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Abstract. The computation of the Singular Value Decomposition, or SVD, has a long history,5
with many improvements over the years, both in implementations and algorithmically. Here, we sur-6
vey the evolution of SVD algorithms for dense matrices, discussing the motivation and performance7
impact of changes. There are two main branches of dense SVD methods: bidiagonalization and Ja-8
cobi. Bidiagonalization methods started with the implementation by Golub and Reinsch in Algol60,9
which was subsequently ported to Fortran in the EISPACK library, and was later more efficiently10
implemented in the LINPACK library, targeting contemporary vector machines. To address cache-11
based memory hierarchies, the SVD algorithm was reformulated to use Level 3 BLAS in the LAPACK12
library. To address new architectures, ScaLAPACK was introduced to take advantage of distributed13
computing, and MAGMA was developed for accelerators such as GPUs. Algorithmically, the di-14
vide and conquer and MRRR algorithms were developed to reduce the number of operations. Still,15
these methods remained memory bound, so two-stage algorithms were developed to reduce memory16
operations and increase the computational intensity, with efficient implementations in PLASMA,17
DPLASMA, and MAGMA. Jacobi methods started with the two-sided method of Kogbetliantz and18
the one-sided method of Hestenes. They have likewise had many developments, including parallel19
and block versions, and preconditioning to improve convergence. In this paper, we investigate the20
impact of these changes by testing various historical and current implementations on a common,21
modern multicore machine and a distributed computing platform. We show that algorithmic and22
implementation improvements have increased the speed of the SVD by several orders of magnitude,23
while using up to 40 times less energy.24
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1. Introduction. The singular value decomposition, or SVD, is a very powerful28

technique for dealing with matrix problems in general. The practical and theoretical29

importance of the SVD is hard to overestimate, and it has a long and fascinating30

history. A number of classical mathematicians are associated with the theoretical31

development of the SVD [107], including Eugenio Beltrami (1835–1899), Camille Jor-32

dan (1838–1921), James Sylvester (1814–1897), Erhard Schmidt (1876–1959), and33

Hermann Weyl (1885–1955).34

In recent years, the SVD has become a computationally viable tool for solving35

a wide variety of problems that arise in many practical applications. The use of36

the SVD in these applications is centered on the fact that they require information37

about the rank of a matrix, or a low rank approximation of a matrix, or orthogonal38

bases for the row and column spaces of a matrix. Applications are as diverse as least39

squares data fitting [53], image compression [3], facial recognition [111], principal40
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component analysis [92], latent semantic analysis [28], and computing the 2-norm,41

condition number, and numerical rank of a matrix.42

The SVD of an m-by-n matrix A is given by:43

(1) A = UΣV T (A = UΣV H in the complex case),44

where U and V are orthogonal (unitary) matrices and Σ is an m-by-n matrix with45

real diagonal elements, σi, conventionally ordered such that:46

σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0.47

The σi are the singular values of A and the first min(m,n) columns of U and V are48

the left and right singular vectors of A, respectively.49

Theoretically, the SVD can be characterized by the fact that the singular values50

are the square roots of the eigenvalues of ATA, the columns of V are the corre-51

sponding eigenvectors, and the columns of U are the eigenvectors of AAT , assuming52

distinct singular values. However, this is not a satisfactory basis for computation53

because roundoff errors in the formulation of ATA and AAT often destroy pertinent54

information.55

The key to using the SVD is the fact that it can be computed very effectively.56

There are two dominant categories of SVD algorithms for dense matrices: bidiag-57

onalization methods and Jacobi methods. The classical bidiagonalization method58

proceeds in the following three stages:59

1. The matrix A is reduced to bidiagonal form: A = U1BV
T
1 if A is real (A =60

U1BV
H
1 if A is complex), where U1 and V1 are orthogonal (unitary if A is61

complex), and B is real and upper-bidiagonal when m ≥ n or lower bidiagonal62

when m < n, so that B is nonzero on only the main diagonal and either the63

first superdiagonal (if m ≥ n) or the first subdiagonal (if m < n).64

2. The SVD of the bidiagonal matrix B is computed: B = U2ΣV T2 , where U2 and65

V2 are orthogonal and Σ is diagonal as described above. Several algorithms66

exist for the bidiagonal SVD, the original being QR iteration.67

3. If desired, the singular vectors of A are then computed as U = U1U2 and68

V = V1V2.69

This is the basic, efficient, and stable algorithm as posed by Golub and Kahan in70

1965 [53]. Golub and Reinsch [54] realized the first implementation of the SVD al-71

gorithm in Algol60, the programming language of the time. Their paper was later72

reproduced in the Wilkinson-Reinsch Handbook [117]. Bidiagonalization methods are73

covered in sections 3 to 11, with additional tests of accuracy and performance on74

various matrix types in sections 13 and 14.75

In contrast, Jacobi methods apply plane rotations to the entire matrix A, with-76

out ever reducing it to bidiagonal form. Two-sided Jacobi methods, first proposed by77

Kogbetliantz in 1955 [76], iteratively apply rotations on both sides of A to bring it78

to diagonal form, while one-sided Jacobi methods, proposed by Hestenes in 1958 [68],79

apply rotations on one side to orthogonalize the columns of A, implicitly bring ATA80

to diagonal. While Jacobi methods are often slower than bidiagonalization methods,81

there remains interest due to their simplicity, easy parallelization, and potentially bet-82

ter accuracy for certain classes of matrices. Jacobi methods are covered in section 12,83

with additional tests in sections 13 and 14.84

This manuscript traces the development of the SVD algorithm over the past 5085

years, using various historical implementations. This development includes algorith-86

mic improvements such as blocking, the divide and conquer and MRRR algorithms,87
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a two-stage reduction, as well as adapting to new computer architectures such as dis-88

tributed memory, accelerators, and multicore CPUs. We compare the performance of89

all the implementations on a common multicore computer. Our focus is on comput-90

ing all singular values and optionally singular vectors, for both square and tall dense91

matrices. For bisection and MRRR methods we also compute a subset of the singular92

values and vectors.93

2. Experimental Setup. To test the various implementations, we ran six dif-94

ferent tests:95

1. Square matrices, singular values only (no vectors).96

2. Square matrices, singular values and vectors.97

3. Tall matrices, m = 3n, singular values only (no vectors).98

4. Tall matrices, m = 3n, singular values and vectors.99

5. Tall matrices, m = 1000n, singular values only (no vectors).100

6. Tall matrices, m = 1000n, singular values and vectors.101

When computing singular vectors, we computed the reduced SVD consisting of the102

first min(m,n) columns of U and V , and min(m,n) rows and columns of Σ. This is103

the most useful part computationally, sufficient for many applications such as solving104

least squares problems, and we subsequently identify U , V , and Σ with those of the105

reduced SVD, which still satisfy (1). For LAPACK, the reduced SVD corresponds to106

job=“s” for both U and V . We store U and V separately from A, i.e., they do not107

overwrite A. Where applicable, we query for the optimal workspace size; otherwise,108

we use the maximum documented workspace size. This ensures that we always use109

the “fast” path in codes, including blocking and other optimizations.110

Unless indicated, matrices have random entries from a uniform distribution on111

(0, 1). For some tests, we generate singular values Σ according to one of the distribu-112

tions below, then form A = UΣV T where U and V are random orthogonal matrices113

from the Haar distribution [106]. Where given, κ is the condition number of A.114

• Σ random: singular values are random uniform on (0, 1). The condition115

number is not determined a priori.116

• arithmetic: σi = 1− i−1
n−1

(
1− 1

κ

)
for i = 1, . . . , n.117

• geometric: σi = κ−(i−1)/(n−1) for i = 1, . . . , n.118

• log-random: singular values are random in ( 1
κ , 1) such that their logarithms119

are random uniform on (log 1
κ , log 1).120

• cluster at 1
κ : Σ =

[
1, 1κ , . . . ,

1
κ

]
.121

• cluster at 1: Σ =
[
1, . . . , 1, 1κ

]
.122

All tests were performed in double-precision real arithmetic. Except for PLASMA123

and MPI-based implementations, which initialize memory in parallel, we used numactl124

--interleave=all to distribute memory across CPU sockets, and the CPU cache was125

flushed before the SVD function call. To avoid repeating minor differences, we shall126

generally assume that A is real and m ≥ n. Operations for complex or m < n are127

analogous.128

We conducted experiments on a two-socket Intel Sandy Bridge Xeon E5-2670129

running at 2.6 GHz, with 8 cores per socket, a theoretical double-precision peak of130

333 Gflop/s, and 64 GiB of main memory. The measured practical dgemm peak is131

313.6 Gflop/s and dgemv peak is 13.9 Gflop/s (55.8 GB/s). The STREAM triad132

benchmark [91] measured the memory bandwidth as 57.8 GB/s with 16 OpenMP133

threads. All CPU implementations were compiled with gcc and linked against Intel’s134

Math Kernel Library (MKL) version 11.2.3 [71].135
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GPU results used an NVIDIA Kepler K40c with 15 multiprocessors, each con-136

taining 192 CUDA cores. The theoretical double precision peak performance is137

1682 Gflop/s. On the GPU, 12 GiB of device memory can be accessed at a theoretical138

bandwidth of 288 GB/s. The measured practical dgemm peak is 1243.1 Gflop/s and139

dgemv peak is 45.3 Gflop/s (181.2 GB/s). For the GPU implementation, we used140

CUDA version 7.0 [94].141

3. EISPACK Implementation. The EISPACK project was an effort to de-142

velop a software library for numerical computation of eigenvalues and eigenvectors of143

matrices based on algorithms and ideas that were mainly contained in the Wilkinson-144

Reinsch Handbook. EISPACK was a transliteration of these Algol programs into145

Fortran. It contains subroutines for calculating the eigenvalues of nine classes of146

matrix problems: complex general, complex Hermitian, real general, real symmetric,147

real symmetric banded, real symmetric tridiagonal, special real tridiagonal, gener-148

alized real, and generalized real symmetric. In addition, it includes subroutines to149

perform a singular value decomposition [50]. Some routines were updated to imple-150

ment improvements in the numerical accuracy and achieve portability across different151

computing systems. However, the basic organization and access to matrix elements152

was kept in the Algol style.153

To arrange multidimensional arrays in linear storage such as memory, Algol uses154

row-major order (each row is contiguous in memory), while Fortran uses column-155

major order (each column is contiguous in memory). Array layout is critical for156

correctly passing arrays between programs written in different languages. It is also157

important for performance when traversing an array since accessing array elements158

that are contiguous in memory is usually much faster than accessing elements which159

are not, due to the structure of the memory cache hierarchy. In the Algol routines,160

and subsequently the Fortran routines of EISPACK, matrix elements were referenced161

by row, thus causing great inefficiencies in the Fortran EISPACK software on modern162

cache based computer systems.163

Written in standard Fortran 77, with no outside dependencies, EISPACK still164

compiles with a modern Fortran compiler. Figure 1 shows its performance results on165

a modern computer with the six test problems described in section 2. EISPACK has166

no notion of parallelism, so the code runs on only a single core. The operation count167

formulas here assume two QR iterations per singular value, and that an initial QR168

reduction is not done [23].169

For square matrices without computing singular vectors, asymptotic performance170

is limited to 0.74 Gflop/s for one core, while when computing singular vectors, per-171

formance nearly triples to 2.17 Gflop/s. As is common, small sizes perform better172

because the entire matrix fits into L2 cache. Performance for the tall 3:1 and 1000:1173

cases is less than the square case, but exhibits a similar improvement when computing174

singular vectors compared with no vectors. For comparison, the practical peak using175

matrix-multiply on one core is 20 Gflop/s.176

4. LINPACK Implementation Using BLAS. In the 1970s, the Level 1177

BLAS (Basic Linear Algebra Subroutines) [79] were introduced as a standard set of178

interfaces to perform common linear algebra operations. The Level 1 BLAS includes179

operations with O(n) floating-point operations (flops), such as vector sum (y = αx+y,180

called daxpy). The LINPACK project [39] reimplemented the SVD algorithm, along181

with other linear algebra algorithms, using Level 1 BLAS for efficient execution on182

the vector supercomputers of the 1970s and 1980s. It uses Fortran’s native column-183

major order, which makes better use of cache and memory bandwidth. However,184
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Fig. 1. Results for EISPACK, which uses only one core.

using Level 1 BLAS, LINPACK is limited by the memory bandwidth and receives185

little benefit from multiple cores. We see in Figure 2 that LINPACK achieves up to186

3.9× speedup over EISPACK for the square, no vectors case, and 2.7× speedup for187

the square, vectors case. When computing a tall m × n matrix with m = 1000n,188

using multithreaded BLAS on 16 cores yields some benefit, with speedups of 22.5×189

and 13.5× over EISPACK for the no vectors and vectors cases, respectively, compared190

with speedups of 7.6× and 3.9×, respectively, with single-threaded BLAS. In some191

instances, for large matrices such as n = 16, 000, the code hung, appearing in a “sleep”192

state in ps, so we were unable to collect all data points.193

5. LAPACK Implementation Based on Blocked Householder Transfor-194

mations. While successful for vector-processing machines, Level 1 BLAS were not195

a good fit for the cache-based machines that emerged later in the 1980s. For cache-196

based machines, it is preferable to use higher-level operations such as matrix-matrix197

multiply, which is implemented by splitting a matrix into small blocks that fit into198

cache memory and performing small matrix-matrix multiplies on these blocks. This199
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Fig. 2. Comparison of LINPACK to EISPACK.

avoids excessive data movement between cache and main memory. This led to the200

Level 2 BLAS [41] for operations with O(n2) flops, such as general matrix-vector201

multiply (y = αAx + βy, called dgemv); and Level 3 BLAS [40] for operations with202

O(n3) flops on O(n2) data, such as general matrix-matrix multiply (C = αAB + βC,203

called dgemm). Level 1 and 2 BLAS access O(1) elements per operation, and are204

thus limited in performance by the memory bandwidth. Level 3 BLAS benefit from205

the surface-to-volume effect of having only O(n2) elements to access for O(n3) op-206

erations. The performance of Level 1, 2, and 3 BLAS are compared in Figure 3,207

showing the significant benefit of Level 3 BLAS. The BLAS provides a means to write208

high-level, high-performance, portable numerical software. Optimized BLAS libraries209

are available, both from commercial vendors such as the Intel Math Kernel Library210

(MKL) [71] and the IBM Engineering and Scientific Subroutine Library (ESSL) [70],211
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0

Fig. 3. Comparison of Level 1, 2, and 3 BLAS performance.

and in open-source libraries such as OpenBLAS [96] and ATLAS [115]. These math212

libraries often also included optimized versions of LAPACK, ScaLAPACK, and other213

numerical libraries. Our tests used the optimized routines available in Intel MKL.214

5.1. Blocked Householder Transformations. With the introduction of Level215

3 BLAS, algorithms were recast using matrix multiplies, and LINPACK was re-216

designed into LAPACK [2] to use Level 3 BLAS where possible. The redesign for217

one-sided factorizations such as QR, LU, and Cholesky is relatively easier than re-218

ductions for eigenvalue problems and the SVD because the transformations used in219

QR, LU, and Cholesky are applied from only the left side [40]. Consecutive elemen-220

tary transformations are restricted to a block of columns at a time, referred to as the221

panel (depicted in Figure 4(a)), and updates to the rest of the matrix, referred to as222

the trailing matrix, are delayed. The transformations used for a panel are blocked223

together [14, 104] and applied to the trailing matrix as Level 3 BLAS.224

trailing
matrix

Q
R

 p
an

el

(a) QR factorization

trailing
matrix

panel } nb

(b) Bidiagonal reduction

Fig. 4. Comparison of panels and trailing matrix.

On the other hand, the reduction of a matrix A to bidiagonal form is done by225

applying orthogonal matrices on both the left and right side of A—hence it is called226

a “two-sided factorization.” The two-sided transformations create more data depen-227

dencies, which make it impossible to entirely remove matrix-vector products involving228

the trailing matrix (as in the one-sided factorizations). The panel becomes a block229

row and block column, as shown in Figure 4(b), but panel operations also involve230

the entire trailing matrix. Dongarra et al. [42] developed the blocked algorithm for231

the bidiagonal reduction. The algorithm as implemented in LAPACK is given in232

Algorithm 1, and can be summarized as follows.233

Two orthogonal matrices, U1 and V1, are applied on the left and right side, re-234

spectively, of an m × n matrix A to reduce it to bidiagonal form, B = UT1 AV1. The235
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Algorithm 1 LAPACK implementation of bidiagonal reduction. In the {·}··· nota-
tion, only the indicated column or row should be computed, not the entire matrix
product. yi and xi are computed as a series of matrix-vector products by distribut-
ing vi and ui. In LAPACK, Householder vectors representing V and U overwrite A.
Auxiliary function householder(x) (dlarfg in LAPACK) returns τ and v that define
a Householder reflector Hi, and the updated vector x̂ = Hix = [ ±‖x‖ , 0, . . . , 0 ]T .

// bidiagonal reduction (A is m× n; assumes m ≥ n and n divisible by nb)
function gebrd( A )

for i = 1 : n by nb
(V ; Y ; X; U) = labrd( Ai:m, i:n )
Ai+nb:m, i+nb:n = Ai+nb:m, i+nb:n − V Y T −XUT

end
end function

// panel of bidiagonal reduction (A is m× n; assumes m ≥ n)
function labrd( A )

V , Y , X, U initially empty
for i = 1 : nb

// compute column i of A(i−1) using (4),
// then compute Hi to eliminate below diagonal
Ai:m, i =

{
A− Vi−1Y Ti−1 −Xi−1U

T
i−1
}
i:m, i

(τi; vi; Ai:m, i) = householder( Ai:m, i )
yi = τiA

T
(i−1)vi = τi(A− Vi−1Y Ti−1 −Xi−1U

T
i−1)T vi

// compute row i of HiA(i−1) using (2) and (4),
// then compute Gi to eliminate right of super-diagonal
Ai, i+1:n =

{
A− ViY Ti −Xi−1U

T
i−1
}
i, i+1:n

(πi; ui; Ai, i+1:n) = householder( Ai, i+1:n )
xi = πi(A(i−1) − viyTi )ui = πi(A− ViY Ti −Xi−1U

T
i−1)ui

end
return (Vnb+1:m,1:nb

;Ynb+1:n,1:nb
;Xnb+1:m,1:nb

;Unb+1:n,1:nb
)

end function

matrices U1 and V1 are represented as products of elementary Householder reflectors:236

U1 = H1H2 . . . Hn and V1 = G1G2 . . . Gn−1.237

Each Hi and Gi has the form238

Hi = I − τivivTi and Gi = I − πiuiuTi ,239

where τi and πi are scalars, and vi and ui are vectors. Hi eliminates elements below240

the diagonal in column i, while Gi eliminates elements right of the superdiagonal in241

row i. Let A(i−1) be the reduced matrix A after step i − 1. Applying Hi on the left242

yields243

HiA(i−1) = (I − τivivTi )A(i−1) = A(i−1) − viyTi ,(2)244245
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while applying both Hi and Gi yields246

A(i) = HiA(i−1)Gi = (I − τivivTi )A(i−1)(I − πiuiuTi )

= A(i−1) − viyTi − xiuTi ,
(3)247

248

where yi = τiA
T
(i−1)vi and xi = πi(A(i−1) − viyTi )ui. Blocking together i applications249

of (3), we obtain250

Ai = Hi · · ·H1AG1 · · ·Gi = A− ViY Ti −XiU
T
i ,(4)251252

where Ui =
[
u1, . . . , ui

]
, and similarly with Vi, Xi, and Yi. Note that it is possible to253

update just part of A, namely the i-th column and row of A, in order to proceed with254

the computation of the Hi and Gi. Thus, a delayed update is possible, but at each255

step we still compute two matrix-vector products involving the entire trailing matrix256

of A. As a result, if m = n, the entire factorization takes approximately 8
3n

3 flops,257

with half of the operations in Level 2 BLAS (matrix-vector products), while the other258

half are in Level 3 BLAS.259

5.2. QR Iteration. After the bidiagonal reduction, LAPACK solves the bidi-260

agonal SVD using QR iteration, similar to EISPACK and LINPACK, or using divide261

and conquer, which is described later in section 7. The original QR iteration algo-262

rithm computed singular values to high absolute accuracy, meaning small singular263

values might be inaccurate. Demmel and Kahan [31] derived the implicit zero-shift264

QR iteration algorithm and proved that it computes all singular values to high relative265

accuracy; this is used as needed for accuracy by LAPACK when computing singular266

vectors. Accuracy is discussed further in section 13.267

The qd (German: quotienten-differenzen) [100] and differential qd (dqd) [101]268

algorithms proposed by Rutishauser actually predate QR iteration and are among the269

first algorithms for computing singular values for modern computers. Subsequent to270

Demmel and Kahan’s work, Fernando and Parlett [48] derived a shifted version called271

dqds that allowed using shifts to maintain fast convergence, while still maintaining272

high relative accuracy. This is used by LAPACK when computing singular values273

only (no vectors). Quite a few more variants of qd can be derived [97].274

5.3. Computation of Singular Vectors. Normally, LAPACK stores orthog-275

onal matrices in an implicit fashion as a sequence of Householder reflectors, each276

represented by a scalar τi and vector ui. For QR iteration to accumulate the singular277

vectors, it first generates U1 and V1 explicitly (using dorgbr); this is essentially ap-278

plying block Householder reflectors to an identity matrix, as a series of Level 3 BLAS279

operations.280

The QR iteration algorithm then updates U1 and V1 by applying the Givens281

rotations used to reduce the bidiagonal matrix to diagonal. This is implemented in a282

Level 2 BLAS-like fashion, where an entire sequence of n Givens rotations is applied283

to update the entire U and V matrices (using dlasr). Recently, Van Zee et al. [113]284

developed a Level 3 BLAS-like implementation of applying Givens rotations, which285

they found made the SVD using QR iteration competitive with the SVD using divide286

and conquer (discussed in section 7).287

5.4. Initial QR Factorization. If m� n, it is more efficient to first perform a288

QR factorization of A, and then compute the SVD of the n-by-n matrix R, since if A =289

QR and R = UΣV T , then the SVD of A is given by A = (QU)ΣV T . Similarly, if m�290
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n, it is more efficient to first perform an LQ factorization of A. Chan [23] analyzed this291

optimization, showing that it reduces the number of floating point operations. The292

operation counts are given in Figure 5, with the theoretical crossover points based on293

flops. Figure 6 plots the operation count as the ratio m :n increases, illustrating the294

large savings as a matrix becomes taller. The results for tall matrices in Figures 8(c)295

to 8(f) show that LAPACK achieves significant speedups, such as 120× compared296

with EISPACK. This is a result of the reduced operation count and that much of the297

computation is done via Level 3 BLAS in QR factorization, followed by a relatively298

small square SVD problem.299

QR iteration, D&C,

no vectors with vectors with vectors

Unoptimized 4mn2 − 4
3n

3 12mn2 + 16
3 n

3 8mn2 + 4
3n

3

With initial QR 2mn2 + 2n3 6mn2 + 16n3 6mn2 + 8n3

Theoretical crossover m ≥ 5
3n m ≥ 16

9 n m ≥ 10
3 n

Fig. 5. Floating point operation counts.

1 2 4 6 8 10
m/n aspect ratio

0n3

10n3

20n3

30n3

40n3

o
p
e
ra

ti
o
n
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o
u
n
t

no vectors

1 2 4 6 8 10
m/n aspect ratio

0n3

30n3

60n3

90n3

120n3 QR iter., vectors

1 2 4 6 8 10
m/n aspect ratio

0n3

30n3

60n3

90n3

120n3 D&C, vectors

unoptimized

with initial QR

crossover

Fig. 6. Operation counts as ratio m : n increases (i.e., matrix gets taller), showing crossover
where doing initial QR factorization is beneficial.

Since bidiagonal divide and conquer (D&C, discussed in section 7) always operates300

on a square matrix, doing an initial QR factorization with D&C results in less of an301

improvement than with QR iteration. Asymptotically, as the ratio m : n → inf, the302

initial QR factorization, generating Q, and multiplying by Q are responsible for most303

of the cost, as shown by the profile of the 1000:1 case in Figure 7. As a result, using304

QR iteration or divide and conquer yield the same performance for very tall-skinny305

matrices. The crossover points in Figure 5 are based solely on flop counts. Since doing306

an initial QR also shifts operations from Level 2 to Level 3 BLAS, the crossovers are307

ideally tunable parameters, for instance by LAPACK’s ilaenv tuning function.308

5.5. Results. An overview of all the phases in the complete SVD is given in309

Algorithm 2, with a profile of the time spent in each phase in Figure 7. For the310

square, no vectors case, we see that the bidiagonal reduction (blue with \\ hatching)311

takes almost the entire time, while QR iteration (green, no hatching) takes very little312

time, as expected since QR iteration is O(n2) while the bidiagonal reduction costs313
8
3n

3 flops. When computing singular vectors, the QR iteration time becomes nearly314

half of the overall time, due to accumulating U = U1U2 and V = V1V2. Generating315

the explicit U1 and V1 matrices (orange with \\\\ hatching) is a small portion of the316

time, even though together they have nominally the same operation count ( 8
3n

3) as317
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Algorithm 2 Overview of SVD algorithm using QR iteration (dgesvd) for m ≥ n.
Accumulating U = U1U2 and V = V1V2 occurs during QR iteration. † Marked lines
are required only when computing singular vectors.

Description

if m� n then
QR = A (QR factorization)
Â = R

else
Â = A

end
U1BV

T
1 = Â (bidiagonalization)

generate explicit U1

generate explicit V1
U2ΣV T2 = B (QR iteration)
U = U1U2

V = V1V2
if m� n then

generate explicit Q
U = QU

end

Total cost (with vectors †)
Total cost (no vectors)

LAPACK Cost Cost
Routine for m� n

dgeqrf 2mn2 − 2
3n

3

dgebrd 4mn2 − 4
3n

3 8
3n

3

dorgbr † 2mn2 − 2
3n

3 4
3n

3

dorgbr † 4
3n

3 4
3n

3

dbdsqr O(n2) O(n2)
" " † 6mn2 6n3

" " † 6n3 6n3

dorgqr † 2mn2 − 2
3n

3

dgemm † 2mn2

12mn2 + 16
3 n

3 6mn2 + 16n3

4mn2 − 4
3n

3 2mn2 + 2n3

m =n
no vectors

m =3n m =n
with vectors

m =3n
0

50

100

150

200

250

300

ti
m

e
 (

se
c)

LAPACK dgesvd, n =10000

m =1000n
no vectors

m =1000n
with vectors

0

10

20

30

40

ti
m

e
 (

se
c)

LAPACK dgesvd, 900000 × 900

U =QU
generate Q

bidiagonal QR iter.

generate U1 , V1

reduce to bidiagonal

QR factorization

Fig. 7. Profile of LAPACK SVD. Left is 10000 × 10000 and 30000 × 10000 problem. QR
factorization reduces the 30000× 10000 matrix to a 10000× 10000 matrix. Right is a 900000× 900
problem, where reduction to bidiagonal and QR iteration become vanishingly small.

the bidiagonal reduction. This exemplifies the performance difference between Level 2318

BLAS, in the bidiagonal reduction, and Level 3 BLAS, in generating U1 and V1.319

The tall 3:1 matrix first does an initial QR factorization, resulting in a square R320

matrix the same size as the square case (10000× 10000). Thus the profile for the 3:1321

case simply adds the QR factorization, generating Q, and multiplying U = QÛ steps322

to the square case. For the tall 1000:1 matrix, the initial QR factorization dominates323

the overall time, with the subsequent bidiagonal reduction and QR iteration becoming324

vanishingly small. When vectors are computed, generating Q and multiplying U =325

QÛ add significant time, while generating U1 and V1 and updating U = U1U2 and326
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(f) tall 1000:1, with vectors
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Fig. 8. Comparison of LAPACK, LINPACK, and EISPACK. Solid lines represent 16-core
runs; dashed lines represent single core runs.

V = V1V2 during QR iteration are also vanishingly small. Thus for very tall-skinny327

matrices, the performance is dominated by operations rich in Level 3 BLAS.328

Figure 8 shows the speedup that LAPACK achieves compared with EISPACK.329

Even a single-core implementation may achieve over 5× speedup. But the real poten-330

tial is shown when using multiple cores (16 in this case)—a 45× speedup is possible for331

square matrices and over 350× speedup for tall matrices with a 1000:1 row-to-column332

ratio. The square, no vectors case in Figure 8(a) is dominated by the bidiagonalization,333

as the subsequent bidiagonal SVD is O(n2). With Level 3 BLAS being significantly334

faster than Level 2 BLAS, and half the operations in Level 2 BLAS, we expect the335
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bidiagonalization to be about 2× the speed of Level 2 BLAS. Modeling the time as336

t =
4n3

3r2
+

4n3

3r3
337

with the Level 2 BLAS rate as r2 = 13.4 Gflop/s and the Level 3 BLAS rate as338

r3 = 315 Gflop/s (from Figure 3), we obtain a theoretical bound of 25.7 Gflop/s.339

This yields a speedup of 34.7× over EISPACK—exactly what we see for LAPACK in340

Figure 8(a). When computing singular vectors, LAPACK achieves a higher speedup,341

up to 45.3×, reflecting that computation of U1 and V1 uses Level 3 BLAS. The tall342

matrix cases achieve even higher speedups because much of the work is done in the343

initial QR factorization.344

5.6. Level 2.5 BLAS Implementation. Since the bidiagonalization perfor-345

mance is limited by the Level 2 BLAS operations, Howell et al. [69] sought to optimize346

these operations by observing that several Level 2 operations can be done together,347

thus reducing memory transfers by keeping data in cache. This technique of fus-348

ing several Level 2 operations together was called the Level 2.5 BLAS [69, 17]. For349

instance, to compute350

x = βAT y + z,351

w = αAx,352353

known as dgemvt, A is partitioned into block columns as354

A =
[
A1 A2 · · · Ak

]
,355

where each Ai has b columns, and is sized such that it fits into cache. Correspondingly,356

x and z are partitioned as357

x =

x1...
xk

 , z =

z1...
zk

 .358

359

The dgemvt loops over the Ai blocks, performing two dgemv operations with each360

block as shown in Algorithm 3. Keeping each Ai in cache for the second dgemv cuts361

main memory traffic roughly in half, thereby increasing the potential performance.362

With some algebraic manipulation, the two products yi = τiA
T vi and xi = πiAui363

from the bidiagonalization panel can be computed together using this dgemvt. Tests364

that Howell et al. ran showed a 1.2–1.3× speedup over the existing LAPACK im-365

plementation for the bidiagonalization. Van Zee et al. [114] further analyzed these366

operations and fused them at the register level, reusing data in registers to also avoid367

unnecessary accesses to cache memory, showing potential further speedups. So far,368

these results have been for single-threaded implementations, and the speedups do not369

carry over when using multithreaded BLAS. If optimized Level 2.5 BLAS become370

available for multicore processors, this may become a viable approach, but we don’t371

pursue this further here.372

6. ScaLAPACK Implementation. To use a distributed-memory computer,373

the Scalable Linear Algebra Package (ScaLAPACK) [16] extends LAPACK by dis-374

tributing the matrices in a 2D block cyclic layout using the prescribed block size nb375

and the pair of parameters (p, q) to define a p-by-q process grid, as illustrated in Fig-376

ure 9. ScaLAPACK parallelizes the LAPACK subroutines using the parallel version of377
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Algorithm 3 Pseudocode for dgemvt

w = 0
for i = 1 : k

xi = βATi xi + zi // dgemv, loads Ai into cache
w = αAixi + w // dgemv, reuses Ai in cache

end

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

(a) Global view of matrix. Each
square is an nb × nb block, colored by
process that it is distributed to in (b).

1,1 1,2 1,31,4 1,5 1,6

2,1 2,2 2,32,4 2,5 2,6

3,1 3,2 3,33,4 3,5 3,6

4,1 4,2 4,34,4 4,5 4,6

process 0 process 1 process 2

process 3 process 4 process 5

(b) Local view of matrix. Each local submatrix
is stored in column-major order.

Fig. 9. 2D block cyclic distribution of the matrix A using 2-by-3 processor grid.

BLAS (PBLAS) and the Basic Linear Algebra Communication Subprograms (BLACS)378

for the interprocess communication, implemented on top of the Message Passing In-379

terface (MPI) [93]. For instance, to bidiagonalize the input matrix for computing the380

SVD [24], dgebrd of LAPACK uses the Level 2 BLAS matrix-vector multiply (dgemv)381

to perform about half of its total flops. Now, to perform the matrix-vector multiply382

on a distributed-memory computer, in pdgemv of PBLAS, each process first gathers383

all the required nonlocal block rows of the input vector from other processes. After384

the completion of this initial interprocess communication, each process independently385

computes the matrix-vector multiplication with the local submatrix. Finally, each386

process computes the local part of the output vector by gathering and accumulating387

the partial results from the other processes in the same row of the process grid. Hence,388

ScaLAPACK follows the fork-join parallel programming paradigm and is designed for389

the weak parallel scalability of the algorithm. Since PBLAS performs most of its local390

computation using BLAS, ScaLAPACK can exploit a NUMA (non-uniform memory391

access) architecture using a threaded version of BLAS.392

Figure 10 compares the performance of ScaLAPACK’s pdgesvd with the per-393

formance of LAPACK’s threaded dgesvd for computing the SVD on our 16-core394

shared-memory computer. While, from ScaLAPACK’s perspective, each MPI pro-395

cess has its own memory and explicit messages are passed between MPI processes, on396

a shared-memory computer the MPI implementation uses an efficient shared-memory397

communication layer to copy data. See section 11 for ScaLAPACK’s performance on398

a distributed memory computer. The performance of pdgesvd was obtained using the399

tester included in ScaLAPACK version 2.0.2, which was linked with ScaLAPACK and400

the sequential LAPACK/BLAS of Intel MKL. We tested the performance of pdgesvd401
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Fig. 10. Comparison of ScaLAPACK to LAPACK.

using 8-by-2, 4-by-4, and 2-by-8 processor grids and block sizes of 32, 64, and 128. The402

figure shows the optimal performance among these parameter configurations. We see403

that the performance of pdgesvd was often lower than the performance of LAPACK’s404

dgesvd. This is mainly because several optimizations have not been implemented in405

pdgesvd. For instance, for a tall-skinny matrix (m � n), dgesvd computes the QR406

factorization of the input matrix A, followed by SVD of the resulting upper-triangular407

matrix, as described in subsection 5.4. For a tall-skinny matrix A, this greatly reduces408

the number of required floating point operations, compared to that of pdgesvd, which409

directly computes the SVD of the input matrix. As a result, for computing the SVD410

of a tall-skinny matrix, pdgesvd was slower than dgesvd.411

After the bidiagonalization of the input matrix A, pdgesvd computes the SVD412

of the bidiagonal matrix using dbdsqr of LAPACK. If only the singular values are413

requested, pdgesvd typically spends an insignificant amount of time in dbdsqr. How-414
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Fig. 11. Profile of ScaLAPACK reference implementation with nb = 32 and (p, q) = (4, 4).

ever, if the singular vectors are needed, our performance profile in Figure 11 using415

the reference implementation of pdgesvd revealed that the execution time can be416

dominated by the time to compute the singular vectors of the bidiagonal matrix. The417

reason is that pdgesvd has all the MPI processes in the same column or row of the418

processor grid redundantly compute the left or right singular vectors, respectively,419

of the bidiagonal matrix, that are distributed to the process group. Compared with420

pdgesvd, LAPACK’s dgesvd obtained higher performance by using dbdsqr with mul-421

tithreaded BLAS. The reference implementation of pdgesvd obtained about the same422

performance as that of MKL’s pdgesvd when linked to MKL BLAS and LAPACK.423

Finally, ScaLAPACK supports only the QR iteration algorithm for computing the424

SVD of the bidiagonal matrix, using LAPACK’s dbdsqr, while as shown in section 7,425

the divide and conquer process in LAPACK’s dbdsdc may be faster than dbdsqr.426

7. Singular Vectors from the Divide and Conquer Process. For solv-427

ing the bidiagonal SVD subproblem, QR iteration and the related qd algorithms428

may take as much as 80% of the total time when computing singular vectors of a429

dense matrix [56]. Gu and Eisenstat introduced the bidiagonal divide and conquer430

(D&C) [57, 59] algorithm, which may be an order of magnitude faster on some ma-431

chines [56]. The development of D&C was based on prior work focusing on computing432

eigenvalues and singular values [4, 25, 52, 58, 74].433

The divide and conquer process includes a matrix partitioning step that introduces434

two large submatrices. The splitting can either occur with “the middle” row [4, 56]435

or column [57]:436

B =

 B1 0
αkek βke1

0 B2

 or B =

[
B1 αkek 0
0 βke1 B2

]
.437

Note that after the partitioning, B1 might not be square, even though B was. The438

fix is to append a zero row or column [57] to obtain the desired shape.439

In either row or column case, the process continues recursively to obtain the SVD440

of B1 and B2, which can be used to decompose B as:441

B = QrMrWr or B = QcMcWc,442

with orthogonal matrices Qr, Wr, Qc, and Wc. Mr and Mc have a special structure:443

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 17

only the diagonal and either a single row or column is non-zero, respectively:444

Mr =


z1 z2 . . . zn

d2
. . .

dn

 or Mc =


z1
z2 d2
...

. . .

zn dn

 .445

Trivially, because matrices Qr, Wr, Qc, and Wc are orthogonal, B and Mr or Mc446

share singular values σi. A number of theorems and lemmas [74, 57] lead to a fast447

and numerically (relatively) stable procedure for computing the SVD of Mr or Mc as448

UmΣmV
T
m . The interlacing property sets the bounds and ranges for σi:449

0 ≡ d1 < σ1 < d2 < . . . < dn < σn < dn + ‖z‖2450

and the secular equation:451

f(σ) = 1 +

n∑
k=1

z2k
d2k − σ2

= 0452

is used for computing the values σi with a specifically crafted root finder that ac-453

counts for floating-point vagaries of past and modern computing systems [80]. The454

corresponding formulas for the left singular vectors Um:455

(5) ui =

[
z1

d21 − σ2
i

, . . . ,
zn

d2n − σ2
i

]T/√√√√ n∑
k=1

z2k
(d2k − σ2

i )2
,456

and the right singular vectors Vm:457

(6) vi =

[
−1,

d2z2
d22 − σ2

i

, . . . ,
dnzn
d2n − σ2

i

]T/√√√√1 +

n∑
k=2

(dkzk)2

(d2k − σ2
i )2

458

indicate that there could be accuracy problems for the components of either set of459

vectors, even though the computed singular values σ̂ are a good approximation of the460

exact singular values σ, because the ratios zk/(d
2
k−σ2

i ) in (5) and (6) can be inaccurate.461

The trick is not to use the same Mr or Mc matrices that were used to compute the462

approximate singular values σ̂i, but instead to construct new M̂r or M̂c based on σ̂i463

that improve the accuracy of expressions in Equations (5) and (6) [80, 59]. This can464

dramatically diminish the departure from orthogonality for both sets of vectors.465

After computing Um and Vm, the SVD of B is computed by multiplying QrUm466

and V TmWr. This is done for each B matrix in the recursion tree, from the leaf nodes467

to the root. Most of the cost of D&C is in these matrix multiplications, which are468

Level 3 BLAS. In particular, most of the cost is at the higher levels of the recursion469

tree, near the root node, as the matrices get larger.470

Li et al. [81] recently showed that D&C internally generates matrices with struc-471

ture that can be exploited. The matrices Um and Vm, that are the singular vectors472

of M , have low-rank off-diagonal blocks that can be efficiently compressed with hi-473

erarchically semiseparable (HSS) matrices. Using HSS improves the speed of matrix474

multiplies, reducing the cost of the bidiagonal D&C step from O(n3) to O(n2r), where475

r depends on the matrix but usually r � n for large n. Li et al. showed over 3×476

improvement compared to Intel MKL for the bidiagonal D&C step on large matrices.477
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Algorithm 4 Overview of SVD algorithm using divide and conquer (dgesdd) for
m ≥ n. Generating explicit U2 and V2 occurs during D&C. † Marked lines are
required only when computing singular vectors.

Description

if m� n then
QR = A (QR factorization)
Â = R

else
Â = A

end
U1BV

T
1 = Â (bidiagonalization)

U2ΣV T2 = B (D&C)
generate explicit U2

generate explicit V2
U = U1U2

V = V1V2
if m� n then

generate explicit Q
U = QU

end

Total cost (with vectors †)
Total cost (no vectors)

LAPACK Cost Cost
Routine for m� n

dgeqrf 2mn2 − 2
3n

3

dgebrd 4mn2 − 4
3n

3 8
3n

3

dbdsdc O(n2) O(n2)
" " † 4

3n
3 4

3n
3

" " † 4
3n

3 4
3n

3

dormbr † 4mn2 − 2n3 2n3

dormbr † 2n3 2n3

dorgqr † 2mn2 − 2
3n

3

dgemm † 2mn2

8mn2 + 4
3n

3 6mn2 + 8n3

4mn2 − 4
3n

3 2mn2 + 2n3

D&C restructures the SVD algorithm somewhat, as shown in Algorithm 4, com-478

pared with the QR iteration version in Algorithm 2. D&C directly computes the SVD479

of the bidiagonal matrix B = U2ΣV2, and then multiplies U = U1U2 and V = V1V2480

afterwards (using dormbr), while with QR iteration, LAPACK first generates U1 and481

V1 (using dorgbr), then accumulates U2 and V2 onto U1 and V1 during QR iteration.482

The profile in Figure 12 shows this difference in the bidiagonal QR iteration (green,483

no hatching) vs. D&C steps (green, + hatching); and the generate U1, V1 (orange, \\\\484

hatching) vs. U = U1U2, V = V1V2 (orange, // hatching) steps. The main advantage485

of the divide and conquer approach is that it saves nearly half the flops compared to486

QR iteration when computing singular vectors. For a square matrix, D&C is ≈ 9n3487

flops, compared to ≈ 17n3 for QR iteration (Figure 5). We can observe this as a488

reduction in time for the steps mentioned above in Figure 12.489

Figure 13 shows the relative speedup over EISPACK when using a modern mul-490

ticore system, for both the divide and conquer (D&C) and QR iteration algorithms.491

We see that for square and tall 3:1 matrices, D&C is consistently faster than QR492

iteration. Because of the initial QR factorization (described in subsection 5.4) the493

advantage decreases as m grows relative to n, so that for a very tall matrix, both494

methods are nearly the same time, as seen by the 1000:1 case in Figure 13(c). It may495

be safely assumed that D&C is superior to the QR iteration algorithm for most sce-496

narios, and the worst case is when both perform at the same speed. When computing497

only singular values, not singular vectors, LAPACK always uses QR iteration, since498

in that case both bidiagonal QR iteration and D&C are O(n2), while the overall time499

will be dominated by the O(n3) reduction to bidiagonal.500
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QR factorization

Fig. 12. Profile comparing LAPACK QR iteration (dgesvd) and divide and conquer (dgesdd)
algorithms. For QR iteration, it generates U1 and V1, then updates those with U2 and V2 during
QR iteration. Divide and conquer generates U2 and V2, then multiplies Û = U1U2 and V = V1V2
afterwards.

0k 4k 8k 12k 16k 20k

columns (matrix size N×N)

0

10

20

30

40

50

60

sp
e
e
d
u
p
 o

v
e
r

E
IS

P
A

C
K

(a) square, with vectors

0k 4k 8k 12k

columns (matrix size 3N×N)

0

20

40

60

80

100

120

sp
e
e
d
u
p
 o

v
e
r

E
IS

P
A

C
K

(b) tall, 3:1, with vectors
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(c) tall, 1000:1, with vectors
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Fig. 13. Comparison of LAPACK divide and conquer (D&C) to QR iteration. Solid lines
represent 16-core runs; dashed lines represent single core runs.

8. Bisection and Inverse Iteration. LAPACK 3.6.0 introduced a bisection501

method (dgesvdx) to compute all or a subset of the singular values and vectors [86].502

Similar to QR iteration (dgesvd) and divide and conquer (dgesdd), it first reduces503

the matrix A to bidiagonal form B. Then it computes the singular values of B504

based on bisection and the corresponding singular vectors by inverse iteration, using505

dbdsvdx. For computing the SVD of B, it converts the bidiagonal matrix B to the506
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Golub-Kahan [53] symmetric tridiagonal matrix T of dimension 2n,507

(7) T = tridiag

 b1,1 b1,2 b2,2 b2,3 . . . bn−1,n bn,n
0 0 0 0 0 . . . 0 0

b1,1 b1,2 b2,2 b2,3 . . . bn−1,n bn,n

 ,508

whose eigenpairs are (±σj , zj), where σj is the j-th singular value of B. Elements of509

uj and vj , the corresponding left and right singular vectors of B, are interleaved in the510

eigenvector as zj = [v1,j ,−u1,j , v2,j ,−u2,j , . . . , vn,j ,−un,j ]/
√

2. Instead of developing511

new subroutines, dbdsvdx relies on the subroutines dstebz and dstein that compute512

the eigenvalues and eigenvectors, respectively, of the symmetric tridiagonal matrix513

based on bisection and inverse iteration.514

The bisection algorithm implemented in dstebz uses Sylvester’s inertia theorem515

to compute the number of eigenvalues within a certain interval. In particular, the516

algorithm relies on the LDLT factorization of the matrix T , where L is a lower-517

triangular matrix with unit diagonal and D is a diagonal matrix. For the symmetric518

tridiagonal matrix T , the diagonal matrix D can be computed with O(n) flops based519

on the simple recurrence formula,520

di,i = (ti,i − s)−
t2i−1,i
di−1,i−1

.521

Given the LDLT factorization of the matrix T − sI for a certain shift value s, the522

number of negative elements of D is equal to the number of eigenvalues of T smaller523

than s. In other words, given the LDLT factorizations of two shifted matrices, T−s1I524

and T − s2I, with s1 < s2, if there are n1 and n2 negative entries in their respective525

diagonal matrices, then there are n2 − n1 eigenvalues in the interval (s1, s2]. In526

addition, for the tridiagonal matrix, it can be shown that the LDLT factorization527

without pivoting can be reliably used for counting the number of eigenvalues [34, 75].528

Based on these observations, dstebz keeps bisecting the initial interval containing529

all the desired eigenvalues until it finds a small enough interval for each eigenvalue530

such that the computed eigenvalue has the desired accuracy. Each bisection improves531

the accuracy of the eigenvalue by one bit, hence the iteration converges linearly. An532

advantage of bisection is that it can be naturally adapted to compute a subset of533

eigenvalues, which was one of the motivations for introducing dgesvdx [86].534

Given the eigenvalues computed by dstebz, dstein computes the correspond-535

ing eigenvectors based on inverse iteration. Namely, for each computed eigenvalue536

λ, it first computes the LU factorization of the shifted matrix A − λI with partial537

pivoting. Then the corresponding eigenvector of λ is computed by inverse iteration,538

with a starting vector whose entries are random numbers uniformly distributed in539

the interval (−1, 1). Given an accurate eigenvalue approximation, inverse iteration540

converges quickly [72] (e.g., dstein sets the maximum number of iterations to be541

five). However, when the eigenvalues are close to each other, inverse iteration may542

fail to generate orthogonal eigenvectors. To recover the orthogonality among such543

vectors, dstein reorthogonalizes the vectors based on the modified Gram-Schmidt544

procedure. Unfortunately, when the computed eigenvectors are nearly dependent, the545

eigenvectors may not be accurate after the reorthogonalization [33]. In addition, if546

many of the eigenvalues are close to each other, this reorthogonalization cost could547

become significant with O(k2n) flops for computing k eigenvectors in the worst case.548

As a result, in our experiments shown in Figure 14, we saw that when computing549

all the singular values and vectors, bisection can be significantly slower than other550
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(a) square, with vectors (right graph is zoom of left graph)

(b) tall, 3:1, with vectors (right graph is zoom of left graph)
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(c) tall, 1000:1, with vectors
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Fig. 14. Comparison of bisection with QR iteration. Solid lines represent 16-core runs; dashed
lines represent single core runs.

methods. Even with 16 threads available, it is slower than the single-threaded QR551

iteration (dashed line). Bisection and inverse iteration are embarrassingly parallel—552

each eigenvalue and eigenvector may be computed independently—however, LAPACK553

does not currently include such explicit parallelization, instead primarily relying on554

parallelism within the BLAS, which is not advantageous in this case. On the other555

hand, as seen in Figure 15, when only a subset of k singular values and vectors are556

computed, we observed that bisection and inverse iteration (non-hatched bars) can be557

up to 2.4× faster than divide and conquer (D&C, black bar and dashed line), which558

must compute all the singular values and vectors. Depending on the matrix type,559

when computing k = 400 or k = 600 vectors out of n = 3000, it becomes faster to560

simply compute all the vectors using D&C. The exception here is the cluster, with561

one singular σ1 = 1 and all other σi = 1/κ. In that case, computing any k > 1 vectors562
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Fig. 15. Results for computing k singular vectors of n × n matrix, n = 3000. Dashed lines
shows D&C performance for computing all vectors. Number on top shows time for bars that exceed
graph’s height.

was as slow as computing all vectors with bisection. See section 2 for a description of563

the matrices.564

9. Multiple Relatively Robust Representations (MRRR). MRRR [35,565

36] was developed to improve both the performance and accuracy of inverse iteration.566

Analysis has shown that MRRR can compute the numerically orthogonal eigenvectors567

of a symmetric tridiagonal matrix in O(n2) flops. At the time of preparing this568

paper, there was no publicly available software package that implements MRRR for569

computing the SVD of a general matrix, but there were at least two software packages570

that compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using571

MRRR: dstemr of LAPACK [38], and dstexr due to Willems and Lang [118], which572

is tailored toward the tridiagonal matrix with zeros on the diagonal, as used in (7) for573

the SVD. For our experiments, we replaced the symmetric tridiagonal solver (dstevx)574

used in dgesvdx with dstexr. Performance with dstemr was generally similar but575

somewhat slower.576

One of the main drawbacks of inverse iteration is that, for the eigenvalues with577

small relative gaps, the computed eigenvectors may not be orthogonal to each other.578

Hence, reorthogonalization is needed. This increases the computational cost and579

potentially leads to loss of accuracy in the computed eigenvectors. To address these580

issues, MRRR combines several techniques.581

First, though the eigenvectors are invariant under a diagonal shift, we can increase582

their relative gaps by diagonally shifting the matrix. For instance, let us define the583

relative gap between two eigenvalues λi and λj to be
|λi−λj |

max(|λi|,|λj |) . Then, we can584

increase their relative gap by a factor of |λ|
|λ−τ | when we diagonally shift the matrix585

using a shift τ that is close to λ.586

Hence, before applying inverse iteration, MRRR recursively refines the approx-587

imation to the eigenvalues and applies appropriate diagonal shifts to a cluster of588
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eigenvalues such that it can guarantee large enough relative gaps between all the589

eigenvalues of T to maintain the orthogonality among the computed eigenvectors590

without reorthogonalization. For instance, given two approximate eigenvalues λi and591

λj , inverse iteration is used to compute their respective eigenvectors vi and vj with592

small residual norms, i.e.,593

|Tvk − λvk| = O(nε |T |) for k = i and j.594

Then, according to [37, 38], a realistic bound on their orthogonality error is given by595 ∣∣vTi vj∣∣ = O

(
nε(|λi|+ |λj |)
|λi − λj |

)
.596

Therefore, if the gap |λi − λj | is of the same order as the eigenvalues, their eigenvectors597

are numerically orthogonal, i.e.,
∣∣vTi vj∣∣ = O(nε).598

There are several parameters that can be tuned to improve the performance [38],599

including the accuracy of the eigenvalue approximation computed at each step and600

the choice of the algorithm for computing the approximation (e.g., bisection, QR601

iteration, or Rayleigh quotient correction).602

Second, while computing the eigenvalues (e.g., applying the diagonal shift), a603

small relative roundoff error in the entry of the tridiagonal matrix could result in604

a large relative error in the computed eigenvalues, especially in those with small605

magnitudes. To preserve the relatively high accuracy of the computed eigenvalues,606

MRRR stores the intermediate matrices in particular representations, referred to as607

the Multiple Relatively Robust Representation (MRRR) of the matrices. For instance,608

it has been shown that the LDLT representation of the tridiagonal matrix T , without609

pivoting, is relatively robust, even with the presence of the element growth [31].610

Hence, MRRR stores the sequence of intermediate matrices with different shifts in611

their LDLT forms.612

Third, for an eigenvalue with a small relative gap, the cost of inverse iteration613

may be high, requiring a few iterations to obtain the eigenvector with a small relative614

residual norm. Fortunately, there is at least one starting vector with which inverse615

iteration converges in one iteration. For example, when the i-th column of (T −λI)−1616

has the largest column norm, then with the canonical vector ei as the starting vector,617

one step of inverse iteration computes the approximate eigenvector x such that618

|Tx− λx| ≤
√
n
∣∣λ− λ̄∣∣ ,619

where λ̄ is the exact eigenvalue [72]. Hence, if the eigenvalue is computed to a high620

relative accuracy,621 ∣∣λ− λ̄∣∣ = O(ε
∣∣λ̄∣∣),622

(e.g., using bisection with O(n) flops), then the computed eigenpair obtains a small623

relative residual norm,624

|Tx− λx| = O(nε
∣∣λ̄∣∣).625

There is an algorithm to find the column of (T − λI)−1 with largest norm with626

O(n) flops [98]. In addition, if a twisted factorization is used to find the starting627

vector, then it can be shown that the computed eigenpairs have small residual norm628

with respect to the original matrix T [36, 37]. The twisted factorization must be629

carefully computed for T with a zero diagonal because the leading dimension of an630

odd dimension is singular. To enhance the numerical stability, dstexr computes a631

block variant of the factorization [118].632
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(b) tall, 3:1, with vectors
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(c) tall, 1000:1, with vectors
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Fig. 16. Comparison of MRRR with QR iteration, divide and conquer, and bisection.

As can be seen in Figure 16, by avoiding the reorthogonalization, MRRR can633

significantly improve the performance of inverse iteration, making MRRR comparable634

to QR iteration. However, divide and conquer is often faster.635

Especially for large matrices, we noticed numerical issues where the backward er-636

ror
∥∥A− UΣV T

∥∥ /(min(m,n) ‖A‖) was large, e.g., 10−4 instead of 10−16 as expected.637

Further tests in section 13 show that, even when the above error is acceptable, MRRR638

has poor relative error for the singular values. Marques and Vasconcelos [86] also ob-639

served numerical issues with the existing MRRR implementation.640

When only a subset of k singular vectors are computed, we observe in Figure 15641

that inverse iteration can be up to 1.6× faster than MRRR for a small number vectors642

(k = 1 or 10). For a larger subset of k = 600 vectors, MRRR can be up to 1.8×643

faster than bisection, but in this case, only for the random entries matrix is MRRR644

significantly faster (1.3×) than computing all the singular vectors with divide and645

conquer. The exception is the cluster matrix, where for k > 1, MRRR is 30× faster646

than bisection, but always slower than using divide and conquer.647

10. MAGMA Implementation for Accelerator Architectures. Accelera-648

tors such as GPUs and the Intel Xeon Phi provide a high degree of parallelism and649

a larger memory bandwidth than traditional multicore CPUs. The MAGMA library650

was developed to address this new architecture, and accelerates most phases of the651

SVD algorithm: reduction to bidiagonal, bidiagonal D&C, and computation of sin-652

gular vectors. For tall-skinny matrices, it also accelerates the initial QR factorization653

and generating Q.654

The most prominent place to start is an accelerated version of the bidiagonal655
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Fig. 17. Profile comparing LAPACK and MAGMA. Most phases are accelerated using the
GPU, except the bidiagonal QR iteration and multiplying U = QÛ . MAGMA 2-stage is described
in section 11.

reduction [109]. We have seen in Figures 7 and 12 that this phase (blue tier with \\656

hatching) takes from 50% to 70% of the time for a square matrix when computing sin-657

gular vectors, and 98% of the time when computing only singular values (no vectors).658

As described in section 5, the bidiagonal reduction has half its flops in Level 2 BLAS659

and half in Level 3 BLAS. Accelerators are known for achieving very high performance660

on compute-intensive, Level 3 BLAS operations. On an NVIDIA K40c GPU, cuBLAS661

achieves 1245 Gflop/s with dgemm, compared with 315 Gflop/s using Intel MKL on662

the multicore CPU. Due to the accelerator’s large memory bandwidth, the memory-663

bound Level 2 BLAS operations are also significantly faster, achieving 45 Gflop/s with664

cuBLAS dgemv, compared with 14 Gflop/s on the multicore CPU. Therefore, both665

the trailing matrix-vector product (dgemv) and the trailing matrix update (dgemm) are666

performed on the accelerator. The small panel operations—constructing Householder667

reflectors—are performed on the CPU, which is better at serial operations with more668

control flow. This incurs CPU-to-GPU communication of a couple of vectors for each669

dgemv operation during the panel. Due to dependencies, the trailing matrix update670

cannot be overlapped with the next panel, as would occur in a one-sided QR factoriza-671

tion. Using the accelerator improves the speed of the bidiagonal reduction by about672

a factor of 2, as shown by the profile in Figure 17 (blue tier with \\ hatching) and673

by the square, no vectors case in Figure 18(a), which is dominated by the bidiagonal674

reduction.675

For the bidiagonal SVD, because D&C is faster than QR iteration, MAGMA676

will inherently achieve a better overall speedup using D&C. We further implement677

an accelerated version of D&C [51]. Since most of the operations in D&C are in678

multiplying QrUm and V TmWr to generate singular vectors, these Level 3 BLAS dgemm679

operations are assigned to the accelerator. The solution of the secular equation to680

find the singular values of Mc is left on the CPU, since it is a complex iterative681

algorithm with limited parallelism, as is computing the singular vectors Um and Vm682

of Mc. These are parallelized on the CPU using OpenMP. MAGMA achieves about683

a 3× speedup for the D&C phase compared to LAPACK.684

For a tall-skinny (m� n) matrix, we accelerate the initial QR factorization [110].685

This is a one-sided factorization, so it doesn’t have the extra dependencies imposed by686

the two-sided reduction to bidiagonal form. Panel operations are within a simple block687

column that doesn’t involve the trailing matrix. The panel factorization is performed688
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(c) tall, 3:1, no vectors
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(d) tall, 3:1, with vectors
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(e) tall, 1000:1, no vectors
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Fig. 18. Comparison of MAGMA with LAPACK.

on the CPU, while the trailing matrix update is performed on the accelerator. The689

accelerator updates the next panel first and sends it back to the CPU so the CPU can690

start factoring it while the accelerator proceeds with the rest of the trailing matrix691

update. This overlap allows the factorization to achieve a substantial portion of the692

peak dgemm speed, up to 970 Gflop/s with an NVIDIA K40c. The QR factorization693

phase was up to 3.6× faster than on the multicore CPU, as seen in Figure 17 (cyan694

tier with × hatching).695

There are three routines that are solely applying block Householder reflectors,696

which are implemented as a series of Level 3 BLAS matrix multiplies entirely on the697

accelerator: (1) for QR iteration, generating explicit U1 and V1 matrices (dorgbr)698

(2) for D&C, multiplying U1U2 and V1V2 (dormbr), and (3) for a tall-skinny matrix,699

generating an explicit Q matrix (dorgqr). These were up all up to 3.3× faster when700
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First stage
Second stage
bulge chasing

Fig. 19. Two-stage technique for the reduction phase.

using the accelerator than when using the multicore CPU. We see in Figure 17 that701

the time for all three of these phases is substantially reduced.702

Overall, MAGMA achieves significant improvements using an accelerator for the703

SVD problem. Figure 18 shows that it is about 2× faster than LAPACK in most704

cases. For the square, vectors case in Figure 18(b), MAGMA’s SVD using D&C is705

2.5× LAPACK’s D&C version, and 2× MAGMA’s SVD using QR iteration, while706

MAGMA’s SVD using QR iteration is only 1.6× LAPACK’s QR iteration version,707

due to both D&C being inherently faster and having an accelerated version of the708

D&C phase. In the tall 1000:1 case in Figure 18(e), MAGMA is 2.6× faster, and709

for some sizes as much as 3.5× faster, than LAPACK, and up to 1000× faster than710

EISPACK, due to the accelerated QR factorization.711

11. Two-stage Reduction. While all the preceding algorithmic and architec-712

tural improvements have greatly increased the speed of the SVD, all these one-stage713

methods remain limited by the memory-bound, Level 2 BLAS operations. To over-714

come the limitations of the one-stage approach, Großer and Lang [78, 55] introduced715

the two-stage bidiagonal reduction, which increases the use of compute-intensive716

Level 3 BLAS operations. The idea behind the two-stage algorithm is to split the717

original one-stage bidiagonal reduction into a compute-intensive phase (first stage)718

and a memory-bound phase (second or bulge-chasing stage), as represented in Fig-719

ure 19. The first stage reduces the original general dense matrix to a band form720

(either upper or lower), and the second stage reduces the band form to bidiagonal721

form (again, either upper or lower). The algorithm maps computational tasks to the722

strengths of the available hardware components, taking care of the data reuse. It also723

uses techniques to mix between dynamic and static scheduling to extract efficiency724

and performance. We implemented two-stage algorithms in the PLASMA library for725

multicore environments [82, 83, 62, 60], the DPLASMA library for distributed envi-726

ronments [19, 18], and the MAGMA library for accelerator architectures [51]. Similar727

two-stage reduction [61] and multi-stage successive band reduction (SBR) [13, 6] to728

tridiagonal have been used for the symmetric eigenvalue problem. A multi-stage ap-729

proach would also work for the bidiagonal reduction, and could be advantageous to730

achieve optimal communication costs at each stage. However, when computing sin-731

gular vectors, each stage adds cost to the back transformation, making a multi-stage732

approach less favorable.733

11.1. First Stage: Compute-Intensive and Efficient Kernels. The first734

stage applies a sequence of blocked Householder transformations to reduce the general735

dense matrix to an upper (for m ≥ n) band matrix. This stage uses compute-intensive736

matrix-multiply kernels that eliminate the memory-bound matrix-vector products737

from the one-stage panel factorization.738

This manuscript is for review purposes only.



28 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

The first stage proceeds by computing a QR factorization of a block column to739

annihilate entries below the diagonal, and updating the trailing matrix, as shown in740

Figure 20. It then computes an LQ factorization of a block row to annihilate entries741

right of the upper bandwidth, and updates the trailing matrix. It repeats factoring742

block columns and block rows, until the entire matrix is brought to band form. The743

width of the block columns and rows is the resulting matrix bandwidth, nb.744

trailing
matrix

} nb

Q
R

 p
an

el

trailing
matrix

LQ panel

Fig. 20. One panel of the first stage reduction to band form.

The PLASMA and DPLASMA implementations use a tile algorithm [1] that745

makes it highly parallel. The matrix is split into tiles of size nb × nb, where nb is the746

matrix bandwidth. Data within each tile is stored contiguously in memory. A panel747

factorization is a series of QR or LQ factorizations done between pairs of tiles; once a748

pair of tiles has been factored, updates on the corresponding portions of the trailing749

matrix can start immediately, before the rest of the panel has finished factoring. This750

unlocks a large amount of parallelism very quickly. The algorithm then proceeds751

as a collection of interdependent tasks that operate on the tile data layout and are752

scheduled in an out-of-order fashion using either the OpenMP runtime for PLASMA753

or the powerful PaRSEC distributed runtime system for DPLASMA.754

The MAGMA implementation uses a standard column-wise layout. It does the755

QR and LQ factorizations on the CPU, copies the block Householder reflectors to the756

accelerator, and updates the trailing matrix on the accelerator. Unlike in the one-757

sided factorizations, it cannot start the next panel until the trailing matrix update is758

finished due to data dependencies.759

The first stage’s cost is 8
3n

3 operations in Level 3 BLAS. As shown in [60], the760

performance of this stage is comparable to the performance of the QR factorization761

and can reach a high percentage of the machine’s peak.762

11.2. Second Stage: Cache-Friendly Computational Kernels. The sec-763

ond stage reduces the band form to the final bidiagonal form using a bulge chasing764

technique. It involves 6nbn
2 operations, so it takes a small percentage of the total765

operations, which decreases with n. The operations are memory bound, but are fused766

together as Level 2.5 BLAS [69] for cache efficiency. We designed the algorithm to767

use fine-grained, memory-aware tasks in an out-of-order, data-flow task-scheduling768

technique that enhances data locality [60, 61].769

The second stage proceeds in a series of sweeps, each sweep bringing one row to770

bidiagonal and chasing the created fill-in elements down to the bottom right of the771

matrix using successive orthogonal transformations. It uses three kernels. Kernel 1772

(yellow task T1,1 in Figure 21(b)) applies a Householder reflector from the right (in-773

dicated by the down arrow) to eliminate a row right of the superdiagonal, which also774

creates a bulge of fill-in beneath the diagonal. It then applies a Householder reflec-775

tor from the left (indicated by the right arrow) to eliminate the first column of the776

bulge below the diagonal, and applies the update to the first block column only. The777
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Fig. 21. Bulge-chasing algorithm. “ o” indicates eliminated elements; “+” indicates fill.
Arrows show application of Householder reflector on left (→), which update a block row, and on
right (↓), which update a block column.

remainder of the bulge is not eliminated, but is instead left for subsequent sweeps to778

eliminate, as they would reintroduce the same nonzeros.779

Kernel 2 (blue task T1,2) continues to apply the left Householder reflector from780

kernel 1 (or kernel 3) to the next block column, creating a bulge above the upper781

bandwidth. It then applies a right Householder reflector to eliminate the first row of782

the bulge right of the upper bandwidth, updating only the first block row.783

Kernel 3 (red task T1,3) continues to apply the right Householder reflector from784

kernel 2, creating a bulge below the main diagonal. As in kernel 1, it then applies a785

left Householder reflector to eliminate the first column of the bulge below the diagonal786

and updates just the current block column. After kernel 3, kernel 2 is called again787

(blue task T1,4) to continue application of the left Householder reflector in the next788

block column. A sweep consists of calling kernel 1 to bring a row to bidiagonal,789

followed by repeated calls to kernels 2 and 3 to eliminate the first column or row of790

the resulting bulges, until the bulges are chased off the bottom-right of the matrix.791

For parallelism, once a sweep has finished the first kernel 3, a new sweep can start792

in parallel. This new sweep is shifted over one column and down one row, as shown in793

Figure 21(c). Before task i in sweep s, denoted as Ts,i, can start, it depends on task794

Ts−1, i+3 in the previous sweep being finished, to ensure that kernels do not update795

the same entries simultaneously. To maximize cache reuse, tasks are assigned to cores796

based on their data location. Ideally, the band matrix fits into the cores’ combined797

caches, and each sweep cycles through the cores as it progresses down the band.798

11.3. Singular Vectors Computation. The singular vectors of A are com-799

puted from the orthogonal transformations used in the reduction to bidiagonal form800

and from the singular vectors of the bidiagonal form. Recall that for the classical801

one-stage approach, A = U1BV
T
1 and B = U2ΣV T2 . After using D&C to obtain U2802

and V2, we multiply U = U1U2 and V = V1V2, costing 2n3 each for U and V (if803

m = n).804

In the case of the two-stage approach, the first stage reduces the original matrix805

A to a band matrix by applying a two-sided transformation to A such that A =806

UaAbandV
T
a . Similarly, the second, bulge-chasing stage reduces the band matrix Aband807

to bidiagonal form by applying a two-sided transformation such that Aband = UbBV
T
b .808
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As a consequence, the singular vectors must be multiplied according to:809

U = UaUbU2 and V = VaVbV2.810811

Hence the two-stage approach introduces a nontrivial amount of extra computation—812

the application of Ub and Vb—when the singular vectors are needed. The total cost of813

updating the singular vectors when using the two-stage technique is 2(1+ ib
nb

)n3 +2n3814

each for U and V , where nb is the bandwidth and ib is an internal blocking; usually815

ib ≤ nb/4. This extra cost compared with the one-stage approach reduces the potential816

speedup, but as it is in Level 3 BLAS, it does not completely negate the large speedup817

that we gain by the two-stage bidiagonal reduction.818

11.4. PLASMA Implementation for Multicore. The experiments shown in819

Figure 22 illustrate the superior efficiency of our two-stage SVD solver compared with820

the optimized LAPACK version from Intel MKL. Figure 22(a) shows that the bidiag-821

onal reduction itself is 6× faster than LAPACK, both using 16 cores, and 2.5× faster822

than the MAGMA one-stage version. The reason is that LAPACK and MAGMA823

are bound by the Level 2 BLAS performance, while our two-stage algorithm relies824

on Level 3 BLAS for most of its computation. When computing singular vectors in825

Figure 22(b), it is still about 1.8× faster than LAPACK, even though it requires an826

extra 2 × 2(1 + ib
nb

)n3 operations to multiply by Ub and Vb. Here, the accelerated827

MAGMA one-stage version is still faster.828

For the tall 3:1 case in Figure 22(c), both LAPACK and MAGMA fare better,829

since part of the computation is in the initial QR factorization, which is primarily830

efficient Level 3 BLAS operations for all three implementations (LAPACK, MAGMA,831

and PLASMA). For the very tall 1000:1 matrices in Figures 22(e) and 22(f), PLASMA832

and MAGMA rely on their efficient QR factorization. In PLASMA, this is an imple-833

mentation of the tall-skinny QR [1, 29], which even beats the accelerated MAGMA834

implementation.835

Overall, we expected such an improvement using the two-stage technique, due to836

its heavy reliance on Level 3 BLAS. Even when performing more operations, it can837

still have an advantage.838

11.5. Energy Consumption. As we move toward exascale computing, power839

and energy consumption play increasingly critical roles. Figure 23 shows the power840

consumption over time during the SVD computation. We observe that PLASMA has841

the lowest energy consumption, due to its fast execution, despite having the highest842

power rate, indicative of its high compute intensity using Level 3 BLAS. Its energy843

consumption is about half that of LAPACK, and 23× less than EISPACK, as shown in844

Figure 24(b). When computing singular values only, no vectors, the difference is even845

more remarkable, with PLASMA being 5.6× more energy efficient than LAPACK,846

and 40× more energy efficient than EISPACK, as shown in Figure 24(a).847

Interestingly, we can correlate the various phases of the computation with the848

power consumption. For LAPACK, the long plateau in Figure 23 up to the 105849

seconds mark is the reduction to bidiagonal, followed by divide and conquer, where850

the power varies significantly, and ending with the two back transformations by U1851

and V1 from the 130–150 seconds mark. In PLASMA, the reduction to bidiagonal852

is significantly shorter, up to the 20 seconds mark, followed by divide and conquer,853

and the back transformations by Ua, Ub, Va, and Vb, which are twice as long as they854

are in LAPACK. EISPACK, in contrast, has a very long and steady computation. It855

uses only one core, and thus has low power consumption; but the computation itself856

is 48× longer than LAPACK.857
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Fig. 22. Comparison of MAGMA, PLASMA, and LAPACK.

11.6. MAGMA Accelerated Two-stage Reduction. A two-stage algorithm858

can also be implemented very effectively using an accelerator. MAGMA accelerates859

the first-stage reduction to band form, as described above, and uses PLASMA for the860

second-stage reduction from band to bidiagonal. MAGMA also accelerates compu-861

tation of singular vectors, both applying the transformations from the second stage862

(e.g., UbU2) and applying the transformations from the first stage (e.g., Ua(UbU2)).863

Other steps are as in the accelerated one-stage MAGMA version. The profile in Fig-864

ure 17 shows the difference with the one-stage version: the reduction to bidiagonal865

(blue with \\ hatching) is significantly reduced, but multiplying U = U1U2 = UaUbU2866

and V = V1V2 = VaVbV2 (orange with // hatching) is increased.867

Figure 25 shows the performance of the MAGMA two-stage implementation868
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Fig. 24. Reduction in total energy consumption compared to EISPACK.

(dashed line), compared with the PLASMA two-stage and MAGMA one-stage im-869

plementations. The square, no vectors case in Figure 25(a) shows that for the bidiag-870

onal reduction itself, the two-stage MAGMA is up to 2.4× faster than the two-stage871

PLASMA and 6.4× faster than the one-stage MAGMA, and nearly 500× faster than872

EISPACK. When computing singular vectors, in Figure 25(b), it is again up to 2.4×873

faster than PLASMA, but only 1.7× faster than the one-stage MAGMA, due to the874

extra cost in multiplying by Ub and Vb. It also performs well in the tall 3:1 case, while875

for the tall 1000:1 case, its time is dominated by the initial QR factorization, so it876

performs similarly to the one-stage MAGMA.877

11.7. DPLASMA Implementation for Distributed Memory. To cover the878

distributed memory environment, we also performed a study on a modern, large dis-879

tributed system. It is representative of a vast class of supercomputers commonly used880

for computationally intensive workloads. The DPLASMA algorithm is the two-stage881

algorithm described above for multicore, but implemented using the PaRSEC runtime882

engine [19, 18] to exploit the data flow representation, handle all the communication,883

and provide asynchronous task execution based on dependency analysis. PaRSEC884

employs the dataflow programming and execution model to provide a dynamic plat-885

form that can address the challenges posed by distributed hardware resources. The886

PaRSEC runtime combines the source program’s task and dataflow information with887

supplementary information provided by the user—such as data distribution or hints888
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Fig. 25. Comparison of MAGMA 2-stage with MAGMA 1-stage and PLASMA 2-stage.

about the importance of different tasks—and orchestrates task execution on the avail-889

able hardware. From a technical perspective, PaRSEC is an event-driven system.890

When an event occurs, such as task completion, the runtime reacts by examining the891

dataflow to discover what future tasks can be executed based on the data generated892

by the completed task. The runtime handles the data exchange between distributed893

nodes, and thus it reacts to the events triggered by the completion of data trans-894

fers as well. Thus, communications become implicit and are handled automatically895

as efficiently as possible by the runtime. When no events are triggered because the896

hardware is busy executing application code, the runtime gets out of the way, allowing897

all hardware resources to be devoted to the application code’s execution.898

We benchmarked our two-stage implementation from the DPLASMA library, and899
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Fig. 26. Comparison of DPLASMA and ScaLAPACK computing singular values only for square
matrices on 49 nodes (1764 cores).

the ScaLAPACK SVD routine from Intel MKL. Because only the singular values900

computation of our two-stage approach is currently implemented in the distributed901

DPLASMA library, we limited our tests to the case where only the singular values are902

computed. We performed our experiment on a recent hardware system consisting of903

49 distributed nodes, where every node has two sockets of 18-core Intel Xeon E5-2697904

(Broadwell) processors, running at 2.6 GHz, providing a total of 1764 cores. Each905

socket has 35 MiB of shared L3 cache, and each core has a private 3.5 MiB L2 and906

448 KiB L1 cache. The system is equipped with 52 GiB of memory per node. When907

only singular values are to be computed, the SVD solution consists of the reduction908

to bidiagonal and the computation of the singular values using QR iteration. Note909

that QR iteration on the bidiagonal matrix is a sequential process and thus it does910

not exploit any parallelism for either DPLASMA or ScaLAPACK. Its computational911

time is the same on either 1 or 49 nodes, and this time increases quadratically with912

the matrix size. Thus, the percentage of time spent in this portion varies with the913

matrix size. QR iteration consists of less than 5% of the time for a matrix of size 20k,914

while it reaches about 15% for ScaLAPACK and 26% for DPLASMA for a matrix of915

size 200k. As a result, the speedup will be affected by this constant:916

speedup =
timeDPLASMA-BRD + tx

timeSCALAPACK-BRD + tx
,917

where tx is the time required to perform the bidiagonal singular value computation.918

Figure 26 shows the comparison between our implementation versus the ScaLAPACK919

pdgesvd. Asymptotically, our code achieves up to a 3× speedup for the largest matri-920

ces tested. This is the result of the efficient implementation of the first stage (reduction921

to band) using the PaRSEC engine, which enables us to exploit the compute-intensive922

nature of this stage, thereby minimizing the communication cost, and also from the923

careful design and implementation of the second stage that maps both the algorithm924

and the data to the hardware using cache-friendly kernels and data-locality-aware925

scheduling. Note that for small matrix sizes (e.g., a matrix of size 20k), there is not926

enough parallelism to exploit the 1764 available cores to make our two-stage algorithm927

3× faster; the tile size is about 160, so there are only about 125 tiles in each direction.928
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12. Jacobi methods. In contrast to bidiagonalization methods, Jacobi meth-929

ods operate on the entire matrix A, without ever reducing to bidiagonal. This allows930

Jacobi methods to attain high relative accuracy, which will be discussed in section 13.931

Jacobi first proposed his method in 1848 for solving the symmetric eigenvalue prob-932

lem [73] by diagonalizing the matrix A using a sequence of plane rotations:933

A(0) = A, A(k+1) = JT(k)A(k)J(k), A(k) → Λ as k →∞.934
935

Each plane rotation, J(k) = J(k)(i, j, θ), now called a Jacobi or Givens rotation, is an936

orthogonal matrix that differs from the identity only in rows and columns i and j:937

J(i, j, θ) =


I

c s
I

−s c
I

 ,938

939

where c = cos θ and s = sin θ. The angle θ is chosen to eliminate the pair aij , aji940

by applying J(i, j, θ) on the left and right of A, which can be viewed as the 2 × 2941

eigenvalue problem,942

ĴT(k)Â(k)Ĵ(k) =

[
c s
−s c

]T [
aii aij
aji ajj

] [
c s
−s c

]
=

[
dii 0
0 djj

]
= Â(k+1),943

944

where the notation Â is the 2 × 2 submatrix

[
aii aij
aji ajj

]
of matrix A. Subsequent945

eliminations will fill in the eliminated entry, but at each step the norm of off-diagonal946

elements,947

off(A) = ‖A− diag(A)‖F =
(∑
i 6=j

a2ij

)1/2
,948

949

is reduced until the matrix converges to diagonal form, Λ, revealing the eigenvalues.950

Accumulating the plane rotations, V = J(0)J(1) . . . , yields the eigenvectors. Origi-951

nally, Jacobi chose to eliminate the off-diagonal pair aij , aji of largest magnitude at952

each step, giving the largest possible reduction in off(A). This is inefficient as it in-953

troduces an O(n2) search for each rotation of O(n) work. Instead, in modern times954

the method was reformulated so that one sweep goes over all n(n−1)/2 combinations955

of (i, j) with i < j in a predetermined order, typically cyclic by rows, i.e.,956

(1, 2), (1, 3), . . . , (1, n); (2, 3), . . . , (2, n); . . . ; (n− 1, n),957958

or cyclic by columns. It converges after a small number of sweeps, typically 5–10.959

Wilkinson [116] showed that convergence is ultimately quadratic. Rutishauser [102]960

gave a robust implementation in the Wilkinson-Reinsch Handbook.961

12.1. Two-sided Jacobi SVD. Jacobi’s eigenvalue method was generalized to962

the SVD of a general, nonsymmetric matrix in two different ways. The first way963

is the two-sided method due to Kogbetliantz [76], which applies two different plane964

rotations, J(i, j, θ) on the left of A and K(i, j, φ) on the right of A, to eliminate the965

aij and aji entries. As before, sweeps are done over the off-diagonal entries until966
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Algorithm 5 Two-sided Jacobi SVD method for n× n matrix A.

function two sided jacobi svd( A )
U = I; V = I
repeat // loop over sweeps

for each pair (i, j), i < j, in prescribed order
solve 2× 2 SVD ĴT Â(k)K̂ = Â(k+1)

A = JTA // update rows i and j
A = AK // update cols i and j
U = UJ
V = V K

end
until off(A) < tol ‖A0‖F
for i = 1, . . . , n

σi = |aii|
if aii < 0 then ui = −ui

end
sort Σ and apply same permutation to columns of U and V
return (U,Σ, V )

end function

the norm of off-diagonal entries is below a specified tolerance, revealing the singular967

values, Σ, via the iteration:968

A(0) = A, A(k+1) = JT(k)A(k)K(k), A(k) → Σ as k →∞.969
970

Accumulating the left rotations, U = J(0)J(1) . . . , gives the left singular vectors, while971

accumulating the right rotations, V = K(0)K(1) . . . , gives the right singular vectors.972

Determining J(i, j, θ) and K(i, j, φ) can be viewed as solving a 2×2 SVD problem,973

ĴT(k)Â(k)K̂(k) =

[
cJ sJ
−sJ cJ

]T [
aii aij
aji ajj

] [
cK sK
−sK cK

]
=

[
dii

djj

]
= Â(k+1).(8)974

975

The angles for J and K are not uniquely determined, so various methods have been976

derived [22, 49, 76]. Brent et al. [22] proposed the algorithm USVD, which uses one977

rotation to symmetrize the 2× 2 subproblem, then a second rotation to eliminate the978

off-diagonal entries. This produces an unnormalized SVD, where the diagonal entries979

are unsorted and may be negative. Post-processing to sort and adjust the signs of980

the singular values and singular vectors yields a standard SVD. They also formulated981

the normalized rotation/reflection algorithm NSVD that corrects the signs during the982

iteration. Algorithm 5 outlines the two-sided Jacobi method.983

Rectangular matrices can be handled by first doing a QR factorization, optionally984

with pivoting, and then doing the SVD of the R matrix, as previously described for985

bidiagonalization methods (subsection 5.4). For Jacobi, this QR factorization has the986

added benefit of preconditioning the system to converge faster, as discussed further987

in subsection 12.5.988

Heath et al. [67] developed a variant for computing the SVD of a product of989

matrices, A = BTC, without explicitly forming A. Applying rotations B(k+1) = B(k)J990

and C(k+1) = C(k)K implicitly applies J and K on both sides of A. When B = C, it991

simplifies to the one-sided Jacobi method, discussed next.992

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 37

Algorithm 6 One-sided Jacobi SVD method for m× n matrix A, m ≥ n
function one sided jacobi svd( A )

V = I
repeat // loop over sweeps

done = true
for each pair (i, j), i < j, in prescribed order

bii = ATi Ai = ‖Ai‖2

bjj = ATj Aj = ‖Aj‖2

bij = ATi Aj
if |bij | ≥ ε

√
biibjj then

solve 2× 2 symmetric eigenvalue problem ĴT B̂Ĵ = D̂
A = AJ // update cols i and j
V = V J
done = false

end
end

until done
for i = 1, . . . , n

σi = ‖ai‖2
ui = ai/σi

end
sort Σ and apply same permutation to columns of U and V
return (U,Σ, V )

end function

12.2. One-sided Jacobi. The second way to generalize the Jacobi method to993

the SVD is a one-sided method due to Hestenes [68]. Earlier we noted that the994

SVD can be solved by computing the eigenvalues of the Gram matrix, ATA, but995

that explicitly forming ATA is undesirable for numerical reasons. Instead, Hestenes996

applied plane rotations on only the right side of A to orthogonalize the columns of997

A, which implicitly performs the two-sided Jacobi eigenvalue method on ATA. The998

columns of A converge to UΣ, that is, the left singular vectors scaled by the singular999

values:1000

A(0) = A, A(k+1) = A(k)J(k), A(k) → UΣ as k →∞.10011002

This means that, implicitly, A(k)
TA(k) → Σ2. Accumulating the rotations, V =1003

J(0)J(1) . . . , gives the right singular vectors. Alternatively, V can be solved for after1004

the iteration, as described below in subsection 12.5.1005

The rotations are determined similarly to the Jacobi eigenvalue method, by solv-1006

ing the 2× 2 eigenvalue problem1007

ĴT(k)

[
bii bij
bij bjj

]
Ĵ(k) =

[
dii

djj

]
,(9)1008

1009

where bij = aTi aj and ai is the i-th column of A(k). Over the coarse of a sweep, it1010

computes the matrix B = ATA, however, J is not applied directly to ATA, but to A1011

itself, avoiding the numerical instabilities associated with ATA. Algorithm 6 outlines1012

the one-sided Jacobi method.1013
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It skips rotations if |bij | < ε
√
biibjj , indicating that columns ai and aj are al-1014

ready numerically orthogonal. It converges when all rotations in a sweep are skipped.1015

Using this formula to check for convergence is required for attaining high relative1016

accuracy [32] (see section 13). The bii column norms can be cached rather than re-1017

computed for each pair, which reduces operations when rotations are skipped. Note1018

that the last sweep takes about n3 flops computing bij terms to check for convergence,1019

without doing any useful work.1020

A left-handed version can be defined analogously, by applying rotations on the1021

left to orthogonalize the rows of A [84]. This might be preferred if A is a wide matrix1022

stored row-wise, rather than a tall matrix stored column-wise.1023

One-sided Jacobi can be applied to a rectangular matrix, but again, preprocessing1024

using a QR factorization, and apply Jacobi on the square R matrix, reduces the oper-1025

ation count and preconditions the system for faster convergence; see subsection 12.5.1026

12.3. Convergence. For the row and column cyclic orderings, Forsythe and1027

Henrici [49] proved that all the Jacobi methods (two-sided eigenvalue, one-sided SVD,1028

and two-sided SVD) converge, provided the rotation angles are bounded below π/21029

by some b,1030

|θ| ≤ b < π/2.(10)10311032

For the two-sided eigenvalue and one-sided SVD methods, θ can always be chosen1033

to satisfy (10); see [102]. For the two-sided SVD method, however, this condition1034

may fail to hold. In Forsythe and Henrici’s method, the bound is b = π
2 , which1035

may introduce a cycle interchanging two singular values without converging. For the1036

methods of Brent et al. [22], NSVD has a bound b = 3π/4 and USVD has a bound1037

b = 5π/4. Proofs for other orderings, particularly for parallel orderings, have been1038

elusive. Despite failing to satisfy the convergence proof’s prerequisites, in practice1039

Jacobi methods reliably converge. Using a threshold to skip updates to small entries1040

is a common tactic, especially in the first several sweeps, to accelerate and guarantee1041

convergence [102, 27, 8].1042

When applied to triangular matrices, Heath et al. [67] and Hari and Veselić [66]1043

observed that applying one sweep of the two-sided SVD method with the row-cyclic1044

ordering (without thresholding) converts an upper triangular matrix to lower triangu-1045

lar, and vice-versa. Hari and Veselić derived rotation angle formulas in the triangular1046

case, and prove that the angles are bounded below π/2, guaranteeing convergence.1047

Hari and Matejaš [65] later derived more accurate formulas.1048

Applying column pivoting during the Jacobi iterations can improve convergence.1049

In the one-sided method, de Rijk [27] follows the row-cyclic ordering, but at the start1050

of row i, searches columns i, . . . , n for the column of largest norm and pivots it to1051

column i. Unfortunately, using the row-cyclic ordering makes parallelism difficult.1052

Zhou and Brent [120] likewise show that sorting column norms improves convergence,1053

and give a parallel ordering for sorting.1054

12.4. Parallel orderings. In two-sided Jacobi, a pair of rotations applied on1055

the left and right affect only two rows and two columns. In one-sided Jacobi, each1056

rotation applied on the right affects only two columns. Therefore, in both cases,1057

bn/2c rotations can be performed in parallel. However, the row and column cyclic1058

orderings are not amenable to parallel computation, as they introduce dependencies1059

between consecutive pairs of elements. Since there are n(n− 1)/2 pairs to eliminate,1060

an optimal parallel ordering would have n − 1 steps, with each step eliminating n/21061
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Fig. 27. Parallel orderings. Rectangles indicating processors are labeled with their assigned
columns. Arrows depict movement of columns between Jacobi sweeps. Circled pivot column is
stationary.

pairs in parallel (for n even). Many different parallel Jacobi orderings have been1062

devised. While parallel orderings typically lack a proof of convergence, in practice1063

they work reliably.1064

Commonly, for parallel implementations of both one-sided and two-sided Jacobi,1065

the matrix is distributed by columns. Early systolic implementations placed two1066

columns [21] or a 2 × 2 submatrix [22] per processor. Later block implementations1067

placed two block columns [15, 11] or a 2 × 2 block submatrix [12] per processor.1068

When each processor stores two columns, one-sided Jacobi has the advantage that no1069

communication is required during an update, whereas in two-sided Jacobi, the left1070

transformations (J ’s) must be broadcast in an all-to-all fashion.1071

Brent and Luk [21] introduced the round-robin ordering, shown in Figure 27(a),1072

which had previously been known for chess tournaments. After each Jacobi rotation,1073

each node sends and receives two columns, except the pivot node that sends and1074

receives one column. Eberlein [46] gave the odd-even ordering in Figure 27(b). After1075

each odd sweep, the odd permutation (solid red lines) is used; after even sweeps,1076

the even permutation (dashed blue lines) is used. Each node sends and receives one1077

column.1078

Luk and Park [85] studied the equivalence of orderings, demonstrating that many1079

orderings are equivalent in the sense that relabeling the columns gives identical or-1080

derings. For example, choosing a different pivot column in round-robin will give an1081

equivalent ordering. Luk and Park showed that the two main classes of Jacobi order-1082

ings are the round-robin and odd-even types. Bečka and Vajteršic [12, 11] compared1083

implementations of the round-robin, odd-even, and a butterfly-like ordering inspired1084

by the Fast Fourier Transform (FFT), on ring, hypercube, and mesh networks for1085

block Jacobi methods.1086

12.5. Preconditioning. Another means to improving the speed of Jacobi meth-1087

ods is to precondition the matrix to reduce the number of sweeps required for con-1088

vergence. Drmač and Veselić [44] introduced several forms of preconditioning for1089

the one-sided Jacobi method. The major ideas are outlined below, with a simplified1090

version in Algorithm 7.1091

First, for a square matrix A, heuristically choose to factor either X = A or1092

X = AT . They give the example of A = DQ, where D is diagonal and Q is orthogonal.1093

One-sided Jacobi applied to A implicitly diagonalizes QTD2D, while applied to AT ,1094

it implicitly diagonalizes D2, which is already diagonal. One heuristic they suggest is1095

to choose the X that maximizes
∥∥diag(XTX)

∥∥
2
, hence minimizing off(XTX). Their1096

second heuristic is to choose the X that minimizes the diagonal entropy of XTX,1097
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Algorithm 7 Preconditioned one-sided Jacobi SVD method (simplified)

function preconditioned one sided jacobi( A )
input: m× n matrix A, m ≥ n
output: U , Σ, V
transpose = (m == n and ηd(AA

T ) < ηd(A
TA)) // see (11)

if transpose then
A = AT

end
QrRP

T
r = A // QR factorization with column pivoting

LQl = R // LQ factorization
(Ul,Σ) = one sided jacobi svd(L) // Algorithm 6; skip V
U = QrUl
V = PrQ

T
l L
−1(UlΣ) or V = PrR

−1(UlΣ)
if transpose then

swap U ⇔ V
end

end function

defined by1098

ηd(X
TX) = η

(
diag(XTX)/ trace(XTX)

)
,(11)10991100

where the entropy of a vector p with pi ≥ 0,
∑
i pi = 1, is defined as1101

η(p) = − 1

log n

n∑
i=1

pi log pi, with 0 log 0 ≡ 0.(12)1102

1103

Both heuristics are O(n2).1104

The second preconditioning technique is to use a QR factorization with column1105

pivoting (QRP) of A, then factor R. This concentrates the mass of the matrix along1106

the diagonal of RTR, reducing the number of Jacobi sweeps. For a rectangular m×n1107

problem, m > n, this also shrinks it to an n× n problem, as in subsection 5.4.1108

Third, use either an LQ factorization of R, or simply let L = RT , then factor1109

L. An LQ factorization further concentrates the mass along the diagonal of LTL.1110

Using LQ is particularly advantageous in the rank deficient case. For a matrix of1111

rank r, QRP generates R =

[
R11 R12

0 R22

]
with the (n − r) × (n − r) block R22 being1112

negligible. Doing an LQ factorization of
[
R11 R12

]
yields a smaller, r × r, full-rank1113

matrix L. Alternatively, simply using L = RT is an implicit step of Rutishauser’s LR1114

diagonalization applied to RTR, again concentrating mass along the diagonal of LTL1115

as compared to RTR.1116

Additionally, Drmač and Veselić’s error analysis based on using QRP and option-1117

ally LQ factorization shows that computing V by solving with either of the triangular1118

matrices L or R is numerically stable and generates an orthogonal matrix; see Al-1119

gorithm 7 for specifics. This allows us to skip accumulating V during the one-sided1120

Jacobi iteration, removing some Level 1 BLAS operations, and adding Level 3 BLAS1121

operations after the iteration, so we can expect a good performance increase. Their1122

paper gives detailed algorithms that make choices about which preconditioning to use1123
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based on condition estimates. Hari [64] and Bečka et al. [9] also applied QRP and LQ1124

preconditioning in the context of parallel one-sided block Jacobi.1125

In addition to preconditioning, Drmač and Veselić [45] introduced optimizations in1126

the one-sided Jacobi iteration, based on the structure of the preconditioned matrix. In1127

the first sweep, the zero structure of the triangular matrix can be exploited to reduce1128

computation. Second, based on work by Mascarenhas [87], they use a modified row-1129

cyclic strategy to more frequently visit diagonal blocks, since those blocks converge1130

at a slower rate. Heuristically, based on the expectation that LTL is diagonally1131

dominant, during the first few sweeps, if two rotations in a row are skipped due to1132

thresholding, they skip the rest of the row. This avoids computing dot products1133

when the rotation will likely be skipped. Finally, they use a tiled row-cyclic strategy1134

to improve cache efficiency. All of these improvements combine for a more efficient1135

algorithm.1136

Okša and Vajteršic [95] showed that the same preconditioning techniques, QRP1137

factorization optionally followed by LQ factorization, also improve convergence for the1138

parallel two-sided block Jacobi method. In their tests, preconditioning concentrated1139

more than 99% of the weight of ‖A‖F into the diagonal blocks. Depending on the1140

singular value distribution, this gave up to an order-of-magnitude reduction in time.1141

This preconditioning was later extended to multiple QR iterations [10].1142

As noted earlier, two-sided Jacobi preserves the triangular structure when used1143

with an appropriate cyclic ordering. Hari and Matejaš [65, 88, 89] use the QRP and1144

LQ preprocessing to generate triangular matrices. They prove high relative accuracy1145

results for the two-sided Jacobi method on such triangular matrices, and utilize a1146

parallel ordering due to Sameh [103] that preserves the triangular structure.1147

12.6. Block Jacobi. In section 5, we saw that blocking was a major improve-1148

ment for SVD methods. Blocking can also be favorably applied to Jacobi methods.1149

Van Loan [112] and Bischof [15] were among the first to describe two-sided block1150

Jacobi SVD methods. The method is very similar to the non-block implementation,1151

with plane rotations J and K operating on two rows or columns now becoming or-1152

thogonal block rotations operating on two block rows or block columns. For a block1153

size nb, let N = dn/nbe be the number of blocks. The indices i, j now loop over the1154

blocks, 1, . . . , N . We reinterpret the notation Â to be the 2× 2 block matrix1155

Â =

[
Aii Aij
Aji Ajj

]
,1156

where each Aij is an nb×nb block. Instead of the 2× 2 SVD (8), it computes a 2× 21157

block SVD,1158

ĴT ÂK̂ = ĴT
[
Aii Aij
Aji Ajj

]
K̂ =

[
Dii 0
0 Djj

]
,1159

1160

either recursively using a serial Jacobi method, or using some other SVD method1161

such as QR iteration. Each processor now holds two block columns. Block row and1162

column updates by the orthogonal matrices J and K are applied as Level 3 BLAS1163

matrix multiplies, greatly enhancing the efficiency of the algorithm.1164

Bischof [15] investigated two methods to solve the SVD subproblem: using QR1165

iteration or using a single sweep of two-sided Jacobi. In the later case, using only one1166

sweep the block method does not fully annihilate the off-diagonal blocks of the 2× 21167

block subproblem, and is in fact simply a reorganization of the non-block method,1168

but with updates applied using Level 3 BLAS. He found that using Jacobi to solve1169
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the subproblem was faster than using QR iteration; however, this was prior to the1170

fast blocked versions of QR iteration available in LAPACK.1171

Arbenz and Slapničar [5] gave an early implementation for the one-sided block1172

Jacobi SVD method. Again, the block method is very similar to the non-block method,1173

with the 2 × 2 eigenvalue problem (9) being replaced with a 2 × 2 block eigenvalue1174

problem,1175

ĴT ÂĴ = ĴT
[
Bii Bij
BTij Bjj

]
Ĵ =

[
Dii 0
0 Djj

]
,1176

1177

with Bij = ATi Aj , where Ai as the i-th block column of A. Arbenz and Slapničar used1178

the two-sided Jacobi eigenvalue method to solve the subproblem, which is important1179

for preserving Jacobi’s high relative accuracy. Hari [64] derived an optimization using1180

the cosine-sine decomposition as a kind of “fast scaled block-rotation”, reducing the1181

flop count up to 40%. Boukaram et al. [20] developed batched one-sided Jacobi and1182

block Jacobi methods for GPUs, to compute SVD factorizations of a batch of small1183

matrices.1184

Bečka et al. introduced dynamic orderings for the two-sided [8] and one-sided [9]1185

Jacobi methods. Instead of using a cyclic ordering such as row-cyclic, round-robin, or1186

odd-even, the idea is to find the off-diagonal blocks of maximum norm to eliminate.1187

This is Jacobi’s original idea, applied on the block level. Using a greedy solution to1188

the maximum-weight perfect matching problem takes O(p2 log p) time for p processors1189

and yields a set of N/2 subproblems of maximum weight to solve in parallel. Their1190

results show significantly improved convergence and time to solution.1191

12.7. Performance analysis. While Jacobi methods have a long history, even1192

predating bidiagonalization methods, many implementations have been either research1193

codes or for unique systems like the ILLIAC IV [84]. Therefore, we do not have as1194

rich a collection of historical implementations to compare as for bidiagonalization1195

methods. We tested four current implementations of Jacobi methods:1196

• One-sided Jacobi, available in LAPACK as dgesvj, due to Drmač [44].1197

• Preconditioned one-sided Jacobi, available in LAPACK as dgejsv, due to1198

Drmač [44].1199

• Two-sided Jacobi, available in Eigen 3.3.3 [47].1200

• Preconditioned one-sided block Jacobi, due to Bečka et al. [9].1201

Jacobi has traditionally trailed bidiagonalization methods in performance for two1202

reasons. First, a comparison of flops in Figure 28 shows that for computing singular1203

values only (no vectors), Jacobi cannot finish even one sweep in the same flops as1204

bidiagonalization (8
3n

3). When computing vectors, Jacobi would need to complete1205

in two sweeps to have fewer flops than QR iteration, and one sweep to have fewer1206

flops than divide and conquer. However, with optimizations to skip rotations and1207

take advantage of matrix structure [45, 89], these Jacobi flop counts are significant1208

overestimates.1209

However, as we have repeatedly seen, flops are now a poor metric for performance.1210

It matters whether flops are in compute-intensive Level 3 BLAS or not. For Jacobi,1211

dot products and plane rotations are Level 1 BLAS, so are memory bandwidth limited.1212

For preconditioned Jacobi, QR with column pivoting (QRP) has a mixture of Level 21213

and Level 3 BLAS operations, similar to the traditional one-stage bidiagonalization1214

discussed in subsection 5.1, so its performance is also limited by memory bandwidth.1215

The triangular solve for V and multiplying QU will both be Level 3 BLAS operations.1216

The level of parallelism also matters. The two LAPACK implementations, one-sided1217
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no vectors with vectors

QR iteration 8
3n

3 52
3 n

3 ≈ 17n3

divide and conquer 8
3n

3 28
3 n

3 ≈ 9n3

one-sided Jacobi 5Sn3 7Sn3

two-sided Jacobi 4Sn3 8Sn3

preconditioned one-sided Jacobi 5Sn3 + 8
3n

3 5Sn3 + 17
3 n

3

preconditioned two-sided Jacobi 4Sn3 + 8
3n

3 6Sn3 + 17
3 n

3

Fig. 28. Floating point operation counts for square n × n matrix and S Jacobi sweeps. For
Jacobi, fast Givens rotations [63] are assumed. For preconditioned Jacobi, initial QRP and LQ
factorizations and triangular solve for V are also assumed.

Jacobi and preconditioned one-sided Jacobi, do not use explicit parallelism. Therefore,1218

the only parallelism is within the BLAS, which is very limited for Level 1 BLAS.1219

In contrast, the block Jacobi method uses Level 3 BLAS operations and explicit1220

parallelism via MPI, so we can expect much better performance.1221

In Figure 29(a), for square matrices without vectors, both one-sided Jacobi meth-1222

ods were about half EISPACK’s speed, while with vectors in Figure 29(b), precon-1223

ditioned Jacobi is 2× faster than plain Jacobi, and close to EISPACK’s speed. For1224

tall, 3:1 matrices in Figure 29(c), the plain one-sided Jacobi does not do an initial1225

QR factorization, so it remains about half of EISPACK’s speed, while the precondi-1226

tioned Jacobi improves to about 2× EISPACK’s speed. When computing vectors in1227

Figure 29(d), the preconditioned Jacobi version gains even more, being over 3× faster1228

than EISPACK.1229

For the very tall-skinny 1000:1 case in Figures 29(e) and 29(f), the time with1230

preconditioned Jacobi is dominated by QRP, which uses more Level 2 and 3 BLAS1231

operations, so the performance improves to over 100× EISPACK. LAPACK’s QR it-1232

eration uses a regular QR factorization (no pivoting), which is predominantly Level 31233

BLAS, so its performance is significantly faster than Jacobi. However, QRP will gen-1234

erate a more accurate factorization than regular QR, especially if A is ill-conditioned.1235

In most cases, the Jacobi single-core performance was identical to its multi-core1236

performance, indicating that the Level 1 BLAS routines do not have appreciable par-1237

allelism. For tall matrices, preconditioning gained an advantage when using multiple1238

cores, shown by the difference between the solid and dashed green lines in Figures 29(c)1239

to 29(f), due to parallelism within QRP, solving for V, and computing QU .1240

In all of these results, the two-sided Jacobi implementation available in Eigen was1241

considerably slower. This can partly be explained because it has to update the matrix1242

both row-wise and column-wise, making for poor cache performance. For square1243

matrices, it does not do any preconditioning. For tall matrices, it uses QRP, which1244

improves its relative performance somewhat. (Note that Eigen can be configured to1245

instead call LAPACK’s QR iteration method.)1246

Figure 30 shows results for the precondition one-sided block Jacobi method. We1247

tested two variants of the preconditioning, one using QR factorization with column1248

pivoting (QRP), the other using regular QR factorization (no pivoting). In both cases,1249

this was followed by an LQ factorization. This implementation has explicit parallelism1250

via MPI. It uses ScaLAPACK for the QRP, QR, and LQ factorizations. We see that1251
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Fig. 29. Comparison of LAPACK’s one-sided Jacobi, preconditioned one-sided Jacobi, and
Eigen’s two-sided Jacobi.

with QRP + LQ, it performed similarly to ScaLAPACK QR iteration, while with QR1252

+ LQ, it was a bit faster, matching LAPACK’s QR iteration in performance for the1253

tall, 3:1 case.1254

13. Accuracy. While Jacobi methods have struggled to compete with the per-1255

formance of bidiagonalization methods, for some classes of matrices they have a dis-1256

tinct advantage in accuracy, which is now their main motivation. In this section, we1257

briefly explore the accuracy differences between methods. The traditional perturba-1258

tion theory [32] for both bidiagonalization and Jacobi methods shows that1259

|σi − σ̂i|
σi

≤ O(ε)κ(A),1260
1261

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 45

0k 2k 4k 6k 8k

columns (matrix size N×N)

0

10

20

30

40

50

60

sp
e
e
d
u
p
 o

v
e
r

E
IS

P
A

C
K

(a) square, with vectors

0k 2k 4k 6k 8k

columns (matrix size 3N×N)

0

20

40

60

80

100

120

sp
e
e
d
u
p
 o

v
e
r

E
IS

P
A

C
K

(b) tall, 3:1, with vectors

0k 2k 4k 6k 8k

columns (matrix size 3N×N)

0

20

40

60

80

100

120

sp
e
e
d
u
p
 o

v
e
r

E
IS

P
A

C
K Block Jacobi, QR + LQ

Block Jacobi, QRP + LQ

LAPACK Precond. Jacobi

ScaLAPACK

LAPACK D&C

LAPACK QR iter.

Fig. 30. Comparison of preconditioned one-side block Jacobi, LAPACK’s preconditioned one-
sided Jacobi, QR iteration, and divide and conquer.

where σi and σ̂i are the singular values of A and A + δA, respectively, with a small1262

perturbation δA such that ‖δA‖2 ≤ O(ε) ‖A‖2, and κ(A) is the condition number1263

of A. This implies that large singular values are computed accurately, but small1264

singular values may be totally inaccurate if κ(A) is large. For the one-sided Jacobi1265

SVD method, this bound can be improved. Specifically, on matrices of the form1266

A = CD, where C has columns with unit two-norm and D is diagonal, Demmel and1267

Veselić [32] proved the bound1268

|σi − σ̂i|
σi

≤ O(ε)κ(C).(13)1269
1270

Crucially, it can be that κ(C) � κ(A), particularly in the instance of a strongly1271

scaled matrix where D is ill-conditioned. If ill-conditioning is artificial, due to poor1272

scaling, then one-sided Jacobi will be unaffected by it and will compute even small1273

singular values to high relative accuracy. Demmel et al. [30] extended methods of1274

computing the SVD with high relative accuracy to a wider class of matrices of the1275

form A = XDY T , where D is diagonal, and X and Y are well-conditioned.1276

Similar results apply for the two-sided Jacobi eigenvalue method with a positive1277

definite matrix A = DTBD [32]. For eigenvalues of an indefinite matrix, though, QR1278

iteration may be more accurate than Jacobi [108].1279

When applied to triangular matrices, Matejaš and Hari [88, 89] proved that the1280

two-sided Jacobi SVD method also attains high relative accuracy. One can preprocess1281

a general matrix using QRP to obtain such a triangular matrix.1282

Applied to a bidiagonal matrix, the implicit zero-shift variant of QR iteration and1283

the bisection method have been shown to achieve high relative accuracy for all sin-1284

gular values [31]. However, the classical reduction from dense to bidiagonal perturbs1285

the singular values so the exact singular values of the bidiagonal matrix no longer1286

have high relative accuracy for the original matrix A. Hence, any method based on1287

an initial reduction to bidiagonal will lose relative accuracy for small singular values1288

of an ill-conditioned matrix. To address this deficiency, Barlow [7] developed a more1289

accurate bidiagonalization, using QRP followed by a Givens rotation based bidiag-1290

onalization. Recently, Drmač [43] demonstrated that preprocessing a matrix with1291

QRP (LAPACK’s dgeqp3 routine) is sufficient to make a subsequent QR iteration or1292
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Fig. 31. Maximum relative error in singular values, max |σ̂i − σi| /(κ(C)σi), for i = 1, . . . , 100,
with various test matrices. Figure 32 shows details for three instances indicated by arrows: geometric
distribution with (κ(C), κ(D)) = (105, 10); (105, 1010); (105, 1020).

bisection have high relative accuracy. (But not divide and conquer, which is not as1293

accurate as QR iteration.)1294

Here we test the accuracy of various methods on matrices with three different1295

distributions of singular values: arithmetic, geometric, and a cluster at 1/κ(C), as1296

described in section 2. For each distribution, we generate singular values Σ with1297

condition number κ(C), scale them so that
∑
σ2
i = n, and set C̃ = UΣV T where1298

U and V are random orthogonal matrices from the Haar distribution [106]. To1299

satisfy the conditions of (13), we use the method by Davies and Higham [26] to1300

make C = C̃W with columns of unit two-norm, where W is orthogonal. Finally,1301

we set A = CD, where D is diagonal with entries whose logarithms are random1302

uniform on (log(1/κ(D)), log(1)). For each distribution, we set n = 100 and vary1303

κ(C) ∈ {10, 105, 1010} and κ(D) ∈ {10, 105, 1010, 1020}. For a reference solution, we1304

used MATLAB’s [90] variable-precision arithmetic (vpa) with 64 digits.1305

Figure 31 demonstrates the significant difference between one-sided Jacobi meth-1306

ods and bidiagonalization methods (QR iteration, D&C, bisection, MRRR). Both1307

one-sided Jacobi methods achieve high relative accuracy for all singular values, at or1308

below the dashed line representing machine ε. For small scaling, with κ(D) = 10,1309

all methods achieve high accuracy on all the matrices. Most of the bisection meth-1310

ods show increased relative errors as the scaling κ(D) grows. For κ(D) = 1020, the1311

maximum errors were sometimes larger than 1, i.e., no correct digits in the smallest1312

singular values. Among bisection methods, the exception was preprocessing using QR1313

with column pivoting, then using QR iteration (QRP + QR iter., blue diamonds),1314

which also achieved high relative accuracy, as predicted by Drmač.1315

QR iteration (blue squares) and bisection (purple down triangles) produce ex-1316
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tremely similar errors, demonstrating that they both accurately compute singular1317

values of the bidiagonal matrix, and the error occurs in the reduction to bidiagonal.1318

Once the condition number κ(A) exceeds 1/ε, divide and conquer (red diamonds) has1319

much worse error than QR iteration. Even with modest scaling, MRRR (stars) has1320

the worst error. Eigen’s two-sided Jacobi (orange up triangles) also exhibits signifi-1321

cant error as the scaling increases. Preprocessing with QRP before Eigen’s two-sided1322

Jacobi (not shown) improved the accuracy, but not to the high relative accuracy of1323

one-sided Jacobi. Based on [89], other two-sided Jacobi implementations are expected1324

to achieve high relative accuracy.1325

To explain these results in more detail, we look at three specific cases for the1326

geometric distribution with κ(C) = 105 and κ(D) ∈ {10, 1010, 1020}. In Figure 32,1327

the left column shows the actual singular values, in both log and linear scale, while the1328

right column shows the relative error in each singular value, σi from i = 1, . . . , 100. In1329

the top row, with minimal scaling (κ(D) = 10), all the methods achieve high accuracy,1330

below ε in almost all cases. Eigen has a little higher error for large singular values,1331

and MRRR is a little higher for small singular values.1332

In the middle row, with modest scaling (κ(D) = 1010), the one-sided Jacobi1333

methods and QRP + QR iteration maintain high relative accuracy for all singular1334

values. The bidiagonalization methods have high accuracy for the large singular values1335

(near σ1), but the relative error increases for small singular values, losing digits of1336

accuracy. Eigen’s error also increases.1337

In the bottom row, with large scaling (κ(D) = 1020), the error of bidiagonalization1338

methods for small singular values grows even more. As seen in the bottom-left graph,1339

several methods compute singular values that noticeably diverge from the reference1340

solution. For this matrix with σmax ≈ 1020, MRRR declares all σi < 107 to be1341

3.27 × 107, i.e., it cannot resolve smaller singular values. Similarly for D&C, all1342

σi < 103 are computed as 6.91 × 103. Eigen also has issues for σ < 104, though it1343

does not flatline as MRRR and D&C do. QR iteration and bisection follow the true1344

singular values much more closely, but still exhibit significant error for small singular1345

values.1346

14. Additional test cases. So far, we have mostly considered the performance1347

of random uniform matrices. In this section, we look briefly at additional test cases1348

using various distributions of singular values. Our purpose here is to give the reader1349

an idea of the variability in performance and how representative the random uniform1350

tests are. The distribution of singular values affects the performance of various SVD1351

algorithms differently. For QR iteration and divide and conquer, whenever a singular1352

value is determined with sufficient accuracy, it can be removed to shrink the problem1353

size, a process known as deflation, improving the performance. For MRRR, having1354

singular values close to one another will cause it to recurse further in the representation1355

tree, decreasing its performance [119]. For one-sided Jacobi, matrices that are close1356

to orthogonal—i.e., most of the weight of ATA is near the diagonal—converge faster.1357

Figure 33 shows results for six methods on various matrices. These all use the1358

LAPACK implementations, except MRRR which uses a modification of the bisection1359

dgesvdx code, as described in section 9. Note that the y-axis scale is different for1360

QR iteration, divide and conquer, and MRRR than for Jacobi and bisection. See1361

section 2 for a description of the matrix types. For each algorithm, the first, blue bar1362

is for a random uniform matrix, matching most of the results elsewhere in this paper.1363

The geometric and log-random distributions themselves are similar, so in most cases1364

their performance trends are similar, except when using bisection. We see that for1365
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Fig. 32. Singular values of A = CD are plotted twice in left column, once in log scale (black
squares), once in linear scale (gray diamonds). In most cases, computed singular values are visually
coincident with reference solution (log scale). Right column shows relative error in each singular
value, |σ̂i − σi| /(κ(C)σi). x axis indexes the singular values from largest to smallest, i = 1, . . . , 100.

QR iteration, the performance for most matrices is similar to that of random uniform,1366

with a few being up to 18% slower. For divide and conquer, the arithmetic distribution1367

(cyan) was up to 24% slower, while log-random (green) was up to 23% faster than1368

random uniform. The two clusters (red, orange) were 77% and 60% faster, due to1369

significant deflation. MRRR is more variable, with geometric (purple) and log-random1370
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Fig. 33. Time to compute full SVD for n = 3000. Note change in y axis; dashed line at t = 20
corresponds to y axis in left plot.

(green) being up to 47% and 52% slower on ill-conditioned matrices (κ = 1010), while1371

both clusters of repeated singular values were up to 3× faster than random uniform.1372

Arithmetic (cyan) was not significantly affected by conditioning.1373

Because one-sided Jacobi and bisection were significantly slower, they are plot-1374

ted with a different y axis. In all cases, one-sided Jacobi and bisection were slower1375

than QR iteration, divide and conquer, and MRRR. The geometric (purple) and log-1376

random (green) matrices exhibited opposite behavior for the two Jacobi methods: for1377

plain Jacobi, both matrices became slower as the conditioning worsened, while for1378

preconditioned Jacobi, both became faster. A cluster at 1/κ took similar time to1379

random. A cluster at 1 was much faster, because ATA is already nearly diagonal, but1380

preconditioning did not further improve it. Bisection was surprisingly 4.9× faster for1381

a well-conditioned (κ = 10) log-random matrix, but the speedup decreased for poorer1382

conditioning. As we saw earlier in section 8 when computing a subset of vectors,1383

clusters were not advantageous.1384

While the performance does vary for different classes of matrices—sometimes1385

substantially—at a high level, our performance conclusions remain valid: divide and1386

conquer is the fastest (being tied with MRRR in one case), then QR iteration, then1387

MRRR. One-sided Jacobi is the slowest method, with preconditioning generally im-1388

proving its speed, often by a factor of 2× or more. For computing all vectors, bisec-1389

tion is also slow; its main advantage is in computing a subset of vectors, as previously1390

shown in section 8.1391

15. Conclusions. As we have seen, algorithms to compute the SVD have con-1392

tinually evolved to address changes in computer hardware design, as well as advance-1393

ments in mathematics. Early implementations such as EISPACK demonstrated that1394
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computing the SVD stably was feasible. Later implementations focused on improving1395

the performance, first by using Level 1 BLAS for vector computers, then by refor-1396

mulating the algorithm for Level 3 BLAS to address the emergence of cache-based1397

memory hierarchies. More recently, a two-stage algorithm shifted even more oper-1398

ations from Level 2 to Level 3 BLAS. These changes have addressed the growing1399

gap between memory bandwidth and computational speed, as well as enabled greater1400

use of parallel hardware. Implementations have also taken advantage of different ar-1401

chitectures such as distributed memory computers and accelerators. Mathematical1402

advancements have been important in reducing the number of operations performed.1403

For tall-skinny problems, using an initial QR factorization can eliminate a quarter to1404

half of the operations. For square matrices, the divide and conquer algorithm reduces1405

operations by nearly half. For Jacobi methods, preconditioning has been vital to im-1406

prove convergence, while at the same time making computation of singular vectors1407

more efficient. Block Jacobi methods with dynamic selection of subproblems have be-1408

come competitive with some bidiagonalization methods. Improvements in algorithms1409

used to preprocess a matrix, such as using a CAQR factorization [29] for tall-skinny1410

matrices, or future improvements to QRP methods, are immediately applicable to1411

benefit SVD performance.1412

As we build the next generation of linear algebra software targeting exascale com-1413

puters [77], the goal is to integrate these techniques—such as the two-stage reduction1414

to bidiagonal, accelerators, and distributed computing—into a scalable SVD solver.1415

While the techniques have been demonstrated to work, the challenge is being able1416

to hide communication latencies in large distributed machines. Bottlenecks due to1417

Amdahl’s law, such as solving the bidiagonal SVD, will also be crucial to resolve.1418

Improving algorithms to remove communication and memory bandwidth limitations1419

becomes critically important.1420

For certain classes of matrices that are strong scaled, classical methods based1421

on reduction to bidiagonal will not accurately compute small singular values. In1422

these cases, one should turn to Jacobi methods or preprocessing the matrix using QR1423

factorization with column pivoting (QRP) to attain high relative accuracy.1424

We have focused on solving dense systems. There are of course different techniques1425

for solving SVD problems with sparse linear systems. Also, if one is concerned with1426

only an approximate, low-rank solution, then using a randomized SVD algorithm [99]1427

may be another avenue to pursue. This is often the case for huge systems arising from1428

big data problems.1429

Here we have compared implementations on a common, modern architecture. To1430

give some historical perspective, in 1977, EISPACK took 0.79 seconds (1.7 Mflop/s)1431

to compute singular values for n = 80 on an IBM 370/195 [105]. Today, the same1432

EISPACK code achieves 0.74 Gflop/s on large problems, yielding over two orders-1433

of-magnitude advancement in single core hardware speed. On top of this, we have1434

shown an additional two orders-of-magnitude improvement going from EISPACK to1435

PLASMA (146 Gflop/s) on a multicore architecture, and four orders of magnitude to1436

DPLASMA (6.8 Tflop/s) on a distributed-memory machine—while moving from solv-1437

ing systems of dimension 100 to over 100,000—yielding over six orders-of-magnitude1438

performance improvement in 40 years.1439
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[8] M. Bečka, G. Okša, and M. Vajteršic, Dynamic ordering for a parallel1471

block-Jacobi SVD algorithm, Parallel Computing, 28 (2002), pp. 243–262, https:1472

//doi.org/10.1016/S0167-8191(01)00138-7.1473
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