



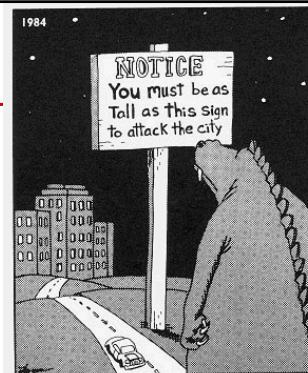
H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

$$Ax=b, \text{ dense problem}$$

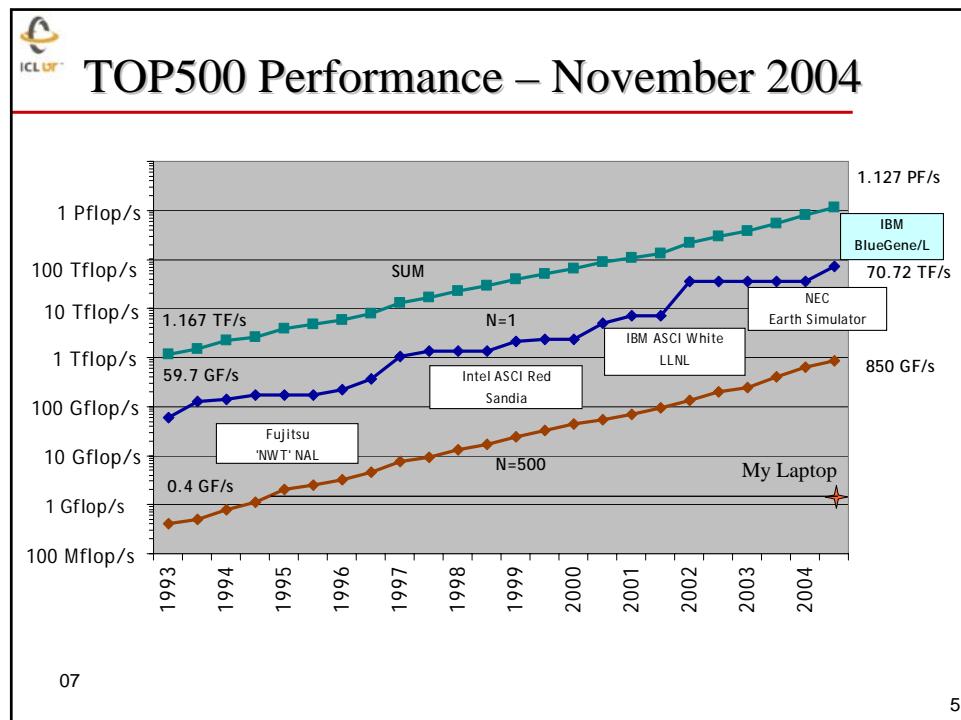
- Updated twice a year
SC'xy in the States in November
Meeting in Mannheim, Germany in June

07- All data available from www.top500.org


3

What is a Supercomputer?

- ♦ A supercomputer is a hardware and software system that provides close to the maximum performance that can currently be achieved.
- ♦ Over the last 10 years the range for the Top500 has increased greater than Moore's Law
- ♦ 1993:
 - #1 = 59.7 GFlop/s
 - #500 = 422 MFlop/s
- ♦ 2004:
 - #1 = 70 TFlop/s
 - #500 = 850 GFlop/s


07

Why do we need them?
Almost all of the technical areas that are important to the well-being of humanity use supercomputing in fundamental and essential ways.

Computational fluid dynamics, protein folding, climate modeling, national security, in particular for cryptanalysis and for simulating nuclear weapons to name a few.

4

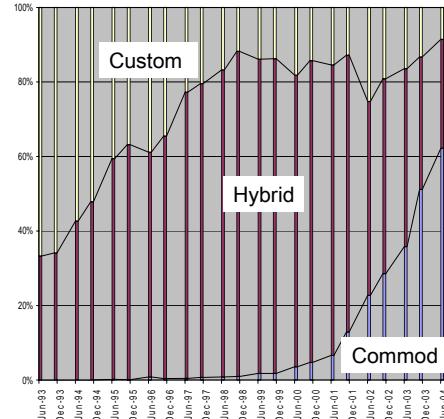
Architecture/Systems Continuum

Tightly
Coupled

◆ **Custom processor with custom interconnect**

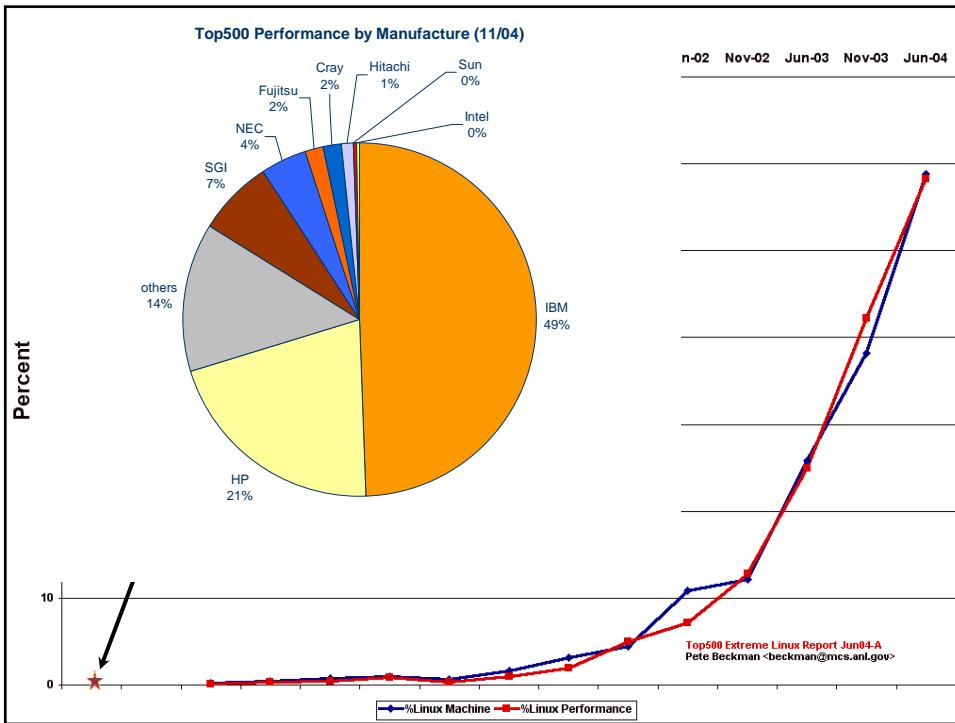
- Cray X1
- NEC SX-7
- IBM Regatta
- IBM Blue Gene/L

◆ **Commodity processor with custom interconnect**


- SGI Altix
 - Intel Itanium 2
 - Cray Red Storm
 - AMD Opteron

◆ **Commodity processor with commodity interconnect**

- Clusters
 - Pentium, Itanium, Opteron, Alpha
 - GigE, Infiniband, Myrinet, Quadrics
- NEC TX7
- IBM eServer
- Dawning

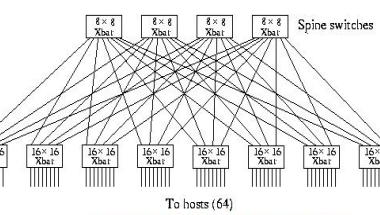
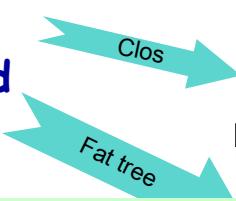

Loosely
Coupled

07

7

Top500 Performance by Manufacture (11/04)

Commodity Processors



- ◆ Intel Pentium Nocona
 - 3.6 GHz, peak = 7.2 Gflop/s
 - Linpack 100 = 1.8 Gflop/s
 - Linpack 1000 = 3.1 Gflop/s
- ◆ AMD Opteron
 - 2.2 GHz, peak = 4.4 Gflop/s
 - Linpack 100 = 1.3 Gflop/s
 - Linpack 1000 = 3.1 Gflop/s
- ◆ Intel Itanium 2
 - 1.5 GHz, peak = 6 Gflop/s
 - Linpack 100 = 1.7 Gflop/s
 - Linpack 1000 = 5.4 Gflop/s

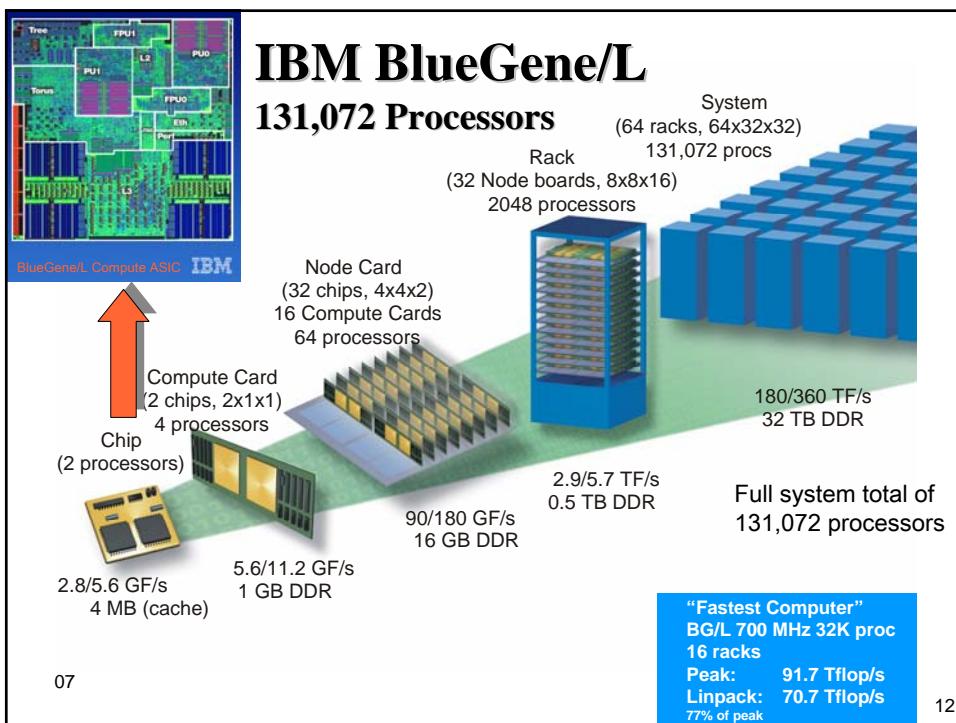
07

9

Commodity Interconnects

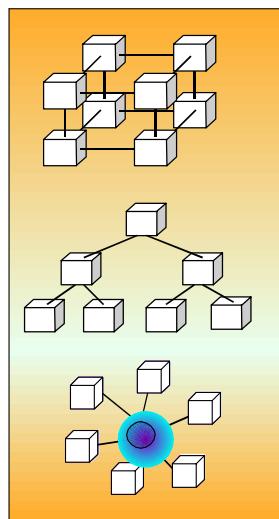
- ◆ Gig Ethernet
- ◆ Myrinet
- ◆ Infiniband
- ◆ QsNet
- ◆ SCT

	Switch topology	Cost NIC	Cost Sw/node	Cost Node	MPI Lat / 1-way / Bi-Dir (us) / MB/s / MB/s
Gigabit Ethernet	Bus	\$ 50	\$ 50	\$ 100	30 / 100 / 150
SCI	Torus	\$1,600	\$ 0	\$1,600	5 / 300 / 400
QsNetII (R)	Fat Tree	\$1,200	\$1,700	\$2,900	3 / 880 / 900
QsNetII (E)	Fat Tree	\$1,000	\$ 700	\$1,700	3 / 880 / 900
Myrinet (D card)	Clos	\$ 595	\$ 400	\$ 995	6.5 / 240 / 480
Myrinet (E card)	Clos	\$ 995	\$ 400	\$1,395	6 / 450 / 900
IB 4x	Fat Tree	\$1,000	\$ 400	\$1,400	6 / 820 / 790


24th List: The TOP10

TOP500 SUPERCOMPUTER SITES

	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Year	#Proc
1	IBM	BlueGene/L β-System	70.72	DOE/IBM	USA	2004	32768
2	SGI	Columbia Altix, Infiniband	51.87	NASA Ames	USA	2004	10160
3	NEC	Earth-Simulator	35.86	Earth Simulator Center	Japan	2002	5120
4	IBM	MareNostrum BladeCenter JS20, Myrinet	20.53	Barcelona Supercomputer Center	Spain	2004	3564
5	CCD	Thunder Itanium2, Quadrics	19.94	Lawrence Livermore National Laboratory	USA	2004	4096
6	HP	ASCI Q AlphaServer SC, Quadrics	13.88	Los Alamos National Laboratory	USA	2002	8192
7	Self Made	X Apple XServer, Infiniband	12.25	Virginia Tech	USA	2004	2200
8	IBM/LLNL	BlueGene/L DD1 500 MHz	11.68	Lawrence Livermore National Laboratory	USA	2004	8192
9	IBM	pSeries 655	10.31	Naval Oceanographic Office	USA	2004	2944
10	Dell	Tungsten PowerEdge, Myrinet	9.82	NCSA	USA	2003	2500


07
399 system > 1 Tflop/s; 294 machines are clusters, top10 average 8K proc

11

BlueGene/L Interconnection Networks

07

3 Dimensional Torus

- Interconnects all compute nodes (65,536)
- Virtual cut-through hardware routing
- 1.4Gb/s on all 12 node links (2.1 GB/s per node)
- 1 μ s latency between nearest neighbors, 5 μ s to the farthest
- 4 μ s latency for one hop with MPI, 10 μ s to the farthest
- Communications backbone for computations
- 0.7/1.4 TB/s bisection bandwidth, 68TB/s total bandwidth

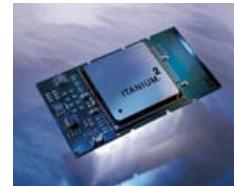
Global Tree

- Interconnects all compute and I/O nodes (1024)
- One-to-all broadcast functionality
- Reduction operations functionality
- 2.8 Gb/s of bandwidth per link
- Latency of one way tree traversal 2.5 μ s
- ~23TB/s total binary tree bandwidth (64k machine)

Ethernet

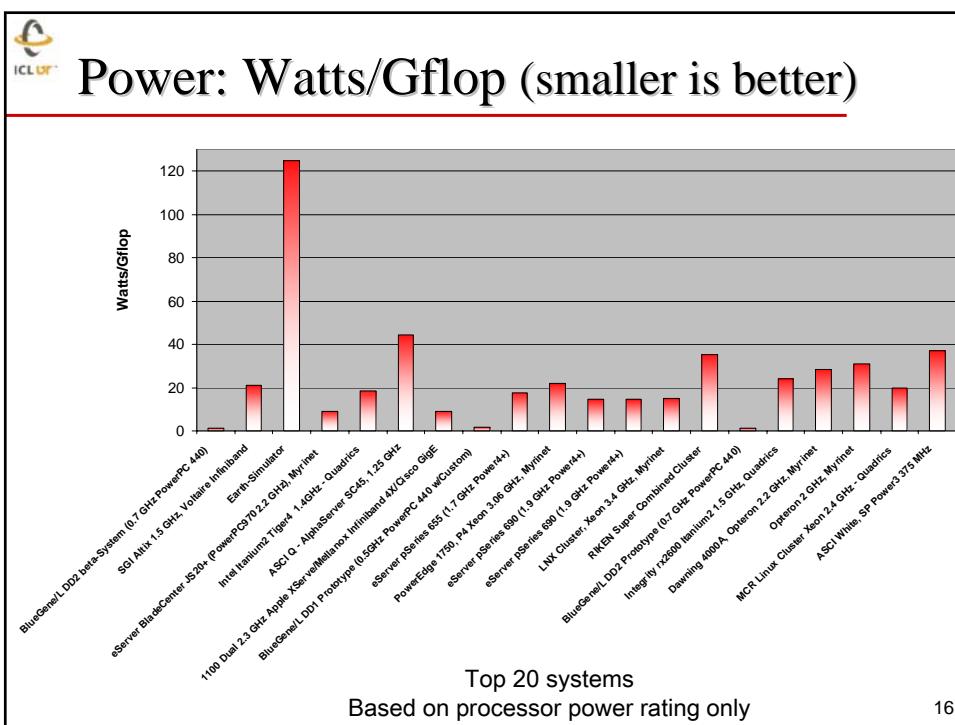
- Incorporated into every node ASIC
- Active in the I/O nodes (1:64)
- All external comm. (file I/O, control, user interaction, etc.)

Low Latency Global Barrier and Interrupt

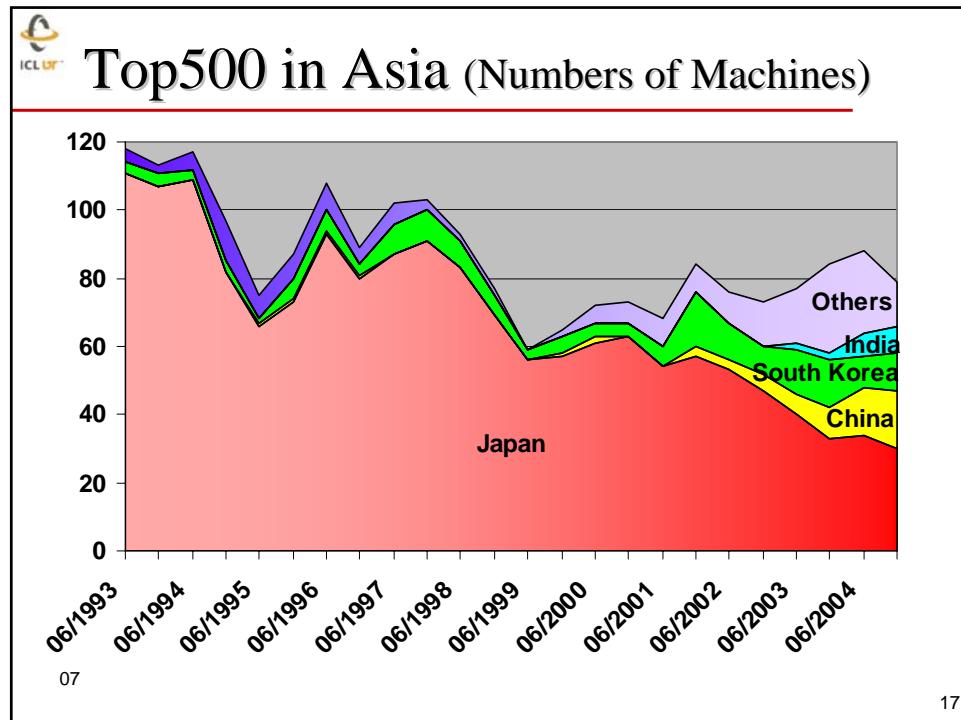

- Latency of round trip 1.3 μ s

Control Network

13



NASA Ames: SGI Altix Columbia 10,240 Processor System


- ◆ **Architecture:** Hybrid Technical Server Cluster
- ◆ **Vendor:** SGI based on Altix systems
- ◆ **Deployment:** Today
- ◆ **Node:**
 - 1.5 GHz Itanium-2 Processor
 - 512 procs/node (20 cabinets)
 - Dual FPU's / processor
- ◆ **System:**
 - 20 Altix NUMA systems @ 512 procs/node = 10240 procs
 - 320 cabinets (estimate 16 per node)
 - Peak: 61.4 Tflop/s ; LINPACK: 52 Tflop/s
- ◆ **Interconnect:**
 - FastNumaFlex (custom hypercube) within node
 - Infiniband between nodes
- ◆ **Pluses:**
 - Large and powerful DSM nodes
- ◆ **Potential problems (Gotchas):**
 - Power consumption - 100 kw per node (2 Mw total)

07

14

17 Chinese Sites on the Top500

Rank	Installation-site-name	Manufacturer	Computer	Area	Year	R _{max}	Procs
17	Shanghai Supercomputer Center	Dawning	Dawning 4000A, Opteron 2.2 GHz, Myrinet	Research	2004	8061	2560
38	Chinese Academy of Science Institute of Scientific Computing/Nankai University	lenovo	DeepComp 6800, Itanium2 1.3 GHz, QsNet	Academic	2003	4193	1024
61	Petroleum Company (D)	IBM	xSeries Xeon 3.06 GHz, Myrinet	Academic	2004	3231	768
132	Geoscience (A)	IBM	BladeCenter Xeon 3.06 GHz, Gig-Ethernet	Industry	2004	1923	512
184	University of Shanghai Academy of Mathematics and System Science	HP	DL360G3 Xeon 3.06 GHz, Infiniband	Academic	2004	1401	348
225	Digital China Ltd.	lenovo	DeepComp 1800 - P4 Xeon 2 GHz - Myrinet	Academic	2002	1297	512
229	Public Sector	IBM	xSeries Cluster Xeon 2.4 GHz - Gig-E	Governmn't	2003	1256	622
324	China Meteorological Administration	IBM	eServer pSeries 655 (1.7 GHz Power4+)	Research	2004	1107	1008
355	XinJiang Oil	IBM	BladeCenter Cluster Xeon 2.4 GHz, Gig-Ethernet	Industry	2003	1040	448
372	Fudan University	HP	DL360G3, Pentium4 Xeon 3.2 GHz, Myrinet	Academic	2004	1016	256
384	Huapu Information Technology	HP	SuperDome 875 MHz/HyperPlex	Industry	2004	1013	512
419	Saxony Developments Ltd	HP	Integrity Superdome, 1.5 GHz, HPlex	Industry	2004	971	192
481	Shenzhen University	Tsinghua U	DeepSuper-21C, P4 Xeon 3.06/2.8 GHz, Myrinet	Academic	2003	877	256
482	China Petroleum	HP	HP BL-20P, Pentium4 Xeon 3.06 GHz	Industry	2004	873	238
498	Digital China Ltd.	HP	SuperDome 875 MHz/HyperPlex	Industry	2004	851	416

Total performance growing by a factor of 3 every 6 months for the past 24 months

18

Important Metrics: Sustained Performance and Cost

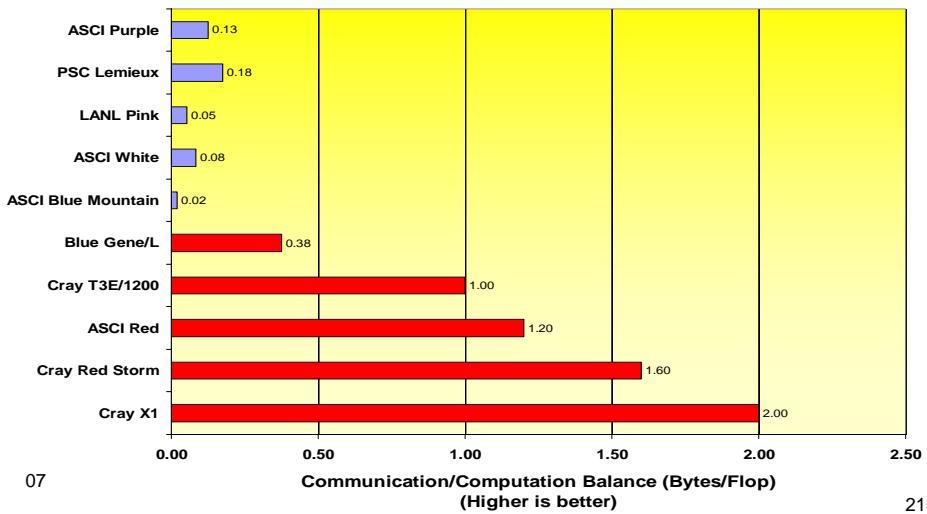
◆ Commodity processors

- Optimized for commercial applications.
- Meet the needs of most of the scientific computing market.
- Provide the shortest time-to-solution and the highest sustained performance per unit cost for a broad range of applications that have significant spatial and temporal locality (good caches use).

◆ Custom processors

- For bandwidth-intensive applications that do not cache well, custom processors are more cost effective
- Hence offering better capacity on just those applications.

High Bandwidth vs Commodity Systems

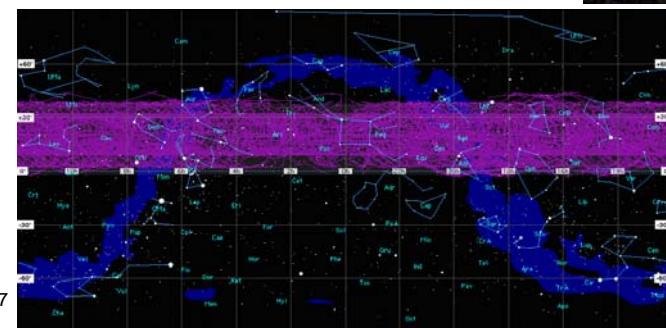

- ◆ High bandwidth systems have traditionally been vector computers
 - Designed for scientific problems
 - Capability computing
- ◆ Commodity processors are designed for web servers and the home PC market
 - (should be thankful that the manufacturers keep the 64 bit float)
 - Used for cluster based computers leveraging price point
- ◆ Scientific computing needs are different
 - Require a better balance between data movement and floating point operations. Results in greater efficiency.

System Balance - MEMORY BANDWIDTH

		Earth Simulator (NEC)	Cray X1 (Cray)	ASCI Q (HP EV68)	MCR Xeon	Apple Xserve IBM PowerPC
Year of Introduction		2002	2003	2002	2002	2003
Node Architecture		Vector	Vector	Alpha	Pentium	Power PC
Processor Cycle Time		500 MHz	800 MHz	1.25 GHz	2.4 GHz	2 GHz
Peak Speed per Processor		8 Gflop/s	12.8 Gflop/s	2.5 Gflop/s	4.8 Gflop/s	8 Gflop/s
Operands/Flop(main memory)		0.5	0.33	0.1	0.055	0.063

System Balance (Network)

Network Speed (MB/s) vs Node speed (flop/s)

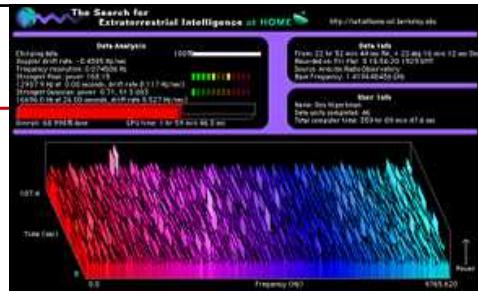


07

21

SETI@home: Global Distributed Computing

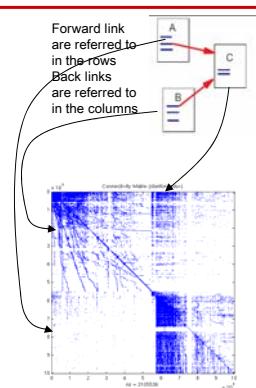
- ◆ Running on 500,000 PCs, ~1300 CPU Years per Day
 - > 1.3M CPU Years so far
- ◆ Sophisticated Data & Signal Processing Analysis
- ◆ Distributes Datasets from Arecibo Radio Telescope


07

22

SETI@home

- ◆ Use thousands of Internet-connected PCs to help in the search for extraterrestrial intelligence.
- ◆ When their computer is idle or being wasted this software will download ~ half a MB chunk of data for analysis. Performs about 3 Tflop/s for each client in 15 hours.
- ◆ The results of this analysis are sent back to the SETI team, combined with thousands of other participants.
- ◆ About 5M users

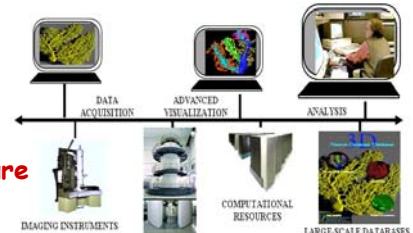

◆ Largest distributed computation project in existence

➤ Averaging 72 Tflop/s

Google™

- ◆ Google query attributes
 - 150M queries/day (2000/second)
 - 100 countries
 - 8.0B documents in the index
- ◆ Data centers
 - 100,000 Linux systems in data centers around the world
 - 15 TFlop/s and 1000 TB total capability
 - 40-80 1U/2U servers/cabinet
 - 100 MB Ethernet switches/cabinet with gigabit Ethernet uplink
 - growth from 4,000 systems (June 2000)
 - 18M queries then
- ◆ Performance and operation
 - simple reissue of failed commands to new servers
 - 07 ➤ no performance debugging
 - problems are not reproducible

Eigenvalue problem; $Ax = \lambda x$
 $n = 8 \times 10^9$
 (see: MathWorks Cleve's Corner)


The matrix is the transition probability matrix of the Markov chain; $Ax = x$

Source: Monika Henzinger, Google & Cleve Moler 24

The Grid

- ◆ The Grid is about gathering resources ...
 - run programs, access data, provide services, collaborate
- ◆ ...To enable and exploit large scale sharing of resources
- ◆ Virtual organization
 - Loosely coordinated groups
- ◆ Provides for remote access of resources
 - Scalable
 - Secure
 - Reliable mechanisms for discovery and access
- ◆ In some ideal setting:
 - User submits work, infrastructure finds an execution target
 - Ideally you don't care where.

07

The Grid

PROBLEM SOLVING ENVIRONMENTS
Scientists and engineers using computation to accomplish lab missions

HARDWARE
Heterogeneous collection of high-performance computer hardware and software resources

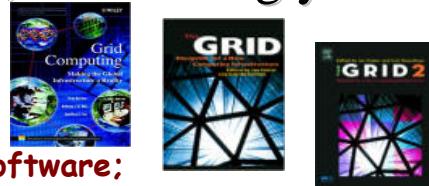
SOFTWARE
Software applications and components for computational problems

NETWORKING
The hardware and software that permits communication among distributed users and computer resources

MASS STORAGE
A collection of devices and software that allow temporary and long-term archival storage of information

INTELLIGENT INTERFACE
A knowledge-based environment that offers users guidance on complex computing tasks

MIDDLEWARE
Software tools that enable interaction among users, applications, and system resources


GRID OPERATING SYSTEM
The software that coordinates the interplay of computers, networking, and software

The Grid:

The Good, The Bad, and The Ugly

◆ Good:

- Vision;
- Community;
- Developed functional software;

◆ Bad:

- Oversold the grid concept;
- Still too hard to use;
- Solution in search of a problem;
- Underestimated the technical difficulties;
- Not enough of a scientific discipline;

◆ Ugly:

- Authentication and security

07

27

The Computing Continuum

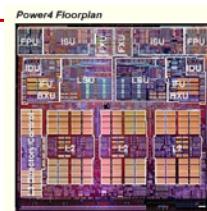
- ◆ Each strikes a different balance
 - computation/communication coupling
- ◆ Implications for execution efficiency
- ◆ Applications for diverse needs
 - computing is only one part of the story!

07

28

Grids vs. Capability vs. Cluster Computing

- ◆ **Not an "either/or" question**
 - Each addresses different needs
 - Each are part of an integrated solution
- ◆ **Grid strengths**
 - **Coupling necessarily distributed resources**
 - instruments, software, hardware, archives, and people
 - **Eliminating time and space barriers**
 - remote resource access and capacity computing
 - **Grids are not a cheap substitute for capability HPC**
- ◆ **Highest performance computing strengths**
 - **Supporting foundational computations**
 - terascale and petascale "nation scale" problems
 - Engaging tightly coupled computations and teams
- ◆ **Clusters**
 - Low cost, group solution
 - 07 ➢ **Potential hidden costs**
 - ◆ **Key is easy access to resources in a transparent way**


29

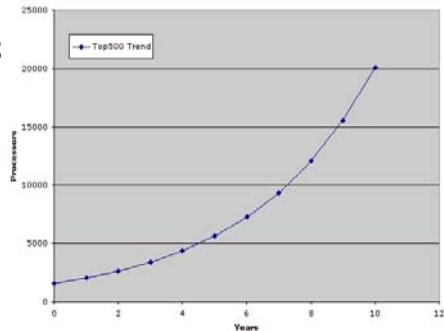
Petascale Systems In 2008

- ◆ **Technology trends**
 - **multicore processors perhaps heterogeneous**
 - IBM Power4 and SUN UltraSPARC IV
 - Itanium "Montecito" in 2005
 - quad-core and beyond are coming
 - **reduced power consumption**
 - laptop and mobile market drivers
 - **increased I/O and memory interconnect integration**
 - PCI Express, Infiniband, ...
- ◆ **Let's look forward a few years to 2008**
 - 8-way or 16-way cores (8 or 16 processors/chip)
 - ~10 GFlop cores (processors) and 4-way nodes (4, 8-way cores/node)
 - 12x Infiniband-like interconnect, perhaps heterogeneous
- ◆ **With 10 GFlop processors**
 - 100K processors and 3100 nodes (4-way with 8 cores each)
 - 1-3 MW of power, at a minimum
- ◆ **To some extent, Petaflops systems will look like a "Grid in a Box"**

07

Source: IBM, Enterprise Server Group

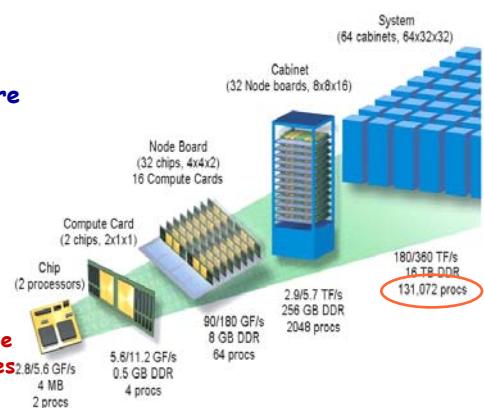
30



How Big Is Big?

- ◆ Every 10X brings new challenges
 - 64 processors was once considered large
 - it hasn't been "large" for quite a while
 - 1024 processors is today's "medium" size
 - 8096 processors is today's "large"
 - we're struggling even here
- ◆ 100K processor systems
 - are in construction
 - we have fundamental challenges in dealing with machines of this size
 - ... and little in the way of programming support

2004-2014 System Size



07

Fault Tolerance in the Computation

- ◆ Some next generation systems are being designed with > 100K processors (IBM Blue Gene L).
- ◆ MTTF 10^5 - 10^6 hours for component.
 - sounds like a lot until you divide by 10^5 !
 - Failures for such a system can be just a few hours, perhaps minutes away.
- ◆ Problem with the MPI standard, no recovery from faults.
- ◆ Application checkpoint / restart is today's typical fault tolerance method.
- ◆ Many cluster based on commodity parts don't have error correcting primary memory.

07

32

Real Crisis With HPC Is With The Software

- ◆ **Programming is stuck**
 - Arguably hasn't changed since the 60's
- ◆ **It's time for a change**
 - Complexity is rising dramatically
 - highly parallel and distributed systems
 - From 10 to 100 to 1000 to 10000 to 100000 of processors!!
 - multidisciplinary applications
- ◆ **A supercomputer application and software are usually much more long-lived than a hardware**
 - Hardware life typically five years at most.
 - Fortran and C are the main programming models
- ◆ **Software is a major cost component of modern technologies.**
 - The tradition in HPC system procurement is to assume that the software is free.
- ◆ **We don't have many great ideas about how to solve this problem.**

07

33

Collaborators / Support

◆ TOP500

- H. Meuer, Mannheim U
- H. Simon, NERSC
- E. Strohmaier

所有網頁 圖片 新聞 News 網上論壇 網頁目錄 Desktop

dongarra

Google 搜尋 好手氣

進階搜尋
使用偏好
語言選項

搜尋 : 所有網站 所有中文網頁 篩體中文網頁 香港的網頁

Google.com.hk 還提供 : [English](#)

[廣告服務](#) - [Google 完全手冊](#) - [Google.com in English](#)

[將 Google 設為首頁 !](#)

©2004 Google - 搜尋 8,058,044,651 頁的網頁

