.netlib.org/atlas/

? Next Version:
?Multi-treading
?Fortran and Java generators

? Futures:
?Optimize message passing system
?Runtime adaptation

?Sparsity analysis
? Iterative code improvement

?Specialization for user applications
?Adaptive libraries

18

Work in Progress:Work in Progress:
ATLAS Approach Applied to Broadcast ATLAS Approach Applied to Broadcast
(PII 8 Way Cluster with 100 Mb/s switched network)(PII 8 Way Cluster with 100 Mb/s switched network)

Message Size Optimal algorithm Buffer Size
(bytes) (bytes)

8 binomial 8
16 binomial 16
32 binary 32
64 binomial 64
128 binomial 128
256 binomial 256
512 binomial 512
1K sequential 1K
2K binary 2K
4K binary 2K
8K binary 2K
16K binary 4K
32K binary 4K
64K ring 4K
128K ring 4K
256K ring 4K
512K ring 4K

1M binary 4K

Root

Sequential Binary Binomial
Ring

11

21

Performance Data That Performance Data That
May Be AvailableMay Be Available

?Cycle count
?Floating point

instruction count
?Integer instruction

count
?Instruction count
?Load/store count
?Branch taken / not

taken count
?Branch mispredictions

?Pipeline stalls due to
memory subsystem

?Pipeline stalls due to
resource conflicts

?I/D cache misses for
different levels

?Cache invalidations
?TLB misses
?TLB invalidations

22

PAPI PAPI ImplementationImplementation
? Performance

Application
Programming
Interface

? The purpose of PAPI is
to design, standardize
and implement a portable
and efficient API to
access the hardware
performance monitor
counters found on most
modern microprocessors

12

23

ImplementationImplementation

? Counters exist as a small set of registers
that count events.

? PAPI provides three interfaces to the
underlying counter hardware:
?The low level interface manages hardware

events in user defined groups called EventSet.
?The high level interface simply provides the

ability to start, stop and read the counters for
a specified list of events.

?Graphical tools to visualize information.

24

Graphical ToolsGraphical Tools
PerfometerPerfometer UsageUsage
? Application is instrumented with PAPI
?call perfometer()

? Will be layered over the best existing
vendor-specific APIs for these
platforms

? Sections of code that are of interest
are designated with specific colors
? Using a call to set_perfometer(‘color’)

? Application is started, at the call to
performeter a task is spawned to collect
and send the information to a Java
applet containing the graphical view.

13

25

PerfometerPerfometer

? Perfometer monitoring one of many metrics available

Call Perfometer(‘red’)

14

27

Cacheometer FeaturesCacheometer Features
? Cacheometer is actually Perfometer
running with a different metric
specified to PAPI

? Shown here as an example of the
versatility of the Perfometer
application

? Zoom in to monitor certain code
segments more closely

28

CacheometerCacheometer

? Cacheometer – Perfometer using cache hit rate
metric

15

29

PAPI 1.0 ReleasePAPI 1.0 Release

? Platforms
? Linux/x86
? Solaris/Ultra
? AIX/Power
? Tru64/Alpha
? IRIX/MIPS

? Fortran wrappers

? To download software see:
http://icl.cs.utk.edu/projects/papi/

? Mailing list
? send “subscribe ptools-

perfapi” to
majordomo@ptools.org

? ptools-perfapi@ptools.org
is the reflector

3 0

Early Users of PAPIEarly Users of PAPI

? Paradyn (Bart Miller, U of Wisconsin)
http://www.cs.wisc.edu/paradyn/libhrtime/

? TAU (Allen Mallony, U of Oregon)
http://www.cs.uoregon.edu/research/paracomp/tau/

? SvPablo (Dan Reed, U of Illinois)
http://wwwpablo.cs.uiuc.edu/Project/SVPablo/SvPabloOverview.htm

? Cactus (Ed Seidel, Max Plank/U of Illinois)
http://www.aei-potsdam.mpg.de

? Vprof (Curtis Janssen, Sandia Livermore Lab)
http://aros.ca.sandia.gov/~cljanss/perf/vprof/

16

3 1

Contributors to These IdeasContributors to These Ideas
? ATLAS
? Clint Whaley, UTK
? Antoine Petitet, UTK
? Tatebe Osamu, ETL/UTK
? Sathish Vadhiyar, UTK

? PAPI
? Shirley Browne, UTK
? Nathan Garner, UTK
? Kevin London, UTK
? Phil Mucci, UTK

For additional
information see…
http://www.netlib.org/atlas/
http://icl.cs.utk.edu/projects/papi/
http://www.cs.utk.edu/~dongarra/

3 2

http://http://iclicl.cs.utk.edu/projects/.cs.utk.edu/projects/papipapi//

