

HPC Challenge Benchmark

Piotr Łuszczek

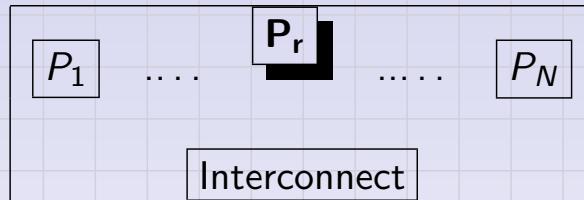
University of Tennessee Knoxville

SC2004, November 6-12, 2004, Pittsburgh, PA

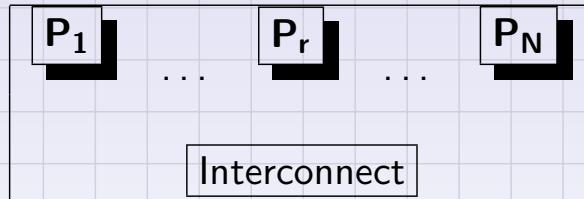
Contents

- 1 Introduction**
- 2 Overview**
- 3 Details**
- 4 Submissions**
- 5 Future Directions**

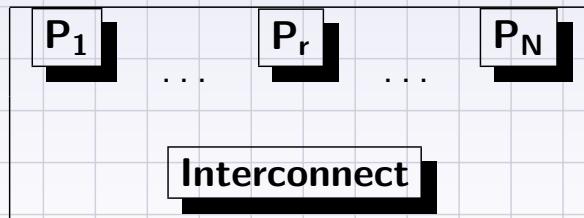
Motivation and Sponsors for HPC Challenge

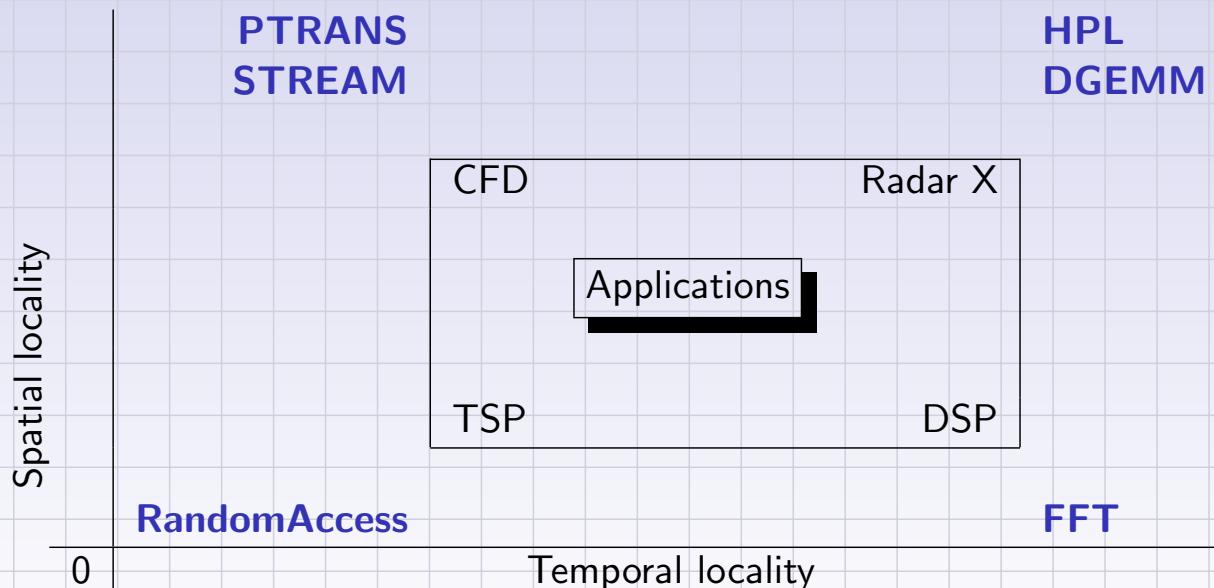

- Uniform benchmarking framework for performance tests
- Measure performance of various memory access patterns
- Testing Peta-scale systems
 - Has to challenge all hardware aspects
- Analyzing productivity
 - Implementation in various programming languages
 - Architecture support
- Rules for running and verification
 - Base run required for submission
 - Optimized run possible
 - Verification
 - Reporting all aspects of run:
compiler, libraries, runtime environment
- Sponsors
 - High Productivity Computing Systems (HPCS)
 - DARPA, DOE, NSF

Active Collaborators


- | | |
|---------------------|-----------------|
| • David Bailey | NERSC/LBL |
| • Jack Dongarra | UTK/ORNL |
| • Jeremy Kepner | MIT Lincoln Lab |
| • David Koester | MITRE |
| • Bob Lucas | ISI/USC |
| • John McCalpin | IBM Austin |
| • Rolf Rabenseifner | HLRS Stuttgart |
| • Daisuke Takahashi | Tsukuba |

Testing Scenarios


- Local


- Embarrassingly Parallel

- Global

Performance Bounds: Memory Access Patterns

Effective performance peak: HPL and DGEMM

- Effective performance peak (unit: TFlop/s and GFlop/s)
 - Global (entire system): High Performance Linpack (HPL)
 - Local (single node): DGEMM
- Top500 November 2004: 16%-99% of peak
 - Entries #99 and #309
- HPL – High Performance Linpack
 - Written by Antoine Petitet (while at ICL)
 - Non-trivial configuration
 - Global matrix size $(\approx \text{total memory})$
 - Process grid $(\approx \text{square})$
 - Blocking factor
 - Described at <http://www.netlib.org/benchmark/hpl/> (for BLAS and BLACS)
 - Runs well on CISC, RISC, VLIW, and vector computers
- DGEMM is matrix-matrix multiply with double precision reals.

Application Bandwidth: PTRANS and STREAM

- Measures sustainable bandwidth for stride one access
 - Global: PTRANS
 - Local: STREAM
- PTRANS – parallel matrix transpose
 - Repeated exchanges of large amounts of data
 - Depends on global bisection bandwidth
- STREAM – simple linear algebra vector kernels
 - Well known and understood
 - Known optimizations
 - No cache allocation on Crays
 - Threading on IBMs

Irregular Memory Updates: RandomAccess (GUPS)

- Measures ability to hide latencies (local and global)
 - Bandwidth (almost) irrelevant
 - Important: capacity for simultaneous message
 - Irregularity in data access kills common hardware tricks
- Many implementations
 - MPI-1: non-blocking `Send()`/`Recv()`
 - MPI-2: uses `Put()`/`Get()`
 - UPC: much faster than all above
- Verification procedure
 - Up to 1% updates may not be performed
 - Allows loosening shared memory consistency

Fast Fourier Transform with FFTE

- Complex 1D, double precision DFT
 - 64-bit input vector size
 - No mixed-stride memory accesses (as in multi-dimensional FFTs)
- Scalability problems
 - “Corner turns”
 - Global transpose with `MPI_Alltoall()`
 - Three transposes (data is never scrambled)
 - But time is not an issue – it runs fast

Rules for Running and Reporting

- Base run is required to submit to the database
 - Reference MPI-1 implementation publicly available
 - Each test is checked for correctness
- Optimized runs may follow the base run
 - Performance critical (timed) portion of code can be changed
 - Changes are to be described upon submission
 - Records effort (productivity) and architecture optimization techniques
 - Correctness check doesn't change
- Results submitted via web form
 - Output file from the run
 - Hardware information
 - Programming environment: compilers, libraries
 - Submission must be confirmed via email
 - Data immediately available (no restrictions)
 - HTML
 - XML
 - Microsoft Excel

Submission Statistics

- Army computing centers:
ARL, ERDC, NAVO, ...
- Government labs: ORNL
- Hardware vendors/integrators
 - Chip makers: Cray, IBM, NEC
 - Integrators: Dalco, Scalix
- Universities
 - Europe: Aachen/RWTH, Manchester
 - Asia: Tohoku (Sendai, Japan)
 - North America: Tennessee
- Supercomputing centers
 - DKRZ (Hamburg)
 - HLRS (Stuttgart)
 - OSC (Ohio)
 - PSC (Pittsburgh)
- Countries
Germany, Japan, Norway, Switzerland, U.K., U.S.A.
- Interconnects
 - Crossbar
 - Fat tree
 - Omega
 - Tori: 1D, 2D
- Processors
 - CISC
 - RISC
 - Vector
 - VLIW

Planned Activities

- Code improvements
 - New languages: Fortran 90, UPC, CAF, ...
 - Automated configuration
- Website/submission improvements
- End-user tools for data analysis
- Reporting guidelines
 - Especially for vendor comparisons
 - Cores
 - Processors
 - Threading
 - OpenMP
 - HyperThreading, Simultaneous Multithreading, ...
 - ViVA (Virtual Vector Architecture)

INNOVATIVE COMPUTING
LABORATORY

VISIT THE ICL TEAM AT THE
ORNL BOOTH (331) AT SC2004