
Introduction
Overview

Details
Submissions

Future Directions

HPC Challenge Benchmark

Piotr �Luszczek

University of Tennessee Knoxville

SC2004, November 6-12, 2004, Pittsburgh, PA

SC2004; Pittsburgh, PA 1/14

Introduction
Overview

Details
Submissions

Future Directions

Contents

1 Introduction

2 Overview

3 Details

4 Submissions

5 Future Directions

SC2004; Pittsburgh, PA 2/14



Introduction
Overview

Details
Submissions

Future Directions

Motivation and Sponsors for HPC Challenge

Uniform benchmarking framework for performance tests
Measure performance of various memory access patterns
Testing Peta-scale systems

Has to challenge all hardware aspects
Analyzing productivity

Implementation in various programming languages
Architecture support

Rules for running and verification
Base run required for submission
Optimized run possible
Verification
Reporting all aspects of run:
compiler, libraries, runtime environment

Sponsors
High Productivity Computing Systems (HPCS)
DARPA, DOE, NSF

SC2004; Pittsburgh, PA 3/14

Introduction
Overview

Details
Submissions

Future Directions

Active Collaborators

David Bailey NERSC/LBL

Jack Dongarra UTK/ORNL

Jeremy Kepner MIT Lincoln Lab

David Koester MITRE

Bob Lucas ISI/USC

John McCalpin IBM Austin

Rolf Rabenseifner HLRS Stuttgart

Daisuke Takahashi Tsukuba

SC2004; Pittsburgh, PA 4/14



Introduction
Overview

Details
Submissions

Future Directions

Testing Scenarios

Local
P1 .. . .

Pr
... . . PN

Interconnect

Embarrassingly Parallel

P1
. . .

Pr
. . .

PN

Interconnect

Global

P1
. . .

Pr
. . .

PN

Interconnect

SC2004; Pittsburgh, PA 5/14

Introduction
Overview

Details
Submissions

Future Directions

Performance Bounds: Memory Access Patterns

S
p

at
ia

l
lo

ca
lit

y

PTRANS HPL
STREAM DGEMM

CFD Radar X

Applications

TSP DSP

RandomAccess FFT
0 Temporal locality

SC2004; Pittsburgh, PA 6/14



Introduction
Overview

Details
Submissions

Future Directions

Effective performace peak: HPL and DGEMM

Effective performance peak (unit: TFlop/s and GFlop/s)

Global (entire system): High Performance Linpack (HPL)
Local (single node): DGEMM

Top500 November 2004: 16%-99% of peak

Entries #99 and #309

HPL – High Performance Linpack

Written by Antoine Petitet (while at ICL)
Non-trivial configuration

Global matrix size (≈ total memory)
Process grid (≈ square)
Blocking factor (for BLAS and BLACS)
Described at http://www.netlib.org/benchmark/hpl/

Runs well on CISC, RISC, VLIW, and vector computers

DGEMM is matrix-matrix multiply with double precision reals.

SC2004; Pittsburgh, PA 7/14

Introduction
Overview

Details
Submissions

Future Directions

Application Bandwidth: PTRANS and STREAM

Measures sustainable bandwidth for stride one access

Global: PTRANS
Local: STREAM

PTRANS – parallel matrix transpose

Repeated exchanges of large amounts of data
Depends on global bisection bandwidth

STREAM – simple linear algebra vector kernels

Well known and understood
Known optimizations

No cache allocation on Crays
Threading on IBMs

SC2004; Pittsburgh, PA 8/14



Introduction
Overview

Details
Submissions

Future Directions

Irregular Memory Updates: RandomAccess (GUPS)

Measures ability to hide latencies (local and global)
Bandwidth (almost) irrelevant
Important: capacity for simultaneous message
Irregularity in data access kills common hardware tricks

Many implementations
MPI-1: non-blocking Send()/Recv()
MPI-2: uses Put()/Get()
UPC: much faster than all above

Verification procedure
Up to 1% updates may not be performed
Allows loosening shared memory consistency

↓
↓

↓
↓

SC2004; Pittsburgh, PA 9/14

Introduction
Overview

Details
Submissions

Future Directions

Fast Fourier Transform with FFTE

Complex 1D, double precision DFT

64-bit input vector size
No mixed-stride memory accesses
(as in multi-dimensional FFTs)

Scalability problems
“Corner turns”

Global transpose with MPI Alltoall()

Three transposes (data is never scrambled)

But time is not an issue – it runs fast

SC2004; Pittsburgh, PA 10/14



Introduction
Overview

Details
Submissions

Future Directions

Rules for Running and Reporting

Base run is required to submit to the database
Reference MPI-1 implementation publicly available
Each test is checked for correctness

Optimzed runs may follow the base run
Performance critical (timed) portion of code can be changed
Changes are to be described upon submission

Records effort (productivity) and
architecture optimization techniques

Correctness check doesn’t change
Results submitted via web form

Output file from the run
Hardware information
Programming environment: compilers, libraries
Submission must be confirmed via email
Data immediately available (no restrictions)

HTML
XML
Microsoft ExcelSC2004; Pittsburgh, PA 11/14

Introduction
Overview

Details
Submissions

Future Directions

Submission Statistics

Army computing centers:
ARL, ERDC, NAVO, . . .

Government labs: ORNL

Hardware vendors/integrators

Chip makers: Cray, IBM, NEC
Integrators: Dalco, Scali

Universities

Europe: Aachen/RWTH, Manchester
Asia: Tohoku (Sendai, Japan)
North America: Tennessee

Supercomputing centers

DKRZ (Hamburg)
HLRS (Stuttgart)
OSC (Ohio)
PSC (Pittsburgh)

Countries
Germany, Japan,
Norway,
Switzerland, U.K.,
U.S.A.

Interconnects

Crossbar
Fat tree
Omega
Tori: 1D, 2D

Processors

CISC
RISC
Vector
VLIW

SC2004; Pittsburgh, PA 12/14



Introduction
Overview

Details
Submissions

Future Directions

Planned Activities

Code improvements

New languages: Fortran 90, UPC, CAF, . . .
Automated configuration

Website/submission improvements

End-user tools for data analysis

Reporting guidelines

Especially for vendor comparisons
Cores
Processors
Threading

OpenMP
HyperThreading, Simultaneous Mulithreading, . . .
ViVA (Virtual Vector Architecture)

SC2004; Pittsburgh, PA 13/14

Introduction
Overview

Details
Submissions

Future Directions

SC2004; Pittsburgh, PA 14/14


