
Self-Adaptive Multiprecision Preconditioners on
Multicore and Manycore Architectures

Hartwig Anzt1, Dimitar Lukarski2, Stanimire Tomov1, and Jack Dongarra1

1 Innovative Computing Lab, University of Tennessee, Knoxville, USA.
hanzt@icl.utk.edu, tomov@cs.utk.edu, dongarra@eecs.utk.edu

2 Department of Information Technology, Uppsala University, Sweden.
dimitar.lukarski@it.uu.se

Abstract. Based on the premise that preconditioners needed for scien-
tific computing are not only required to be robust in the numerical sense,
but also scalable for up to thousands of light-weight cores, we argue that
this two-fold goal is achieved for the recently developed self-adaptive
multi-elimination preconditioner. For this purpose, we revise the under-
lying idea and analyze the performance of implementations realized in
the PARALUTION and MAGMA open-source software libraries on GPU
architectures (using either CUDA or OpenCL), Intel’s Many Integrated
Core Architecture, and Intel’s Sandy Bridge processor. The comparison
with other well-established preconditioners like multi-coloured Gauss-
Seidel, ILU(0) and multi-colored ILU(0), shows that the twofold goal of
a numerically stable cross-platform performant algorithm is achieved.

1 Introduction

When solving sparse linear systems iteratively, e.g. via Krylov subspace solvers,
using preconditioners is often the key to reducing the time needed to obtain
a sufficiently accurate solution approximation. For this reason, significant ef-
fort is spent on the development of efficient preconditioners, usually optimized
for one particular problem. However, the theoretical derivation of methods im-
proving the convergence characteristics is often not sufficient, as the algorithms
have to be implemented and parallelized on the respectively used hardware plat-
form. The use of accelerator technology, like graphics processing units (GPUs)
or Intel Xeon Phi Coprocessors (known also as Many Integrated Core Architec-
tures, or MIC), in scientific computing centers requires a combination of deep
mathematical background knowledge and software engineering skills to develop
suitable methods. The challenge is to combine the robustness and efficiency of
the preconditioner scheme with the scalability of the implementation up to hun-
dreds and thousands of light-weight computing cores. The non-uniformity of the
high-performance computing landscape introduces additional complexity to this
endeavor, and complex sparse linear algebra algorithms that are designed to effi-
ciently exploit one specific architecture often fail to leverage the computing power
of other technologies. In this paper we show that, for the recently developed self-
adapting and multi-precision preconditioner [10], the two-fold goal of deriving a

numerically robust method featuring cross-platform scalability is achieved. While
the use of different floating point precision formats, and the combination of dense
and sparse linear algebra operations, may challenge cross-platform suitability, we
show that the self-adaptive mixed precision multi-elimination method can effi-
ciently exploit different hardware architectures and is highly competitive to some
of the most commonly used preconditioners. While the implementation of the
algorithm is realized using the PARALUTION [8] and MAGMA [5] open source
software libraries, both known to be able to efficiently exploit the computing
power of accelerators, the hardware systems used in our experiments represent
some of the most popular technologies used in current HPC platforms. The rest
of the paper is structured as follows. First, we provide some details about the
self-adaptive mixed precision multi-elimination preconditioner and the imple-
mentation we use. Next, we summarize some characteristics of the many-core
accelerators we target in our experiments and introduce the test matrices we
use for benchmarking. We then evaluate the performance of the mixed precision
multi-elimination preconditioner, embedded in a Conjugate Gradient solver on
the different hardware systems, and compare against other well-known precon-
ditioners. Finally, we summarize some key findings and provide ideas for future
research.

2 Self-Adaptive Multi-Elimination Preconditioner

Among the most popular preconditioners is the class based on the incomplete LU
factorization (ILU) [15]. Although using ILU without fill-ins can lead to appeal-
ing convergence improvement to the top-level iterative method, it may also fail
due to its rather rough approximation properties, e.g., when solving linear sys-
tems arising from complex applications like computational fluid dynamics [14].
To enhance the accuracy of the preconditioner, one can allow for additional fill-
in in the preconditioning matrix, resulting in the (ILU(m) scheme, see [15]).
Additional fill-in usually reduces the amount of parallelism in ILU(m) compared
to ILU(0), but there are a number of techniques designed to retain it, such as
the level-scheduling techniques [15, 11] or the multi-coloring algorithms for the
ILU factorization with levels based on the power(q)-pattern method [9]. Another
workaround is given by the idea of multi-elimination [14, 16], which is based on
successive independent set coloring [6]. The motivation is that in a step of the
Gaussian elimination, there usually exists a large set of rows that can be pro-
cessed in parallel. This set is called the independent set. For multi-elimination,
the idea is to determine this set, and then eliminate the unknowns in the re-
spective rows simultaneously, to obtain a smaller reduced system. To control the
sparsity of the factors, multi-elimination uses an approximate reduction based
on a standard threshold strategy. Recursively applying this step, one obtains a
sequence of linear systems with decreasing dimension and increasing fill-in. On
the lowest level, the system must be solved, e.g., either by an iterative method,
or by a direct solver based on an LU factorization. Recently, a multi-elimination
preconditioner, using an adaptive level depth in combination with a direct solver

based on LU factorization , was proposed in [10]. The advantage of this approach
is that the once computed LU factorization for the bottom-level system can be
reused in every iteration step, and the ability to utilize a lower precision format
in the triangular solves allows for leveraging the often superior single precision
performance of accelerators like GPUs. While we only shortly recall the central
ideas of the multi-elimination concept, a detailed derivation can be found in [14].
The underlying scheme is to use permutations P to bring the original matrix A,
of the system Ax = b that we want to solve, into the form

PAPT ≡
(
D F
E C

)
,

where D is preferably a diagonal or at least an easy to invert matrix, so that

PAPT ≡
(
D F
E C

)
=

(
I 0

ED−1 I

)
×

(
D F

0 Â

)
with Â = C − ED−1F (1)

is easy to compute [10]. One way to achieve this is by using an independent set
ordering [6, 7, 18, 13], where non-adjacent unknowns of the original matrix A are
determined. Recursively applying this idea and using some threshold strategy
to control the fill-in one obtains a sequence of successively smaller problems. To
control the increasing density of Â, we propose a self-adapting algorithm which
determines an appropriate sequence depth and a fill-in threshold based on the
average of all non-zero entries of Â. In the iteration phase (see Figure 1) the
sequence of transformations must also be applied to the right-hand side and to
the solution approximation. This is achieved by applying the decomposition [14]

x :=

(
ŷ
x̂

)
and computing, according to the partitioning in (1), the forward sweep as [14]:
x̂ := x̂ − ED−1y. Consequently, backward solution for yj hence becomes y :=
D−1 (y − Fx̂). On the lowest level the linear system must be solved, either again
via an iterative method, or, like suggested in [10] via triangular solves (in single
precision), using a beforehand computed factorization. Algorithmic details, as
well as a comparison between single and double precision triangular solves, can
be found in [10]. As the level-depth is not preset but determined during the
recursive factorization sequence using thresholds for drop-off and the direct solve
size, the algorithm is self-adapting to a specific problem.

3 Hardware and Software Issues

Target Platforms. The trend to introduce accelerator technology into high
performance computers is reflected in the top-ranked computer systems in both
the performance-oriented TOP500, and the resource-aware Green500 list (see [3]
and [1], respectively). While in recent years the usage of GPUs from differ-
ent vendors drew attention, Intel responded with the development of the MIC

preconditioner setup phase iteration phase multi elimination preconditioner embedded in top level iteration method

original problem

bottom-level problem

compute independent set

reduction

solve bottom-level problem

prolongation

Fig. 1: Visualization of the multi-elimination scheme denoting the system matrix
of the original problem An and a sequence of successively smaller problems down
to the bottom-level system matrix A0.

architecture (and in the November 2013 Top500 list, the number one ranked
supercomputer was based on MICs). For the future, even more diversity may be
expected as precise plans for building systems based on the low-power ARM tech-
nology already exist [2]. Despite attempts like OpenCL [17] and OpenACC [4],
unfortunately no cross-platform language that allows for efficient usage of the
different accelerator architectures currently exists. Therefore, it usually remains
a burden to the software developer to implement algorithms for a specific target
architecture using a suitable programming language for the respective hardware.
Especially for numerical linear algebra algorithms, the algorithm-specific prop-
erties often make the implementation on different architectures challenging. To
determine whether the challenge of deriving a cross-platform performant method
is achieved for the recently developed self-adaptive multi-elimination precondi-
tioner we introduced in the last section, we benchmark it on different multi- and
many-core systems listed along with some key characteristics in Table 1.

Acronym System Performance Peak Memory Bandwidth

ISB 2× Intel Xeon E5-2670 (Sandy Bridge) 333 GFlop/s 65 GB 2× 25.5 GB/s

K40 NVIDIA Tesla K40c 1,682 GFlop/s 12 GB 288 GB/s

AMD AMD Radeon HD 7970 (Tahiti) 947 GFlop/s 3 GB 264 GB/s

MIC Intel Xeon Phi 7110P 1,238 GFlop/s 16 GB 352 GB/s

Table 1: Key characteristics of the target architectures.

The implementation of the preconditioner, as well as the other methods we
compare against in Section 4, is realized using the PARALUTION [8] (version
0.4.0) and MAGMA [5] (version 1.4) open-source software libraries. The frame-
work and the CPU solver implementations are based on C/C++, while the GPU-

accelerated implementations use either CUDA [12] version 5.5 for the NVIDIA
GPUs, or OpenCL [17], version 1.2 and clAmdBlas 1.11.314 for AMD GPUs.
The MIC implementation, similar to GPU’s, treats the MIC as an accelera-
tor/coprocessor and is based on OpenMP and the BLAS operations provided in
Intel’s MKL 11.0, update 5.

Solver Parameters. All experiments solve the linear system Ax = b where
we set the initial right-hand-side to b ≡ 1, start with the initial guess x ≡ 0
and run the iteration process until we achieve a relative residual accuracy of
1e − 6. In the preprocessing phase of the multi-elimination, the identification
of an independent set via a graph algorithm is handled by the CPU of the
host system; the factorization process itself, including the permutation and the
generation of the lower-level systems via a sparse matrix-matrix multiplication
is implemented on the GPU.

Test Matrices. For the experiments, we use a set of symmetric, positive
definite (SPD) test matrices taken either from the University of Florida matrix
collection (UFMC)3, Matrix Market4, or generated as finite difference discretiza-
tion (Laplace). The test matrices are listed along with some key characteristics
in Table 2. Although we target only SPD systems, we use ME-ILU factorization
due to the fact that the IC requires non-zero diagonal elements. Positive diag-
onal entries for the IC can be obtained with non-symmetric permutation. This
is not applicable because the multi-elimination uses maximal independent set
(MIS) algorithm which produces a symmetric permutation.

matrix #nonzeros (nnz) Size (n) nnz/n

apache 4,817,870 715,176 6.74

ecology 4,995,991 999,999 5.00

G2 circ 726,674 150,102 4.83

G3 circ 7,660,826 1,585,478 4.83

Laplace 4,996,000 1,000,000 4.99

offshore 4,242,673 259,789 16.33

StocF 21,005,389 1,465,137 14.34

thermal 8,580,313 1,228,045 6.99

Table 2: Description and properties of the test matrices.

4 Performance on Emerging Hardware Architectures

In Table 3 we list the runtime of the iteration phase of the self-adaptive mixed
precision multi-elimination implementation on different hardware platforms. With
the number of iterations constant over the architectures, the performance is de-
termined by the available computing power and the efficiency of the program-
ming model to exploit it. The results reveal that the best performance is achieved

3 UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/
4 see http://math.nist.gov/MatrixMarket/

matrix #iters ISB K40 AMD MIC

apache 293 15.43 3.04 15.46 8.35

ecology 799 63.57 10.98 - 23.17

G2 circ 359 11.11 2.49 15.99 5.29

G3 circ 512 20.30 5.42 18.23 16.18

Laplace 338 9.13 3.41 14.31 10.01

offshore 1314 93.67 9.59 58.23 14.88

StocF 4388 178.56 52.06 - 115.05

thermal 916 57.41 13.93 59.20 35.73

Table 3: Iteration count and runtime (in seconds) of the Conjugate Gradient
solver preconditioned with the self-adaptive mixed precision multi-elimination
(MPME) preconditioner for different test matrices and hardware architectures.

using the CUDA implementation on the NVIDIA Kepler architecture. The MIC
implementation fails to achieve the K40 performance, but is in most cases su-
perior to ISB . Switching from the CPU to the OpenCL programming model on
the AMD platform accelerates the solver execution only for some problems, and
even for those, the performance is significantly lower than on the NVIDIA GPU.
Furthermore, the smaller memory size of the AMD architecture prevents it from
handling all problems. While this performance drop may suggest that mixed
precision multi-elimination is not suitable for OpenCL on AMD architectures,
the runtime results for other preconditioner choices in Table 4 indicate that this
behavior is not a singularity. None of the implementations using the OpenCL-
AMD framework achieves performance competitive to the CUDA results on the
Kepler K40. Finally, we want a comparison between the different precondition-
ers. In Figure 2 we compare the performance of the plain CG with the imple-
mentations preconditioned by multi-colored Gauss-Seidel, ILU(0), multi-colored
ILU(0), and the developed mixed precision multi-elimination with the runtime
normalized to the respective best implementation. From the results we can de-
termine that the mixed precision multi-elimination is not suitable for the small
G2 circ problem, but reduces the runtime significantly in the StocF case.
Overall, the developed self-adaptive preconditioner is competitive compared to
the well-established methods.

5 Summary and Future Research

In this paper we have analyzed the cross-platform suitability of the recently
developed mixed precision multi-elimination preconditioner using self-adaptive
level depth. We have analyzed the method’s performance characteristics using
different hardware platforms and compared the runtime with some of the most
popular preconditioners. The numerical robustness combined with platform-
independent scalability makes the method a competitive candidate when choos-
ing a preconditioner for solving linear problems in scientific computing. Future
research will target the question of how to leverage the computing power of
platforms equipped with multiple, not necessarily uniform, accelerators.

CG MCGS-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 3971 16.60 5.02 15.39 10.12 1677 15.45 5.22 14.90 12.56

ecology 5392 24.17 8.20 19.74 15.35 2784 27.50 8.94 19.83 19.17

G2 circ 8911 5.32 3.76 13.83 10.27 907 1.61 1.29 5.47 4.80

G3 circ 12658 107.56 29.67 60.86 77.15 1329 28.55 9.01 15.82 22.35

Laplace 1633 8.03 2.53 5.87 4.73 817 9.00 2.63 5.76 5.60

offshore – no convergence – 628 10.19 4.92 15.03 16.79

StocF – no convergence – 66042 2200.46 1187.59 2679.99 2678.97

thermal 4589 53.06 9.63 28.44 30.52 2151 39.27 18.33 36.28 52.68

ILU0-CG MCILU0-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 643 25.56 9.63 - - 1438 16.37 4.07 11.55 9.80

ecology 1700 74.86 64.03 - - 2854 38.18 8.35 18.72 18.09

G2 circ 481 3.28 6.15 - - 857 1.54 1.12 4.37 3.94

G3 circ 680 51.73 33.77 - - 1242 25.06 7.71 13.20 19.24

Laplace 537 23.18 19.30 - - 817 8.49 2.37 5.29 5.29

offshore 365 13.83 23.22 - - 487 6.88 3.57 8.54 11.72

StocF 2364 368.36 158.37 - - 16740 544.91 290.38 634.35 624.89

thermal 1945 188.58 54.13 - - 2095 42.33 16.79 30.57 49.53

Table 4: Iteration count and runtime (in seconds) of the unpreconditioned Con-
jugate Gradient solver (labelled CG) and the implementations using a multi-
coloured Gauss-Seidel preconditioner (labelled MCGS-CG), a ILU-0 and a multi-
colored ILU-0 preconditioner (labelled ILU0-CG and MCILU0-C, respectively)
for different test matrices and hardware architectures.

Acknowledgments

This work has been supported by the Linnaeus centre of excellence UPMARC,
Uppsala Programming for Multicore Architectures Research Center, DOE grant
#DE-SC0010042, NVIDIA, and the NSF grant # ACI-1339822.

References

1. The green 500 list, http://www.green500.org/.
2. The Mont Blanc Project, http://montblanc-project.eu.
3. The top 500 list, http://www.top.org/.
4. O. Corp. Openacc 2.0a spec - revised august 2013, June 2013.
5. I. C. Lab. Software distribution of MAGMA version 1.4. http://icl.cs.utk.

edu/magma/, 2013.
6. M. R. Leuze. Independent set orderings for parallel matrix factorization by gaussian

elimination. Parallel Computing, 10(2):177 – 191, 1989.
7. M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing, 15(4):1036–1053, 1986.
8. D. Lukarski. PARALUTION project. http://www.paralution.com/.
9. D. Lukarski. Parallel Sparse Linear Algebra for Multi-core and Many-core Plat-

forms - Parallel Solvers and Preconditioners. PhD thesis, Karlsruhe Institute of
Technology (KIT), Germany, 2012.

 0

 200

 400

 600

 800

 1000

 1200

 1400

apache
ecology
G

2_circ
G

3_circ
Laplace
off

shore
StocF

therm
al

 0

 500

 1000

 1500

 2000

 2500

apache
ecology
G

2_circ
G

3_circ
Laplace
off

shore
StocF

therm
al

 100

 200

 300

 400

 500

 600

 700

apache
ecology
G

2_circ
G

3_circ
Laplace
off

shore
StocF

therm
al

 0

 500

 1000

 1500

 2000

 2500

apache
ecology
G

2_circ
G

3_circ
Laplace
off

shore
StocF

therm
al

 0

 200

 400

 600

 800

 1000

 1200

 1400

apache

ecology

G
2_circ

G
3_circ

Laplace

off
shore

StocF

therm
al

ru
n
ti

m
e
 o

v
e
rh

e
a
d

 [
%

]

CG
MCGS-CG

ILU0-CG
MCILU0-CG

MPME-CG

Fig. 2: Relative runtime [%] of the diffferent implementations with respect to the
best method on the Intel Sandy Bridge CPU (left top) Kepler K40 GPU (right
top), AMD Radeon 7900 and Intel’s Many Integrated Core Architecture (left
and right bottom).

10. D. Lukarski, H. Anzt, S. Tomov, and J. Dongarra. Multi-Elimination ILU Pre-
conditioners on GPUs. Technical Report UT-CS-14-723, Innovative Computing
Laboratory, University of Tennessee, 2014.

11. M. Naumov. Parallel solution of sparse triangular linear systems in the precondi-
tioned iterative methods on the GPU. Technical report, NVIDIA, 2011.

12. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide, 2.3.1 edition, August 2009.

13. J. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425 – 440, 1986.

14. Y. Saad. Ilum: A multi-elimination ilu preconditioner for general sparse matrices.
SIAM J. Sci. Comput, 17:830–847, 1999.

15. Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2003.

16. Y. Saad and J. Zhang. Bilum: Block versions of multi-elimination and multi-level
ilu preconditioner for general sparse linear systems. SIAM J. SCI. COMPUT,
20:2103–2121, 1997.

17. J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.

18. L. Yao, W. Cao, Z. Li, Y. Wang, and Z. Wang. An improved independent set order-
ing algorithm for solving large-scale sparse linear systems. In Intelligent Human-
Machine Systems and Cybernetics (IHMSC), 2010 2nd International Conference
on, volume 1, pages 178–181, 2010.

