Optimum System Balance for Systems of Finite Price

John D. McCalpin, Ph.D.
IBM Corporation
Austin, TX
SuperComputing 2004
Pittsburgh, PA
November 10, 2004

Overview (continued)

• Q: What is a “balanced” system?

• My answer:
“A balanced system is one for which the primary applications are limited in performance by the most expensive component(s) of the system.”
A Simple Composite Model

- Assume the time to solution is composed of a compute time proportional to peak GFLOPS plus a memory transfer time proportional to sustained memory bandwidth
- Assume “x Bytes/FLOP” to get:

\[
\text{"Balanced GFLOPS"} = \frac{1 \text{ "Effective FP op"}}{\left(\frac{1 \text{ FP op}}{\text{Peak GFLOPS}} \right) + \left(\frac{x \text{ Bytes}}{\text{Sustained GB/s}} \right)}
\]

- Target SPECfp_rate2000 as the workload

Does Peak GFLOPS predict SPECfp_rate2000?

[Graph showing SPECfp_rate2000 vs Peak MFLOPS]
Does Sustained Memory Bandwidth predict SPECfp_rate2000?

Optimized Model Results

- Results rounded to nearby round values:
 - Bytes/FLOP for large caches === 0.16
 - Bytes/FLOP for small caches === 0.80
 - Size of asymptotically large cache === ~12 MB
 - Coefficient of best fit === ~6.4
 - The units of the coefficient are SPECfp_rate2000 / Effective GFLOPS
Does this Revised Metric predict SPECfp_rate2000?

Cost Model

- Assume simple linear additive model
 - FLOPS cost some amount
 - Sustained BW costs a different amount
 - Define:

 \[
 \beta = \frac{R_{\text{mem}}}{R_{\text{cpu}}}
 \]
 \[
 \gamma = \frac{W_{\text{mem}}}{W_{\text{cpu}}}
 \]
 \[
 \delta = \frac{\$/\text{BW}}{\$/\text{FLOPS}}
 \]
The Correct Optimization

- This is actually an easy optimization problem
- Minimize cost/performance
 - Same as minimizing cost * time

- Optimum cost/performance occurs at
 - $\beta = \sqrt{\gamma/\delta}$

Example: High BW, expensive BW

$\gamma = 3$, $\delta = 3$
High BW, very expensive memory

\[\text{gamma} = 3, \text{delta} = 10 \]

Low-BW, expensive BW

\[\text{gamma} = 0.1, \text{delta} = 3 \]
Summary

- Balance is important to cost/performance
- You must understand performance
- You must understand cost
- Optimum cost-performance is not intuitive!