

support from Microsoft Research, Dell Computer, & Sun Microsystems

The Scalable Intracampus Research Grid for Computer Science Research: SInRG

Computer Science Department
University of Tennessee

Principal Investigators:

Jack J. Dongarra	Jim Plank
Micah Beck	Padma Raghavan
Michael W. Berry	Michael Thomason
Jens Gregor	Robert C. Ward
Michael A. Langston	Rich Wolski

UTK's Grid Research Effort

- ? Create a Grid prototype on one campus and leverage locality of all resources to produce *vertical integration of research* elements:
 - ? Human collaborator (application scientist)
 - ? Application software
 - ? Grid middleware
 - ? Distributed, federated resource pool
- ? On site collaborations with researchers from other disciplines will help ensure that the research has broad and real impact.
- ? Interaction, validate research, test bed, try out ideas

Research Projects

?

Approach:

?

Build a computational grid for Computer Science research that mirrors the underlying technologies and types of research collaboration that are taking place on the national technology grid.

?

Leverage Collaborative Research Projects:

?	Advanced Machine Design » Bouldin, Langston, Raghavan	?	Molecular Design » Cummings, Ward
?	Medical Imaging » Smith, Gregor, Thomason	?	JICS and HBCU » Halloy, Mann
?	Computational Ecology » Gross, Hallam, Berry	?	Projects within Dept. » Beck, Dongarra, Plank, Wolski

3

SInRG's Vision

- ?
- SInRG provides a testbed**
- ?
- CS grid middleware**
- ?
- Computational Science applications**
- ?
- Many hosts, co-existing in a loose confederation tied together with high-speed links.**
- ?
- Users have the illusion of a very powerful computer on the desk.**
- ?
- Spectrum of users**

4

Properties of SInRG at UTK

?

Genuine Grid

- ? realistically mirroring the essential features that make computational grid both promising and problematic

?

Designed for Research

- ? support experimental approach by allowing PIs to rapidly deploy new ideas and prototypes
- ? complements PACI focus on hardening & deployment

?

Communication between researchers leveraging locality

- ? centered in one department but collaborative across campus

?

Used as part of normal research and education

- ? must be scalable in users and resources

5

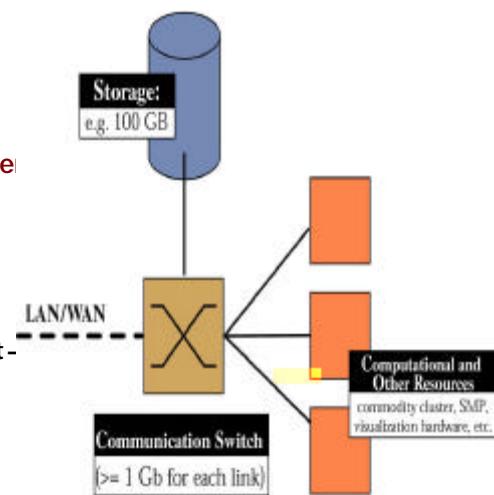
in the Grid Fabric

?

Computation

- ? used to run Grid controlware
- ? schedulable to augment other CPUs on Grid

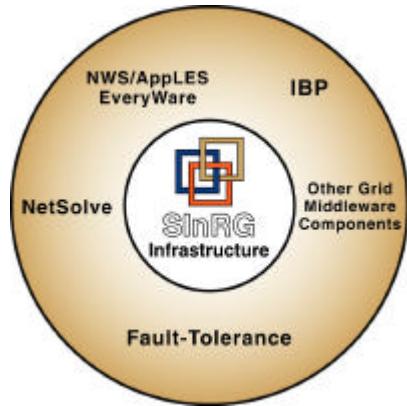
?


Storage

- ? State management
 - » data caching
 - » migration and fault-tolerance

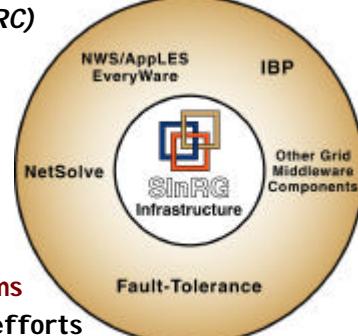
?

Network


- ? allows dynamic reconfiguration of resources

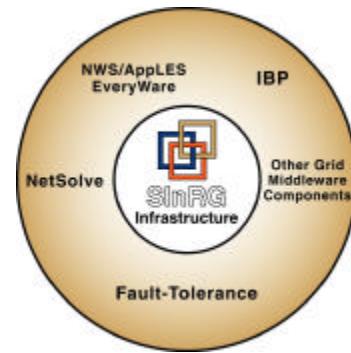
6

Challenges


- ? Provide a solid, integrated, foundation to build applications
 - ? Hide as much as possible the underlying physical infrastructure
 - ? Deliver high-performance to the application
- ? Support access, location, fault transparency, state management, and scheduling
- ? Enable inter-operation of components

7

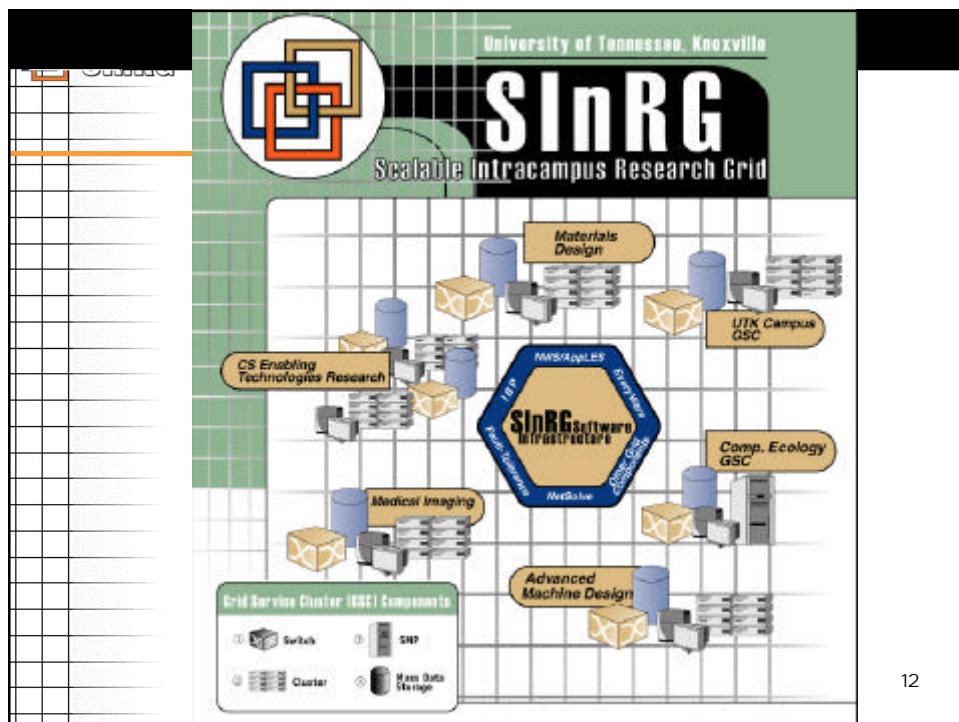
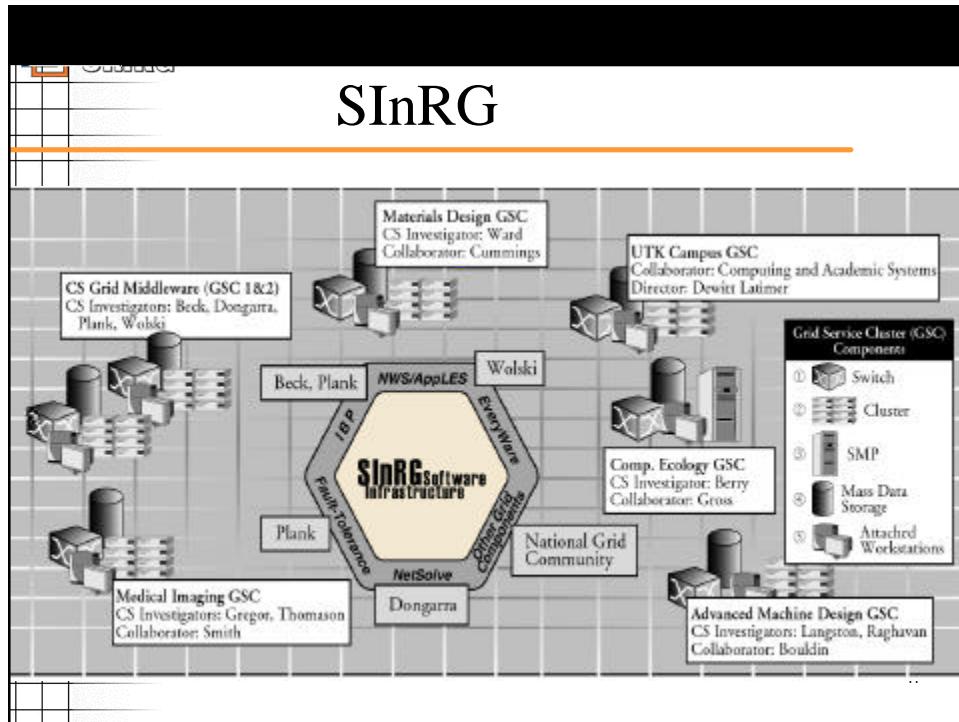
Grid Based Computing


- ? Message and Network based computing
 - ? Experience with PVM, MPI, Harness, & NetSolve
- ? Tennessee-Oak Ridge Cluster (*TORC*)
 - ? Wide-area cluster computing
- ? Numerical Libraries
 - ? Grid aware
 - ? Fault Tolerant library software
 - ? Built into software/library
- ? Graph Scheduling
 - ? Partitioning and Graph algorithms
- ? Collaborations with other related efforts
 - ? Globus, Legion, Condor, ...

8

Infrastructure

- ? NetSolve
 - ? programming abstractions
 - ? intelligent scheduling framework
 - ? hides complexity
- ? Internet Backplane Protocol (IBP)
 - ? distributed state management
 - ? application driven caching
- ? Application-Level Scheduling (AppLeS)
 - ? dynamic schedulers
- ? Network Weather Service
 - ? dynamic performance prediction
- ? EveryWare
 - ? toolkit for leveraging *multiple Grid infrastructures* and resources
- ? Fault-tolerance
 - ? process robustness and migration



9

SInRG Today

- ? GSC #1 - Dell PowerEdge service cluster, Linux
 - ? 18 Dell PowerEdge 1300 dual 500MHz Pentium III
 - ? 2 Dell PowerEdge 2400 dual 600MHz Pentium III
- ? GSC #2 - Sun Enterprise service cluster, Solaris
 - ? 17 Sun Enterprise 220R dual 450MHz UltraSPARC-II
- ? GSC #3 - Donation from Microsoft, Windows NT
 - ? 4 Dell PowerEdge 6350 quad 550MHz Pentium III Xeon
- ? GSC #4 - TORC, Linux
 - ? 10 Dual Processor 550 MHz Pentium II
- ? Gigabit network
 - ? Foundry Networks FastIron II (4 slot) with 26 fiber ports
 - ? Cisco Catalyst 6000 with 26 fiber ports
 - ? SysKonnect SK-NET GE-SX (SK-9843) 1000Base-SX with SC fiber connectors

10

