N

16
17
18
19
20
21
22
23
24

25

26

10

THE SINGULAR VALUE DECOMPOSITION: ANATOMY OF
OPTIMIZING AN ALGORITHM FOR EXTREME SCALE*

JACK DONGARRAT, MARK GATES*, AZZAM HAIDAR}, JAKUB KURZAKH#, PIOTR
LUSZCZEK?}, STANIMIRE TOMOV#, AND ICHITARO YAMAZAKI#

Abstract. The computation of the Singular Value Decomposition, or SVD, has a long history,
with many improvements over the years, both in implementations and algorithmically. Here, we sur-
vey the evolution of SVD algorithms for dense matrices, discussing the motivation and performance
impact of changes. There are two main branches of dense SVD methods: bidiagonalization and Ja-
cobi. Bidiagonalization methods started with the implementation by Golub and Reinsch in Algol60,
which was subsequently ported to Fortran in the EISPACK library, and was later more efficiently
implemented in the LINPACK library, targeting contemporary vector machines. To address cache-
based memory hierarchies, the SVD algorithm was reformulated to use Level 3 BLAS in the LAPACK
library. To address new architectures, ScaLAPACK was introduced to take advantage of distributed
computing, and MAGMA was developed for accelerators such as GPUs. Algorithmically, the di-
vide and conquer and MRRR algorithms were developed to reduce the number of operations. Still,
these methods remained memory bound, so two-stage algorithms were developed to reduce memory
operations and increase the computational intensity, with efficient implementations in PLASMA,
DPLASMA, and MAGMA. Jacobi methods started with the two-sided method of Kogbetliantz and
the one-sided method of Hestenes. They have likewise had many developments, including parallel
and block versions, and preconditioning to improve convergence. In this paper, we investigate the
impact of these changes by testing various historical and current implementations on a common,
modern multicore machine and a distributed computing platform. We show that algorithmic and
implementation improvements have increased the speed of the SVD by several orders of magnitude,
while using up to 40 times less energy.

Key words. singular value decomposition, SVD, bidiagonal matrix, QR iteration, divide and
conquer, bisection, MRRR, Jacobi method, Kogbetliantz method, Hestenes method

AMS subject classifications. 15A18 15A23 65Y05

1. Introduction. The singular value decomposition, or SVD, is a very powerful
technique for dealing with matrix problems in general. The practical and theoretical
importance of the SVD is hard to overestimate, and it has a long and fascinating
history. A number of classical mathematicians are associated with the theoretical
development of the SVD [107], including Eugenio Beltrami (1835-1899), Camille Jor-
dan (1838-1921), James Sylvester (1814-1897), Erhard Schmidt (1876-1959), and
Hermann Weyl (1885-1955).

In recent years, the SVD has become a computationally viable tool for solving
a wide variety of problems that arise in many practical applications. The use of
the SVD in these applications is centered on the fact that they require information
about the rank of a matrix, or a low rank approximation of a matrix, or orthogonal
bases for the row and column spaces of a matrix. Applications are as diverse as least
squares data fitting [53], image compression [3], facial recognition [111], principal

*Submitted to the editors February 20, 2017.

Funding: This research is based upon work supported by the National Science Foundation
under Grant No. 1339822, and by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin-
istration. We also received support from NVIDIA and Intel. Furthermore, we would like to thank
Intel for access to their distributed computing platform for testing ScaLAPACK and DPLASMA.

TUniversity of Tennessee, Oak Ridge National Laboratory, University of Manchester (don-
garra@icl.utk.edu

fUniversity of Tennessee (mgates3@icl.utk.edu, haidar@icl.utk.edu, kurzak@icl.utk.edu,
luszezek@icl.utk.edu, tomov@icl.utk.edu, iyamazak@icl.utk.edu)

1

This manuscript is for review purposes only.


mailto:dongarra@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:mgates3@icl.utk.edu
mailto:haidar@icl.utk.edu
mailto:kurzak@icl.utk.edu
mailto:luszczek@icl.utk.edu
mailto:tomov@icl.utk.edu
mailto:iyamazak@icl.utk.edu

ot v Uv Ut Ot gt Ot Ut C
0 1 O Ut = W N =

ot
©

en)

61
62
63
64
65
66

67

83

85
86
87

2 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

component analysis [92], latent semantic analysis [28], and computing the 2-norm,
condition number, and numerical rank of a matrix.
The SVD of an m-by-n matrix A is given by:

(1) A=UxVT (A=USV¥ in the complex case),

where U and V are orthogonal (unitary) matrices and ¥ is an m-by-n matrix with
real diagonal elements, o;, conventionally ordered such that:

01202 2 ... 2 Onin(m,n) = 0.

The o; are the singular values of A and the first min(m,n) columns of U and V are
the left and right singular vectors of A, respectively.

Theoretically, the SVD can be characterized by the fact that the singular values
are the square roots of the eigenvalues of AT A, the columns of V are the corre-
sponding eigenvectors, and the columns of U are the eigenvectors of AAT, assuming
distinct singular values. However, this is not a satisfactory basis for computation
because roundoff errors in the formulation of AT A and AA” often destroy pertinent
information.

The key to using the SVD is the fact that it can be computed very effectively.
There are two dominant categories of SVD algorithms for dense matrices: bidiag-
onalization methods and Jacobi methods. The classical bidiagonalization method
proceeds in the following three stages:

1. The matrix A is reduced to bidiagonal form: A = U; BVT if A is real (A =
Ui BV if A is complex), where U; and V; are orthogonal (unitary if A is
complex), and B is real and upper-bidiagonal when m > n or lower bidiagonal
when m < n, so that B is nonzero on only the main diagonal and either the
first superdiagonal (if m > n) or the first subdiagonal (if m < n).
2. The SVD of the bidiagonal matrix B is computed: B = UsX V4, where Us and
V4 are orthogonal and 3 is diagonal as described above. Several algorithms
exist for the bidiagonal SVD, the original being QR iteration.
3. If desired, the singular vectors of A are then computed as U = U;U; and
V=WW.
This is the basic, efficient, and stable algorithm as posed by Golub and Kahan in
1965 [53]. Golub and Reinsch [54] realized the first implementation of the SVD al-
gorithm in Algol60, the programming language of the time. Their paper was later
reproduced in the Wilkinson-Reinsch Handbook [117]. Bidiagonalization methods are
covered in sections 3 to 11, with additional tests of accuracy and performance on
various matrix types in sections 13 and 14.

In contrast, Jacobi methods apply plane rotations to the entire matrix A, with-
out ever reducing it to bidiagonal form. Two-sided Jacobi methods, first proposed by
Kogbetliantz in 1955 [76], iteratively apply rotations on both sides of A to bring it
to diagonal form, while one-sided Jacobi methods, proposed by Hestenes in 1958 [68],
apply rotations on one side to orthogonalize the columns of A, implicitly bring AT A
to diagonal. While Jacobi methods are often slower than bidiagonalization methods,
there remains interest due to their simplicity, easy parallelization, and potentially bet-
ter accuracy for certain classes of matrices. Jacobi methods are covered in section 12,
with additional tests in sections 13 and 14.

This manuscript traces the development of the SVD algorithm over the past 50
years, using various historical implementations. This development includes algorith-
mic improvements such as blocking, the divide and conquer and MRRR algorithms,

This manuscript is for review purposes only.



93

94

112
113
114
115
116
117
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134

135

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 3

a two-stage reduction, as well as adapting to new computer architectures such as dis-
tributed memory, accelerators, and multicore CPUs. We compare the performance of
all the implementations on a common multicore computer. Our focus is on comput-
ing all singular values and optionally singular vectors, for both square and tall dense
matrices. For bisection and MRRR methods we also compute a subset of the singular
values and vectors.

2. Experimental Setup. To test the various implementations, we ran six dif-

ferent tests:

Square matrices, singular values only (no vectors).

Square matrices, singular values and vectors.

Tall matrices, m = 3n, singular values only (no vectors).

Tall matrices, m = 3n, singular values and vectors.

Tall matrices, m = 1000n, singular values only (no vectors).

. Tall matrices, m = 1000n, singular values and vectors.

When computlng singular vectors, we computed the reduced SVD consisting of the
first min(m,n) columns of U and V', and min(m, n) rows and columns of X. This is
the most useful part computationally, sufficient for many applications such as solving
least squares problems, and we subsequently identify U, V, and ¥ with those of the
reduced SVD, which still satisfy (1). For LAPACK, the reduced SVD corresponds to
job=“s” for both U and V. We store U and V separately from A, i.e., they do not
overwrite A. Where applicable, we query for the optimal workspace size; otherwise,
we use the maximum documented workspace size. This ensures that we always use
the “fast” path in codes, including blocking and other optimizations.

Unless indicated, matrices have random entries from a uniform distribution on
(0,1). For some tests, we generate singular values ¥ according to one of the distribu-
tions below, then form A = ULV where U and V are random orthogonal matrices
from the Haar distribution [106]. Where given, & is the condition number of A.

e 3 random: singular values are random uniform on (0,1). The condition
number is not determined a priori.
e arithmetic: o, =1 — 1= (1 — 7) fori=1,...,n.

O T N

e geometric: o; = ki~ 1)/(” Dfori=1,...,n.

e log-random: singular values are random in (%7 1) such that their logarithms
are random uniform on (log L, log 1).

e cluster at L: ¥ =[1,1 . ..,g .

e cluster at 1: ¥ = [1,...,1,%].

All tests were performed in double-precision real arithmetic. Except for PLASMA
and MPI-based implementations, which initialize memory in parallel, we used numactl
--interleave=all to distribute memory across CPU sockets, and the CPU cache was
flushed before the SVD function call. To avoid repeating minor differences, we shall
generally assume that A is real and m > n. Operations for complex or m < n are
analogous.

We conducted experiments on a two-socket Intel Sandy Bridge Xeon E5-2670
running at 2.6 GHz, with 8 cores per socket, a theoretical double-precision peak of
333 Gflop/s, and 64 GiB of main memory. The measured practical dgemm peak is
313.6 Gflop/s and dgemv peak is 13.9 Gflop/s (55.8 GB/s). The STREAM triad
benchmark [91] measured the memory bandwidth as 57.8 GB/s with 16 OpenMP
threads. All CPU implementations were compiled with gce and linked against Intel’s
Math Kernel Library (MKL) version 11.2.3 [71].

This manuscript is for review purposes only.



136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

4 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

GPU results used an NVIDIA Kepler K40c with 15 multiprocessors, each con-
taining 192 CUDA cores. The theoretical double precision peak performance is
1682 Gflop/s. On the GPU, 12 GiB of device memory can be accessed at a theoretical
bandwidth of 288 GB/s. The measured practical dgemm peak is 1243.1 Gflop/s and
dgemv peak is 45.3 Gflop/s (181.2 GB/s). For the GPU implementation, we used
CUDA version 7.0 [94].

3. EISPACK Implementation. The EISPACK project was an effort to de-
velop a software library for numerical computation of eigenvalues and eigenvectors of
matrices based on algorithms and ideas that were mainly contained in the Wilkinson-
Reinsch Handbook. EISPACK was a transliteration of these Algol programs into
Fortran. It contains subroutines for calculating the eigenvalues of nine classes of
matrix problems: complex general, complex Hermitian, real general, real symmetric,
real symmetric banded, real symmetric tridiagonal, special real tridiagonal, gener-
alized real, and generalized real symmetric. In addition, it includes subroutines to
perform a singular value decomposition [50]. Some routines were updated to imple-
ment improvements in the numerical accuracy and achieve portability across different
computing systems. However, the basic organization and access to matrix elements
was kept in the Algol style.

To arrange multidimensional arrays in linear storage such as memory, Algol uses
row-major order (each row is contiguous in memory), while Fortran uses column-
major order (each column is contiguous in memory). Array layout is critical for
correctly passing arrays between programs written in different languages. It is also
important for performance when traversing an array since accessing array elements
that are contiguous in memory is usually much faster than accessing elements which
are not, due to the structure of the memory cache hierarchy. In the Algol routines,
and subsequently the Fortran routines of EISPACK, matrix elements were referenced
by row, thus causing great inefficiencies in the Fortran EISPACK software on modern
cache based computer systems.

Written in standard Fortran 77, with no outside dependencies, EISPACK still
compiles with a modern Fortran compiler. Figure 1 shows its performance results on
a modern computer with the six test problems described in section 2. EISPACK has
no notion of parallelism, so the code runs on only a single core. The operation count
formulas here assume two QR iterations per singular value, and that an initial QR
reduction is not done [23].

For square matrices without computing singular vectors, asymptotic performance
is limited to 0.74 Gflop/s for one core, while when computing singular vectors, per-
formance nearly triples to 2.17 Gflop/s. As is common, small sizes perform better
because the entire matrix fits into L2 cache. Performance for the tall 3:1 and 1000:1
cases is less than the square case, but exhibits a similar improvement when computing
singular vectors compared with no vectors. For comparison, the practical peak using
matrix-multiply on one core is 20 Gflop/s.

4. LINPACK Implementation Using BLAS. In the 1970s, the Level 1
BLAS (Basic Linear Algebra Subroutines) [79] were introduced as a standard set of
interfaces to perform common linear algebra operations. The Level 1 BLAS includes
operations with O(n) floating-point operations (flops), such as vector sum (y = az+y,
called daxpy). The LINPACK project [39] reimplemented the SVD algorithm, along
with other linear algebra algorithms, using Level 1 BLAS for efficient execution on
the vector supercomputers of the 1970s and 1980s. It uses Fortran’s native column-
major order, which makes better use of cache and memory bandwidth. However,

This manuscript is for review purposes only.



185
186
187
188
189
190
191
192
193

194
195
196
197
198
199

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 5

= 4
~
of 3
v 2
&
= 1
(O]
. 0
0Ok 4k 8k 12k 16k 20k Ok 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, vectors
T T T T T T . 4.0
2.0 B f; 35
i ~[* 3.0
1.5 i 25
1.0 4 T20
g g 15
‘_& 0.5 i g 10
O o0l I I I I I ! O ool
0Ok 4k 8k 12k 0Ok 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall, 3:1, no vectors (d) tall, 3:1, vectors
25F 7 7 7 ] . T T (B
2.0} 1 A iy
1.5 - 5 i
1.0+ — g 7
0.5} . S .|
=
0.0 | | | | (O] 0.0 | | | |
0 200 400 600 800 0 200 400 600 800
columns (matrix size 1000N xN) columns (matrix size 1000N xN)
(e) tall, 1000:1, no vectors (f) tall, 1000:1, vectors

F1G. 1. Results for EISPACK, which uses only one core.

using Level 1 BLAS, LINPACK is limited by the memory bandwidth and receives
little benefit from multiple cores. We see in Figure 2 that LINPACK achieves up to
3.9x speedup over EISPACK for the square, no vectors case, and 2.7x speedup for
the square, vectors case. When computing a tall m x n matrix with m = 1000n,
using multithreaded BLAS on 16 cores yields some benefit, with speedups of 22.5x
and 13.5x over EISPACK for the no vectors and vectors cases, respectively, compared
with speedups of 7.6x and 3.9x, respectively, with single-threaded BLAS. In some
instances, for large matrices such as n = 16, 000, the code hung, appearing in a “sleep”
state in ps, so we were unable to collect all data points.

5. LAPACK Implementation Based on Blocked Householder Transfor-
mations. While successful for vector-processing machines, Level 1 BLAS were not
a good fit for the cache-based machines that emerged later in the 1980s. For cache-
based machines, it is preferable to use higher-level operations such as matrix-matrix
multiply, which is implemented by splitting a matrix into small blocks that fit into
cache memory and performing small matrix-matrix multiplies on these blocks. This

This manuscript is for review purposes only.



6 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

3.5 T T T T T T T T T T
g g _ 30 i
2e 3% 2.5 i
o< 2 o~ _ = 4
§§ é& 2.0 L y e -
o Yw 1.5 N
& S 10
. 05 1 1 1 1 1 1 1 1 1 1
0Ok 4k 8k 12k 16k 20k 0k 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors
8 45 T T T T T T
& ! 5 29
2 6 Zx 35
a? 5 . 3.0
S E S E 2.5
B0 4 2L 20
oW 3 oW 15
Io% o :
0 2 0 1.0
1 0.5
0Ok 4k 8k 12k Ok 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall, 3:1, no vectors (d) tall, 3:1, with vectors
25 T T T T 14 T T T
g 20f 1 & 12 §
A 3 10| .
O 15| g 9 gL |
og Qg
o S
Tw 101 4 Bu 6f T
oW - mm wm O o m=@ = oW 4t - mm wm G g ]
> 5t ) 7] Y 2 P -]
0 - 0 I I I I
0 200 400 600 800 0 200 400 600 800
columns (matrix size 1000N xN) columns (matrix size 1000N xN)
(e) tall, 1000:1, no vectors (f) tall, 1000:1, with vectors
e |_INPACK — E|SPACK (1 core)

o= = = |INPACK (1 core)

FiG. 2. Comparison of LINPACK to EISPACK.

avoids excessive data movement between cache and main memory. This led to the
Level 2 BLAS [41] for operations with O(n?) flops, such as general matrix-vector
multiply (y = aAz + By, called dgemv); and Level 3 BLAS [40] for operations with
O(n?) flops on O(n?) data, such as general matrix-matrix multiply (C = aAB + SC,
called dgemm). Level 1 and 2 BLAS access O(1) elements per operation, and are
thus limited in performance by the memory bandwidth. Level 3 BLAS benefit from
the surface-to-volume effect of having only O(n?) elements to access for O(n?) op-
erations. The performance of Level 1, 2, and 3 BLAS are compared in Figure 3,
showing the significant benefit of Level 3 BLAS. The BLAS provides a means to write
high-level, high-performance, portable numerical software. Optimized BLAS libraries
are available, both from commercial vendors such as the Intel Math Kernel Library
(MKL) [71] and the IBM Engineering and Scientific Subroutine Library (ESSL) [70],

This manuscript is for review purposes only.



212
213
214

215
216
217
218
219
220
221
222
223
224

o Ot

3

o N N N

o NN NN NN NN
w N DN
© o

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 7

14 350
12
10 250
© 8 @—@ Level 3 dgemm
3 6 B—ll Level 2 dgemv
o 4 V=—¥ Level 1 daxpy
2
0 ! ! 0
2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
dimension (M, N) dimension (M, N, K)

Fia. 3. Comparison of Level 1, 2, and 3 BLAS performance.

and in open-source libraries such as OpenBLAS [96] and ATLAS [115]. These math
libraries often also included optimized versions of LAPACK, ScaLAPACK, and other
numerical libraries. Our tests used the optimized routines available in Intel MKL.

5.1. Blocked Householder Transformations. With the introduction of Level
3 BLAS, algorithms were recast using matrix multiplies, and LINPACK was re-
designed into LAPACK [2] to use Level 3 BLAS where possible. The redesign for
one-sided factorizations such as QR, LU, and Cholesky is relatively easier than re-
ductions for eigenvalue problems and the SVD because the transformations used in
QR, LU, and Cholesky are applied from only the left side [40]. Consecutive elemen-
tary transformations are restricted to a block of columns at a time, referred to as the
panel (depicted in Figure 4(a)), and updates to the rest of the matrix, referred to as
the trailing matrix, are delayed. The transformations used for a panel are blocked
together [14, 104] and applied to the trailing matrix as Level 3 BLAS.

I
I

trailing | = ! »

matrix | trailing
| matrix
I
1

(a) QR factorization (b) Bidiagonal reduction

FiG. 4. Comparison of panels and trailing matriz.

On the other hand, the reduction of a matrix A to bidiagonal form is done by
applying orthogonal matrices on both the left and right side of A—hence it is called
a “two-sided factorization.” The two-sided transformations create more data depen-
dencies, which make it impossible to entirely remove matrix-vector products involving
the trailing matrix (as in the one-sided factorizations). The panel becomes a block
row and block column, as shown in Figure 4(b), but panel operations also involve
the entire trailing matrix. Dongarra et al. [42] developed the blocked algorithm for
the bidiagonal reduction. The algorithm as implemented in LAPACK is given in
Algorithm 1, and can be summarized as follows.

Two orthogonal matrices, U; and Vi, are applied on the left and right side, re-
spectively, of an m x n matrix A to reduce it to bidiagonal form, B = U} AV;. The

This manuscript is for review purposes only.



236

[\
o
-~

239

240
241
242
243

8 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Algorithm 1 LAPACK implementation of bidiagonal reduction. In the {-} . nota-
tion, only the indicated column or row should be computed, not the entire matrix
product. y; and x; are computed as a series of matrix-vector products by distribut-
ing v; and u;. In LAPACK, Householder vectors representing V and U overwrite A.
Auxiliary function householder(z) (dlarfg in LAPACK) returns 7 and v that define
a Householder reflector H;, and the updated vector & = H;x = [ £|z[,0,...,0]7.
// bidiagonal reduction (A is m x n; assumes m > n and n divisible by n;)
function gebrd( A )
for i =1:nbyn
(V;Y; X; U) = labrd( Aim, i )
Ai+nb:m, i+npin — Ai+nb:m,i+nb:n -vyT - Xxu”
end
end function

// panel of bidiagonal reduction (A is m X n; assumes m > n)
function labrd( A )
V., Y, X, U initially empty
for i=1:mn,
// compute column i of A;;_1) using (4),
// then compute H; to eliminate below diagonal
Aim,i = {A-ViYT, = Xi UL},
(1i; vi; Aim, ) = householder( A;.pp, ;)
Yi = TiAZ;_l)Ui =1i(A-Vi Y, — X, UL )T,

// compute row i of H;A¢;_1y using (2) and (4),
// then compute G; to eliminate right of super-diagonal
Aiigin = {A - VY - Xi—lUinl}i, i+1in
(735 ui; Aj it1:m) = householder( A; ;41 )
zi = mi(Au_1y — vy Jui = m(A = VYT = X, UL g
end
return (Vi 41:m,1:m, Yop+1:n,1:m0 5 Xnp+1:m, 1 Unp+1:n,1i05 )
end function

matrices Uy and V; are represented as products of elementary Householder reflectors:
Uy=HHy...H, and Vi=G1Gs...Gp.
Each H; and G; has the form
H,=1- TiUﬂ)iT and G, =1- WiuiuiT,

where 7; and m; are scalars, and v; and u; are vectors. H; eliminates elements below
the diagonal in column ¢, while G; eliminates elements right of the superdiagonal in
row i. Let A(;_1) be the reduced matrix A after step i — 1. Applying H; on the left
yields

(2) HiAG_1yy =~ TiUiUiT)A(i—l) = A1) — vyl

This manuscript is for review purposes only.



246

288
289
290

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 9
while applying both H; and G; yields

A(i) = HzA(z—l)Gz = (I - TZ"Ui’UZT)A(i_l)(I — WZUZU;)
T

7

3)

=Ag-1) — UiyiT — T

where y; = TiAz;_l)vi and z; = mi(Ay—1) — vyl )u;. Blocking together i applications
of (3), we obtain

(4) Ay =H;---HAG, -Gy = A- VYl - x;U7,

where U; = [ul, .. ,ui], and similarly with V;, X;, and Y;. Note that it is possible to
update just part of A, namely the i-th column and row of A, in order to proceed with
the computation of the H; and G;. Thus, a delayed update is possible, but at each
step we still compute two matrix-vector products involving the entire trailing matrix
of A. As a result, if m = n, the entire factorization takes approximately %n?’ flops,
with half of the operations in Level 2 BLAS (matrix-vector products), while the other
half are in Level 3 BLAS.

5.2. QR Iteration. After the bidiagonal reduction, LAPACK solves the bidi-
agonal SVD using QR iteration, similar to EISPACK and LINPACK, or using divide
and conquer, which is described later in section 7. The original QR iteration algo-
rithm computed singular values to high absolute accuracy, meaning small singular
values might be inaccurate. Demmel and Kahan [31] derived the implicit zero-shift
QR iteration algorithm and proved that it computes all singular values to high relative
accuracy; this is used as needed for accuracy by LAPACK when computing singular
vectors. Accuracy is discussed further in section 13.

The qd (German: quotienten-differenzen) [100] and differential qd (dqd) [101]
algorithms proposed by Rutishauser actually predate QR iteration and are among the
first algorithms for computing singular values for modern computers. Subsequent to
Demmel and Kahan’s work, Fernando and Parlett [48] derived a shifted version called
dqds that allowed using shifts to maintain fast convergence, while still maintaining
high relative accuracy. This is used by LAPACK when computing singular values
only (no vectors). Quite a few more variants of qd can be derived [97].

5.3. Computation of Singular Vectors. Normally, LAPACK stores orthog-
onal matrices in an implicit fashion as a sequence of Householder reflectors, each
represented by a scalar 7; and vector u;. For QR iteration to accumulate the singular
vectors, it first generates U; and V; explicitly (using dorgbr); this is essentially ap-
plying block Householder reflectors to an identity matrix, as a series of Level 3 BLAS
operations.

The QR iteration algorithm then updates U; and Vi by applying the Givens
rotations used to reduce the bidiagonal matrix to diagonal. This is implemented in a
Level 2 BLAS-like fashion, where an entire sequence of n Givens rotations is applied
to update the entire U and V matrices (using dlasr). Recently, Van Zee et al. [113]
developed a Level 3 BLAS-like implementation of applying Givens rotations, which
they found made the SVD using QR iteration competitive with the SVD using divide
and conquer (discussed in section 7).

5.4. Initial QR Factorization. If m > n, it is more efficient to first perform a
QR factorization of A, and then compute the SVD of the n-by-n matrix R, since if A =
QR and R = UXVT then the SVD of A is given by A = (QU)XVT. Similarly, if m <

This manuscript is for review purposes only.



291
292
293
294
295
296
297
298
299

10 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

n, it is more efficient to first perform an LQ factorization of A. Chan [23] analyzed this
optimization, showing that it reduces the number of floating point operations. The
operation counts are given in Figure 5, with the theoretical crossover points based on
flops. Figure 6 plots the operation count as the ratio m:n increases, illustrating the
large savings as a matrix becomes taller. The results for tall matrices in Figures 8(c)
to 8(f) show that LAPACK achieves significant speedups, such as 120x compared
with EISPACK. This is a result of the reduced operation count and that much of the
computation is done via Level 3 BLAS in QR factorization, followed by a relatively
small square SVD problem.

QR iteration, D&C,

no vectors with vectors with vectors
Unoptimized 4mn? — %ng 12mn? + %n?’ 8mn? + %n3
With initial QR 2mn? + 2n3 6mn? + 16n3 6mn? + 8n?
Theoretical crossover m > gn m > 19—6n m > %n

Fic. 5. Floating point operation counts.

no vectors QR iter., vectors D&C, vectors
o 40’ 120n3 120n° — ; ; .
C
3 3 3
3 30n ] 90n* |- P unoptimized
_5 2013 60n® with initial QR
=1
g 10n° 3003 crossover
©  0n? on3

12 4 6 8 10
min aspect ratio min aspect ratio min aspect ratio

Fic. 6. Operation counts as ratio m:n increases (i.e., matriz gets taller), showing crossover
where doing initial QR factorization is beneficial.

Since bidiagonal divide and conquer (D&C, discussed in section 7) always operates
on a square matrix, doing an initial QR factorization with D&C results in less of an
improvement than with QR iteration. Asymptotically, as the ratio m:n — inf, the
initial QR factorization, generating @), and multiplying by @ are responsible for most
of the cost, as shown by the profile of the 1000:1 case in Figure 7. As a result, using
QR iteration or divide and conquer yield the same performance for very tall-skinny
matrices. The crossover points in Figure 5 are based solely on flop counts. Since doing
an initial QR also shifts operations from Level 2 to Level 3 BLAS, the crossovers are
ideally tunable parameters, for instance by LAPACK’s ilaenv tuning function.

5.5. Results. An overview of all the phases in the complete SVD is given in
Algorithm 2, with a profile of the time spent in each phase in Figure 7. For the
square, no vectors case, we see that the bidiagonal reduction (blue with \\ hatching)
takes almost the entire time, while QR iteration (green, no hatching) takes very little
time, as expected since QR iteration is O(n?) while the bidiagonal reduction costs
%n?’ flops. When computing singular vectors, the QR iteration time becomes nearly
half of the overall time, due to accumulating U = UyUs and V = V1 V5. Generating
the explicit U; and V; matrices (orange with \\\\ hatching) is a small portion of the
time, even though together they have nominally the same operation count (%n“) as

This manuscript is for review purposes only.



318
319
320
321
322
323
324
325
326

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 11

Algorithm 2 Overview of SVD algorithm using QR iteration (dgesvd) for m > n.
Accumulating U = U;Us and V = V1V, occurs during QR iteration. 1 Marked lines
are required only when computing singular vectors.

Description LAPACK | Cost Cost
Routine for m > n
if m > n then
QR = A (QR factorization) dgeqrf 2mn? — 2n?
A=R
else
A=A
end
U, BV = A (bidiagonalization) — dgebrd 4mn? — 4n3 8p3
generate explicit Uy dorgbr T | 2mn? — %ng’ 1
generate explicit V; dorgbr t | 3n® %113
U2V = B (QR iteration) dbdsqr O(n?) O(n?)
U =U,U, weoon ot 6mn? 6n3
V=WW "o | 6nd 613
if m > n then
generate explicit Q dorggr f 2mn? — 2n?
U=QU dgemm 2mn?
end
Total cost (with vectors T) 12mn? + n? | 6mn® + 16n°
Total cost (no vectors) 4mn? — 3n? 2mn® + 2n®
300 ILAFl’ACIl( dgesvd, n|=10|000| LAPACKI dgesvd, 900(])00>< 900
B v=00

B generate 0

- bidiagonal QR iter.
generate U, V;
- reduce to bidiagonal
- OR factorization

time (sec)

m=n m=3n m=n m=3n m=1000n m=1000n
no vectors with vectors no vectors with vectors

Fi1G. 7. Profile of LAPACK SVD. Left is 10000 x 10000 and 30000 x 10000 problem. QR
factorization reduces the 30000 x 10000 matriz to a 10000 x 10000 matriz. Right is a 900000 x 900
problem, where reduction to bidiagonal and QR iteration become vanishingly small.

the bidiagonal reduction. This exemplifies the performance difference between Level 2
BLAS, in the bidiagonal reduction, and Level 3 BLAS, in generating U; and V.
The tall 3:1 matrix first does an initial QR factorization, resulting in a square R
matrix the same size as the square case (10000 x 10000). Thus the profile for the 3:1
case simply adds the QR factorization, generating Q, and multiplying U = QU steps
to the square case. For the tall 1000:1 matrix, the initial QR factorization dominates
the overall time, with the subsequent bidiagonal reduction and QR iteration becoming
vanishingly small. When vectors are computed, generating ) and multiplying U =
QU add significant time, while generating U; and V7 and updating U = U;Us and

This manuscript is for review purposes only.



327
328
329
330
331
332
333
334

335

12

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

40 50
f 35 f
2. 30 g 40
°g 25 29 30
S 20 SE
TL 15 Tw 20
g™ 10 2% 10
ogeio o cE-m-4& R B L
0 e 0 L I T |
0Ok 4k 8k 12k 16k 20k Ok 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors
120 90 ¢
g _ 100 g %
3% 80 3% 60
og o< 50
Sa 60 34 40
32 40 82 30
g™ g™ 20
o 200 g -m -m - E- @ 10
0 & > "a L il | 0 e
Ok 4k 8k 12k Ok 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall 3:1, no vectors (d) tall 3:1, with vectors
400 300
= 350 N b3 250
9] 9]
3y 3% 1 3% 200
Q_g 250 - o.g
_g% 200 - _g% 150
£ 150 - -2}
oW 190 J w100
& 50 1T 2 s0
0 - - - 0
0 200 400 600 800 0 200 400 600 800

columns (matrix size 1000N xN) columns (matrix size 1000N xN)

(e) tall 1000:1, no vectors (f) tall 1000:1, with vectors

B— LAPACK oms L INPACK

- = B LAPACK (1 core)

Fia. 8. Comparison of LAPACK, LINPACK, and EISPACK. Solid lines represent 16-core
runs; dashed lines represent single core runs.

V = W1V, during QR iteration are also vanishingly small. Thus for very tall-skinny
matrices, the performance is dominated by operations rich in Level 3 BLAS.

Figure 8 shows the speedup that LAPACK achieves compared with EISPACK.
Even a single-core implementation may achieve over 5x speedup. But the real poten-
tial is shown when using multiple cores (16 in this case)—a 45x speedup is possible for
square matrices and over 350x speedup for tall matrices with a 1000:1 row-to-column
ratio. The square, no vectors case in Figure 8(a) is dominated by the bidiagonalization,
as the subsequent bidiagonal SVD is O(n?). With Level 3 BLAS being significantly
faster than Level 2 BLAS, and half the operations in Level 2 BLAS, we expect the

This manuscript is for review purposes only.



338
339
340
341
342
343
344

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 13

bidiagonalization to be about 2x the speed of Level 2 BLAS. Modeling the time as

_4An® 4An?
o 37"2 37"3

with the Level 2 BLAS rate as ro = 13.4 Gflop/s and the Level 3 BLAS rate as
r3 = 315 Gflop/s (from Figure 3), we obtain a theoretical bound of 25.7 Gflop/s.
This yields a speedup of 34.7x over EISPACK—exactly what we see for LAPACK in
Figure 8(a). When computing singular vectors, LAPACK achieves a higher speedup,
up to 45.3x%, reflecting that computation of U; and V; uses Level 3 BLAS. The tall
matrix cases achieve even higher speedups because much of the work is done in the
initial QR factorization.

5.6. Level 2.5 BLAS Implementation. Since the bidiagonalization perfor-
mance is limited by the Level 2 BLAS operations, Howell et al. [69] sought to optimize
these operations by observing that several Level 2 operations can be done together,
thus reducing memory transfers by keeping data in cache. This technique of fus-
ing several Level 2 operations together was called the Level 2.5 BLAS [69, 17]. For
instance, to compute

z=pATy +z,

w = oAz,
known as dgemvt, A is partitioned into block columns as
A= [A1 Ay - Ak],

where each A; has b columns, and is sized such that it fits into cache. Correspondingly,
z and z are partitioned as

Tk 2k

The dgemvt loops over the A; blocks, performing two dgemv operations with each
block as shown in Algorithm 3. Keeping each A; in cache for the second dgemv cuts
main memory traffic roughly in half, thereby increasing the potential performance.
With some algebraic manipulation, the two products y; = 7;ATv; and x; = m;Au;
from the bidiagonalization panel can be computed together using this dgemvt. Tests
that Howell et al. ran showed a 1.2-1.3x speedup over the existing LAPACK im-
plementation for the bidiagonalization. Van Zee et al. [114] further analyzed these
operations and fused them at the register level, reusing data in registers to also avoid
unnecessary accesses to cache memory, showing potential further speedups. So far,
these results have been for single-threaded implementations, and the speedups do not
carry over when using multithreaded BLAS. If optimized Level 2.5 BLAS become
available for multicore processors, this may become a viable approach, but we don’t
pursue this further here.

6. ScaLAPACK Implementation. To use a distributed-memory computer,
the Scalable Linear Algebra Package (ScaLAPACK) [16] extends LAPACK by dis-
tributing the matrices in a 2D block cyclic layout using the prescribed block size ny
and the pair of parameters (p, q) to define a p-by-q process grid, as illustrated in Fig-
ure 9. ScaLAPACK parallelizes the LAPACK subroutines using the parallel version of

This manuscript is for review purposes only.



14 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Algorithm 3 Pseudocode for dgemvt
w=20
fori=1:k
z; = BATx; + 2 /] dgemv, loads A; into cache
w=cad;x;+w //dgemv, reuses A; in cache

end
process 0 process 1 process 2
1,1 1121314 (15(1,6 1,1 11,4 1,215 1,3 1,6
21122 /23|24 25|26 3,134 32|35 3,3 3,6
3,132 33|34 35|36
41 42|43 44 45 46 process 3 process 4 process 5
2124 22|25 23|26
41 |44 4,2 | 4,5 4,3 | 4,6
(a) Global view of matrix. Each (b) Local view of matrix. Each local submatrix
square is an ny X np block, colored by is stored in column-major order.

process that it is distributed to in (b).

F1ac. 9. 2D block cyclic distribution of the matriz A using 2-by-3 processor grid.

BLAS (PBLAS) and the Basic Linear Algebra Communication Subprograms (BLACS)
for the interprocess communication, implemented on top of the Message Passing In-
terface (MPI) [93]. For instance, to bidiagonalize the input matrix for computing the
SVD [24], dgebrd of LAPACK uses the Level 2 BLAS matrix-vector multiply (dgemv)
to perform about half of its total flops. Now, to perform the matrix-vector multiply
on a distributed-memory computer, in pdgemv of PBLAS, each process first gathers
all the required nonlocal block rows of the input vector from other processes. After
the completion of this initial interprocess communication, each process independently
computes the matrix-vector multiplication with the local submatrix. Finally, each
process computes the local part of the output vector by gathering and accumulating
the partial results from the other processes in the same row of the process grid. Hence,
ScaLAPACK follows the fork-join parallel programming paradigm and is designed for
the weak parallel scalability of the algorithm. Since PBLAS performs most of its local
computation using BLAS, ScaLAPACK can exploit a NUMA (non-uniform memory
access) architecture using a threaded version of BLAS.

Figure 10 compares the performance of ScaLAPACK’s pdgesvd with the per-
formance of LAPACK’s threaded dgesvd for computing the SVD on our 16-core
shared-memory computer. While, from ScaLAPACK’s perspective, each MPI pro-
cess has its own memory and explicit messages are passed between MPI processes, on
a shared-memory computer the MPI implementation uses an efficient shared-memory
communication layer to copy data. See section 11 for ScaLAPACK’s performance on
a distributed memory computer. The performance of pdgesvd was obtained using the
tester included in ScaLAPACK version 2.0.2, which was linked with ScaLAPACK and
the sequential LAPACK/BLAS of Intel MKL. We tested the performance of pdgesvd

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 15

50 I I I I I | I I I

20|
10

0 1 1 1 1 1 1 1 1 1 1

0k 4k 8k 12k 16k 20k 0k a4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)

speedup over
EISPACK

speedup over
EISPACK

(a) square, no vectors (b) square, with vectors

100

speedup over
EISPACK
(o))
o
EISPACK
w
o
T 1T T T T 177

speedup over

0 I I I I I u
Ok 4k 8k 12k Ok 4k 8k 12k

columns (matrix size 3N xN) columns (matrix size 3N xN)

(c) tall, 3:1, no vectors (d) tall, 3:1, with vectors

300
250 |
200
150
100 |

speedup over
EISPACK

speedup over
EISPACK

1 1 1 O 1 1 1
0 200 400 600 800 0 200 400 600 800

columns (matrix size 1000N xN) columns (matrix size 1000N xN)

(e) tall, 1000:1, no vectors (f) tall, 1000:1, with vectors

@——@ SCcalAPACK H—i LAPACK|

Fi1c. 10. Comparison of ScaLAPACK to LAPACK.

using 8-by-2, 4-by-4, and 2-by-8 processor grids and block sizes of 32, 64, and 128. The
figure shows the optimal performance among these parameter configurations. We see
that the performance of pdgesvd was often lower than the performance of LAPACK’s
dgesvd. This is mainly because several optimizations have not been implemented in
pdgesvd. For instance, for a tall-skinny matrix (m > n), dgesvd computes the QR
factorization of the input matrix A, followed by SVD of the resulting upper-triangular
matrix, as described in subsection 5.4. For a tall-skinny matrix A, this greatly reduces
the number of required floating point operations, compared to that of pdgesvd, which
directly computes the SVD of the input matrix. As a result, for computing the SVD
of a tall-skinny matrix, pdgesvd was slower than dgesvd.

After the bidiagonalization of the input matrix A, pdgesvd computes the SVD
of the bidiagonal matrix using dbdsqr of LAPACK. If only the singular values are
requested, pdgesvd typically spends an insignificant amount of time in dbdsqr. How-

This manuscript is for review purposes only.



415
416
417
418
419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
434
435
436

438
439
440
441

442

16 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

160 7 ' I 500F ' ' I
140
120 400
9 100 2 300 | v=v102: v=v1v;
" "
> 80 P Il bidiagonal QR iter.
E o0 £ 200 B reduce to bidiagonal
40 100
20
0 0
4k 8k 12k 4k 8k 12k
columns (matrix size NxN) columns (matrix size NxN)
(a) square, no vectors (b) square, with vectors

F1G. 11. Profile of ScaLAPACK reference implementation with ny, = 32 and (p,q) = (4,4).

ever, if the singular vectors are needed, our performance profile in Figure 11 using
the reference implementation of pdgesvd revealed that the execution time can be
dominated by the time to compute the singular vectors of the bidiagonal matrix. The
reason is that pdgesvd has all the MPI processes in the same column or row of the
processor grid redundantly compute the left or right singular vectors, respectively,
of the bidiagonal matrix, that are distributed to the process group. Compared with
pdgesvd, LAPACK’s dgesvd obtained higher performance by using dbdsqr with mul-
tithreaded BLAS. The reference implementation of pdgesvd obtained about the same
performance as that of MKL’s pdgesvd when linked to MKL BLAS and LAPACK.
Finally, ScaLAPACK supports only the QR iteration algorithm for computing the
SVD of the bidiagonal matrix, using LAPACK’s dbdsqr, while as shown in section 7,
the divide and conquer process in LAPACK’s dbdsdc may be faster than dbdsqr.

7. Singular Vectors from the Divide and Conquer Process. For solv-
ing the bidiagonal SVD subproblem, QR iteration and the related qd algorithms
may take as much as 80% of the total time when computing singular vectors of a
dense matrix [56]. Gu and Eisenstat introduced the bidiagonal divide and conquer
(D&C) [57, 59] algorithm, which may be an order of magnitude faster on some ma-
chines [56]. The development of D&C was based on prior work focusing on computing
eigenvalues and singular values [4, 25, 52, 58, 74].

The divide and conquer process includes a matrix partitioning step that introduces
two large submatrices. The splitting can either occur with “the middle” row [4, 56]
or column [57]:

B 0
B = |arer [rer or B = {

Bl AClL 0 ]
0 By

0 Brer Ba

Note that after the partitioning, B; might not be square, even though B was. The
fix is to append a zero row or column [57] to obtain the desired shape.

In either row or column case, the process continues recursively to obtain the SVD
of By and By, which can be used to decompose B as:

B = Q’I’M’I"W’r‘ or B = QCMCWC7
with orthogonal matrices @, W, @Q., and W.. M, and M, have a special structure:

This manuscript is for review purposes only.



144

446
447
448
449

458

459
160
461
462
463
464
465
166
467
468
469
470
471
472
473
474
475
476

177

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 17

only the diagonal and either a single row or column is non-zero, respectively:

Z1 22 ... Zn Z1
do zg  do
M, = ) or M.=|.
dn Z'IL d?’l

Trivially, because matrices Q,., W, Q., and W, are orthogonal, B and M, or M,
share singular values ;. A number of theorems and lemmas [74, 57] lead to a fast
and numerically (relatively) stable procedure for computing the SVD of M,. or M, as
UmZmVWf . The interlacing property sets the bounds and ranges for o;:

0=di<o1<dy <...<dp <op<dn+|z|2

and the secular equation:

n 2
z
flo)=1+Y k=0
;di_o_2

is used for computing the values o; with a specifically crafted root finder that ac-
counts for floating-point vagaries of past and modern computing systems [80]. The
corresponding formulas for the left singular vectors U,,:

(5) wi = | = ]
I e L P

[ n

and the right singular vectors V,,:

dazs dnzn 17 ~ (dr2k)?
i = | —1, ey 1 —
© = g ] / Y2 @ oy

k=2 ¢

indicate that there could be accuracy problems for the components of either set of
vectors, even though the computed singular values 6 are a good approximation of the
exact singular values o, because the ratios z; /(d2—0?2) in (5) and (6) can be inaccurate.
The trick is not to use the same M, or M. matrices that were used to compute the
approximate singular values g;, but instead to construct new Mr or Mc based on J;
that improve the accuracy of expressions in Equations (5) and (6) [80, 59]. This can
dramatically diminish the departure from orthogonality for both sets of vectors.

After computing U,, and V,,,, the SVD of B is computed by multiplying Q..U,,
and V,I'W,.. This is done for each B matrix in the recursion tree, from the leaf nodes
to the root. Most of the cost of D&C is in these matrix multiplications, which are
Level 3 BLAS. In particular, most of the cost is at the higher levels of the recursion
tree, near the root node, as the matrices get larger.

Li et al. [81] recently showed that D&C internally generates matrices with struc-
ture that can be exploited. The matrices U,, and V,,, that are the singular vectors
of M, have low-rank off-diagonal blocks that can be efficiently compressed with hi-
erarchically semiseparable (HSS) matrices. Using HSS improves the speed of matrix
multiplies, reducing the cost of the bidiagonal D&C step from O(n?) to O(n?r), where
r depends on the matrix but usually r < n for large n. Li et al. showed over 3x
improvement compared to Intel MKL for the bidiagonal D&C step on large matrices.

This manuscript is for review purposes only.



478
479
4180
181
482
483
484
485
486
187
488
489
490
491
192
493
494
495
196
497
198
499
500

18 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Algorithm 4 Overview of SVD algorithm using divide and conquer (dgesdd) for
m > n. Generating explicit Us and V5 occurs during D&C. § Marked lines are
required only when computing singular vectors.

Description LAPACK | Cost Cost
Routine form>n
if m > n then
QR = A (QR factorization) dgeqrf 2mn? — 2n?
A=R
else
A=A
end
U, BV = A (bidiagonalization)  dgebrd 4mn? — %n3 §n3
U2V = B (D&C) dbdsdc O(n?) O(n?)
generate explicit Us noono g | 43 4,3
generate explicit V5 noon %yﬁ % 3
U=U,U, dormbr dmn? — 2n3 | 2n3
V=Wl dormbr t | 2n3 2n3
if m > n then
generate explicit @ dorgqr T 27mn? — %nfi
U=QU dgemm 2mn?
end
Total cost (with vectors t) 8mn? + 4n3 | 6mn? + 8n3
Total cost (no vectors) d4mn® — 3n® | 2mn® + 2n3

D&C restructures the SVD algorithm somewhat, as shown in Algorithm 4, com-
pared with the QR iteration version in Algorithm 2. D&C directly computes the SVD
of the bidiagonal matrix B = UsX V5, and then multiplies U = U1U; and V = V1V,
afterwards (using dormbr), while with QR iteration, LAPACK first generates U; and
V1 (using dorgbr), then accumulates Us and Va onto Uy and Vi during QR iteration.
The profile in Figure 12 shows this difference in the bidiagonal QR iteration (green,
no hatching) vs. D&C steps (green, + hatching); and the generate Uy, V1 (orange, \\\\
hatching) vs. U = U1Us, V = V1 V4 (orange, // hatching) steps. The main advantage
of the divide and conquer approach is that it saves nearly half the flops compared to
QR iteration when computing singular vectors. For a square matrix, D&C is ~ 9n3
flops, compared to ~ 17n® for QR iteration (Figure 5). We can observe this as a
reduction in time for the steps mentioned above in Figure 12.

Figure 13 shows the relative speedup over EISPACK when using a modern mul-
ticore system, for both the divide and conquer (D&C) and QR iteration algorithms.
We see that for square and tall 3:1 matrices, D&C is consistently faster than QR
iteration. Because of the initial QR factorization (described in subsection 5.4) the
advantage decreases as m grows relative to n, so that for a very tall matrix, both
methods are nearly the same time, as seen by the 1000:1 case in Figure 13(c). It may
be safely assumed that D&C is superior to the QR iteration algorithm for most sce-
narios, and the worst case is when both perform at the same speed. When computing
only singular values, not singular vectors, LAPACK always uses QR iteration, since
in that case both bidiagonal QR iteration and D&C are O(n?), while the overall time
will be dominated by the O(n?) reduction to bidiagonal.

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 19

LAPACK dgesvd and dgesdd, n=10000

300 [ T T T T T T ] - U:Qi]

250 [ generate
7 200 72 v=u0,: v=viv,
& Il bidiagonal D&C
.‘é’ 150 Il bvidiagonal QR iter.
S 100 generate Uy, V,

50 B reduce to bidiagonal
B 0k factorization
QR iter. D&C QR iter. D&C
m=n m=3n
with vectors with vectors

Fic. 12. Profile comparing LAPACK QR iteration (dgesvd) and divide and conquer (dgesdd)
algorithms. For QR iteration, it generates U1 and V1, then updates those with Uz and Vo during
QR iteration. Divide and conquer generates Ua and Va, then multiplies U= U1Us and V = V1 Vs
afterwards.

60
50
40
30
20
10

speedup over
EISPACK

- - + - -
0 I-+ I-* I— l -I *_I -
0ok 4k 8k 12k 16k 20k
columns (matrix size N xN)

(a) square, with vectors

120 300
g 100 $ 250
3% 8o 3% 200
§§ 60 §§ 150
Qo 40 g 100
& 20 & 50 .
n v - .
0 4 0 - "'.- - * ,-
0k 4k 8k 12k 0 200 400 600 800
columns (matrix size 3N xN) columns (matrix size 1000N xN)
(b) tall, 3:1, with vectors (c) tall, 1000:1, with vectors
—=q@ LAPACK D&C B—1 LAPACK QR iter.

¢ — 4 LAPACKD&C (1 core) N+ = H LAPACK QR iter. (1 core)

Fic. 13. Comparison of LAPACK divide and conquer (D&C) to QR iteration. Solid lines
represent 16-core runs; dashed lines represent single core runs.

8. Bisection and Inverse Iteration. LAPACK 3.6.0 introduced a bisection
method (dgesvdx) to compute all or a subset of the singular values and vectors [86].
Similar to QR iteration (dgesvd) and divide and conquer (dgesdd), it first reduces
the matrix A to bidiagonal form B. Then it computes the singular values of B
based on bisection and the corresponding singular vectors by inverse iteration, using
dbdsvdx. For computing the SVD of B, it converts the bidiagonal matrix B to the

This manuscript is for review purposes only.



509
510
511
512
513
514
515
516
517
518
519

e

521

NN NN
= W N

t

e

S © 0 g O

Ut = W N =

[«

J

co

=R W W W W W W W W W W NN NN
©

BRSO
Y O R W N~ O

B

=~

=)

o Oov Oov Ov Ot Ot Ot Ot Ot v Ov Ov Qv Ot Ot Ot Ot Qv Ot Ot v Ov Ov Ot Qv Ut Ut Ot Ot

T s
o

20 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Golub-Kahan [53] symmetric tridiagonal matrix T of dimension 2n,

bl,l b1,2 b2,2 b2,3 e bnfl,n bn,n
(7) T =tridiag0 0 0 0 0 .. o0 0|,
big bio b22 bas ... bp_in bpn

whose eigenpairs are (+0;, 2;), where ¢; is the j-th singular value of B. Elements of
u; and vj, the corresponding left and right singular vectors of B, are interleaved in the
eigenvector as z; = [V, —U1j,Va.j, —U2.js - -, Un j, —Un.;]/v/2. Instead of developing
new subroutines, dbdsvdx relies on the subroutines dstebz and dstein that compute
the eigenvalues and eigenvectors, respectively, of the symmetric tridiagonal matrix
based on bisection and inverse iteration.

The bisection algorithm implemented in dstebz uses Sylvester’s inertia theorem
to compute the number of eigenvalues within a certain interval. In particular, the
algorithm relies on the LDL” factorization of the matrix 7, where L is a lower-
triangular matrix with unit diagonal and D is a diagonal matrix. For the symmetric
tridiagonal matrix T', the diagonal matrix D can be computed with O(n) flops based
on the simple recurrence formula,

i—1,i

disi = (tii =) di—1i-1

Given the LDL” factorization of the matrix T — sI for a certain shift value s, the
number of negative elements of D is equal to the number of eigenvalues of 7" smaller
than s. In other words, given the LDLT factorizations of two shifted matrices, T — s,
and T — sol, with s1 < so, if there are n; and no negative entries in their respective
diagonal matrices, then there are my — m; eigenvalues in the interval (s1,s2]. In
addition, for the tridiagonal matrix, it can be shown that the LDL” factorization
without pivoting can be reliably used for counting the number of eigenvalues [34, 75].
Based on these observations, dstebz keeps bisecting the initial interval containing
all the desired eigenvalues until it finds a small enough interval for each eigenvalue
such that the computed eigenvalue has the desired accuracy. Each bisection improves
the accuracy of the eigenvalue by one bit, hence the iteration converges linearly. An
advantage of bisection is that it can be naturally adapted to compute a subset of
eigenvalues, which was one of the motivations for introducing dgesvdx [86].

Given the eigenvalues computed by dstebz, dstein computes the correspond-
ing eigenvectors based on inverse iteration. Namely, for each computed eigenvalue
A, it first computes the LU factorization of the shifted matrix A — A\l with partial
pivoting. Then the corresponding eigenvector of A is computed by inverse iteration,
with a starting vector whose entries are random numbers uniformly distributed in
the interval (—1,1). Given an accurate eigenvalue approximation, inverse iteration
converges quickly [72] (e.g., dstein sets the maximum number of iterations to be
five). However, when the eigenvalues are close to each other, inverse iteration may
fail to generate orthogonal eigenvectors. To recover the orthogonality among such
vectors, dstein reorthogonalizes the vectors based on the modified Gram-Schmidt
procedure. Unfortunately, when the computed eigenvectors are nearly dependent, the
eigenvectors may not be accurate after the reorthogonalization [33]. In addition, if
many of the eigenvalues are close to each other, this reorthogonalization cost could
become significant with O(k?n) flops for computing k eigenvectors in the worst case.
As a result, in our experiments shown in Figure 14, we saw that when computing
all the singular values and vectors, bisection can be significantly slower than other

This manuscript is for review purposes only.



SO

ot Ot gt Ut Ot

ot

Ut
i

oo

ot ot

ot Ot Ot Ot Qv Ot Ot Ot Ot Ot

ot
=

ot C

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 21

g T T
%5 > ,'l i
g 41+ ’.’ —
3% 3 1'wr R
gu 2_,6 *—x |
0 1

0 Il Il

Ok 2k 4k

columns (matrix size N xN) columns (matrix size N xN)

(a) square, with vectors (right graph is zoom of left graph)

speedup over
EISPACK
(9,
o

Oo.—-wwbmm\lm

0ok 4k 8k 12k k 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)

(b) tall, 3:1, with vectors (right graph is zoom of left graph)

300
§ 250
5% 200
§§ 150
$E 100
e 50 —
wn - .
0 - --— - ! - !-
0 200 400 600 800
columns (matrix size 1000N xN)
(c) tall, 1000:1, with vectors
== Bisection I — B LAPACK QR iter. (1 core)

B— LAPACK QR iter.

F1a. 14. Comparison of bisection with QR iteration. Solid lines represent 16-core runs; dashed
lines represent single core runs.

methods. Even with 16 threads available, it is slower than the single-threaded QR
iteration (dashed line). Bisection and inverse iteration are embarrassingly parallel—
each eigenvalue and eigenvector may be computed independently—however, LAPACK
does not currently include such explicit parallelization, instead primarily relying on
parallelism within the BLAS, which is not advantageous in this case. On the other
hand, as seen in Figure 15, when only a subset of k singular values and vectors are
computed, we observed that bisection and inverse iteration (non-hatched bars) can be
up to 2.4x faster than divide and conquer (D&C, black bar and dashed line), which
must compute all the singular values and vectors. Depending on the matrix type,
when computing £ = 400 or k£ = 600 vectors out of n = 3000, it becomes faster to
simply compute all the vectors using D&C. The exception here is the cluster, with
one singular o1 = 1 and all other o; = 1/k. In that case, computing any k > 1 vectors

This manuscript is for review purposes only.



563

564

S O
(S N

o 00 0o
e

ot Ot ot Ot U1 Ot Ot Ol Ut Ot Ot Ot Ot ot Ot gt Ot Ot Ut

ot

22 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

126.3 126.1 103.3 118.4
T T T m T T T
14
12
@ 10
o
S 8
E 6
R
2
0

entries arithmetic, geometric, ¥ random cluster at 1/x,
random k=10° k=10° uniform k=10°
uniform

N f=1 B £=400 I /=3000, D&C

I k=10 /1 £=600 [—1 Bisection is non-hatched

N £=100 B £ =3000 [Z—Z1 MRRR is hatched

B £ =200

Fic. 15. Results for computing k singular vectors of n X n matriz, n = 3000. Dashed lines
shows DEC performance for computing all vectors. Number on top shows time for bars that exceed
graph’s height.

was as slow as computing all vectors with bisection. See section 2 for a description of
the matrices.

9. Multiple Relatively Robust Representations (MRRR). MRRR [35,
36] was developed to improve both the performance and accuracy of inverse iteration.
Analysis has shown that MRRR can compute the numerically orthogonal eigenvectors
of a symmetric tridiagonal matrix in O(n?) flops. At the time of preparing this
paper, there was no publicly available software package that implements MRRR for
computing the SVD of a general matrix, but there were at least two software packages
that compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using
MRRR: dstemr of LAPACK [38], and dstexr due to Willems and Lang [118], which
is tailored toward the tridiagonal matrix with zeros on the diagonal, as used in (7) for
the SVD. For our experiments, we replaced the symmetric tridiagonal solver (dstevx)
used in dgesvdx with dstexr. Performance with dstemr was generally similar but
somewhat slower.

One of the main drawbacks of inverse iteration is that, for the eigenvalues with
small relative gaps, the computed eigenvectors may not be orthogonal to each other.
Hence, reorthogonalization is needed. This increases the computational cost and
potentially leads to loss of accuracy in the computed eigenvectors. To address these
issues, MRRR combines several techniques.

First, though the eigenvectors are invariant under a diagonal shift, we can increase
their relative gaps by diagonally shifting the matrix. For instance, let us define the

relative gap between two eigenvalues )\; and A; to be nmlt?lx\%ml\]\) Then, we can
increase their relative gap by a factor of I )\lilq_l when we diagonally shift the matrix

using a shift 7 that is close to A.
Hence, before applying inverse iteration, MRRR recursively refines the approx-
imation to the eigenvalues and applies appropriate diagonal shifts to a cluster of

This manuscript is for review purposes only.



619

620
621
622
623
624
625

626
627
628
629
630
631
632

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 23

eigenvalues such that it can guarantee large enough relative gaps between all the
eigenvalues of T' to maintain the orthogonality among the computed eigenvectors
without reorthogonalization. For instance, given two approximate eigenvalues \; and
A;, inverse iteration is used to compute their respective eigenvectors v; and v; with
small residual norms, i.e.,

|Tvy, — Avg| = O(ne|T)|) for k =i and j.

Then, according to [37, 38], a realistic bound on their orthogonality error is given by

Ail £+ [A40)
oTo, :O(ndl; _
o [Ai = A

Therefore, if the gap |A; — A;| is of the same order as the eigenvalues, their eigenvectors
are numerically orthogonal, i.e., |viij| = O(ne).

There are several parameters that can be tuned to improve the performance [38],
including the accuracy of the eigenvalue approximation computed at each step and
the choice of the algorithm for computing the approximation (e.g., bisection, QR
iteration, or Rayleigh quotient correction).

Second, while computing the eigenvalues (e.g., applying the diagonal shift), a
small relative roundoff error in the entry of the tridiagonal matrix could result in
a large relative error in the computed eigenvalues, especially in those with small
magnitudes. To preserve the relatively high accuracy of the computed eigenvalues,
MRRR stores the intermediate matrices in particular representations, referred to as
the Multiple Relatively Robust Representation (MRRR) of the matrices. For instance,
it has been shown that the LDLT representation of the tridiagonal matrix T, without
pivoting, is relatively robust, even with the presence of the element growth [31].
Hence, MRRR stores the sequence of intermediate matrices with different shifts in
their LDL” forms.

Third, for an eigenvalue with a small relative gap, the cost of inverse iteration
may be high, requiring a few iterations to obtain the eigenvector with a small relative
residual norm. Fortunately, there is at least one starting vector with which inverse
iteration converges in one iteration. For example, when the i-th column of (7'— \I)~*
has the largest column norm, then with the canonical vector e; as the starting vector,
one step of inverse iteration computes the approximate eigenvector x such that

T2z — Az| < V/n A=A

)

where ) is the exact eigenvalue [72]. Hence, if the eigenvalue is computed to a high
relative accuracy, - -
|A=A| = O(e|A]),

(e.g., using bisection with O(n) flops), then the computed eigenpair obtains a small
relative residual norm,

[Tz — Az| = O(ne|A|).

There is an algorithm to find the column of (7' — A\I)~! with largest norm with
O(n) flops [98]. In addition, if a twisted factorization is used to find the starting
vector, then it can be shown that the computed eigenpairs have small residual norm
with respect to the original matrix T' [36, 37]. The twisted factorization must be
carefully computed for T" with a zero diagonal because the leading dimension of an
odd dimension is singular. To enhance the numerical stability, dstexr computes a
block variant of the factorization [118].

This manuscript is for review purposes only.



633
634
635
636
637
638
639
640
641
642
643
644
645
646

647

648
649
650
651
652
653
654

655

24 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

60
§ 50
oé 40
o 20
T 10
0
0ok 4k 8k 12k 16k 20k
columns (matrix size N xN)
(a) square, with vectors
120 T T T 300
§ 100 § 250
3% 80 33 200
§§ 60 §§ 150
gm 40 9o 100
& 20 & 50
0 0 1 1 1 1
Ok 4k 8k 12k 0 200 400 600 800
columns (matrix size 3N xN) columns (matrix size 1000N xN)
(b) tall, 3:1, with vectors (c) tall, 1000:1, with vectors
4= MRRR ¢—4§ LAPACK D&C

3 Bisection Nl LAPACK QR iter.

F1c. 16. Comparison of MRRR with QR iteration, divide and conquer, and bisection.

As can be seen in Figure 16, by avoiding the reorthogonalization, MRRR can
significantly improve the performance of inverse iteration, making MRRR comparable
to QR iteration. However, divide and conquer is often faster.

Especially for large matrices, we noticed numerical issues where the backward er-
ror ||A —USVT|| /(min(m, n) || Al|) was large, e.g., 10~* instead of 107'¢ as expected.
Further tests in section 13 show that, even when the above error is acceptable, MRRR
has poor relative error for the singular values. Marques and Vasconcelos [86] also ob-
served numerical issues with the existing MRRR implementation.

When only a subset of k£ singular vectors are computed, we observe in Figure 15
that inverse iteration can be up to 1.6x faster than MRRR for a small number vectors
(k = 1 or 10). For a larger subset of k& = 600 vectors, MRRR can be up to 1.8x
faster than bisection, but in this case, only for the random entries matrix is MRRR
significantly faster (1.3x) than computing all the singular vectors with divide and
conquer. The exception is the cluster matrix, where for £ > 1, MRRR is 30x faster
than bisection, but always slower than using divide and conquer.

10. MAGMA Implementation for Accelerator Architectures. Accelera-
tors such as GPUs and the Intel Xeon Phi provide a high degree of parallelism and
a larger memory bandwidth than traditional multicore CPUs. The MAGMA library
was developed to address this new architecture, and accelerates most phases of the
SVD algorithm: reduction to bidiagonal, bidiagonal D&C, and computation of sin-
gular vectors. For tall-skinny matrices, it also accelerates the initial QR factorization
and generating Q.

The most prominent place to start is an accelerated version of the bidiagonal

This manuscript is for review purposes only.



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 25

300 LAPACK and MAGMA, 30000 10000

BN v=0U
250 [ generate 0
S 200 7 0=0102; v=viVy
k) 150 Il bidiagonal D&C
g Il bidiagonal QR iter.
S 100 generate U, V)
50 B reduce to bidiagonal
B or factorization
LAPACK MAGMA LAPACK MAGMA MAGMA
QR iter., 2-stage
with vectors D&C, with vectors

Fic. 17. Profile comparing LAPACK and MAGMA. Most phases are accelerated using the
GPU, except the bidiagonal QR iteration and multiplying U = QU. MAGMA 2-stage is described
in section 11.

reduction [109]. We have seen in Figures 7 and 12 that this phase (blue tier with \\
hatching) takes from 50% to 70% of the time for a square matrix when computing sin-
gular vectors, and 98% of the time when computing only singular values (no vectors).
As described in section 5, the bidiagonal reduction has half its flops in Level 2 BLAS
and half in Level 3 BLAS. Accelerators are known for achieving very high performance
on compute-intensive, Level 3 BLAS operations. On an NVIDIA K40c GPU, cuBLAS
achieves 1245 Gflop/s with dgemm, compared with 315 Gflop/s using Intel MKL on
the multicore CPU. Due to the accelerator’s large memory bandwidth, the memory-
bound Level 2 BLAS operations are also significantly faster, achieving 45 Gflop/s with
cuBLAS dgemv, compared with 14 Gflop/s on the multicore CPU. Therefore, both
the trailing matrix-vector product (dgemv) and the trailing matrix update (dgemm) are
performed on the accelerator. The small panel operations—constructing Householder
reflectors—are performed on the CPU, which is better at serial operations with more
control flow. This incurs CPU-to-GPU communication of a couple of vectors for each
dgemv operation during the panel. Due to dependencies, the trailing matrix update
cannot be overlapped with the next panel, as would occur in a one-sided QR factoriza-
tion. Using the accelerator improves the speed of the bidiagonal reduction by about
a factor of 2, as shown by the profile in Figure 17 (blue tier with \\ hatching) and
by the square, no vectors case in Figure 18(a), which is dominated by the bidiagonal
reduction.

For the bidiagonal SVD, because D&C is faster than QR iteration, MAGMA
will inherently achieve a better overall speedup using D&C. We further implement
an accelerated version of D&C [51]. Since most of the operations in D&C are in
multiplying Q,.U,, and V,L W, to generate singular vectors, these Level 3 BLAS dgemm
operations are assigned to the accelerator. The solution of the secular equation to
find the singular values of M, is left on the CPU, since it is a complex iterative
algorithm with limited parallelism, as is computing the singular vectors U,, and V,,
of M,. These are parallelized on the CPU using OpenMP. MAGMA achieves about
a 3x speedup for the D&C phase compared to LAPACK.

For a tall-skinny (m > n) matrix, we accelerate the initial QR factorization [110].
This is a one-sided factorization, so it doesn’t have the extra dependencies imposed by
the two-sided reduction to bidiagonal form. Panel operations are within a simple block
column that doesn’t involve the trailing matrix. The panel factorization is performed

This manuscript is for review purposes only.



689
690
691
692
693
694
695
696
697
698
699
700

26 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

80 I I I I I | 160 I I I I I I I | I I
5 70 5 140
>y 60} >y 120
g_u 50| gu 100
ST 40t S 80f
BY 301 8BS 60}
gt 20t o 40l
n 10 0 20
0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
Ok 4k 8k 12k 16k 20k 0Ok 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors
300 T T T T T T 250 T T T
o 250 )
o 9] 200 |
E_t‘) 200 |- ié 150 |
35 1501 38 100
@m 100 o B
S  so0f S  S0F
0 | | | | | 1] 0 | | | | | 1]
Ok 4k 8k 12k 0Ok 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall, 3:1, no vectors (d) tall, 3:1, with vectors
1200 600 : : : :
5 1000 5 500f
3% 800 S 400} l
§§, 600 :?l?;-t, 300}
Y 400 9o 200 |
& 200 2 100f i
0 l l l l 0 l l l
0 200 400 600 800 0 200 400 600 800
columns (matrix size 1000N xN) columns (matrix size 1000N xN)
(e) tall, 1000:1, no vectors (f) tall, 1000:1, with vectors

A——mp MAGMA D&C ¢——4& LAPACK D&C
VeV MAGMA QR iter. Bl LAPACK QR iter.

Fic. 18. Comparison of MAGMA with LAPACK.

on the CPU, while the trailing matrix update is performed on the accelerator. The
accelerator updates the next panel first and sends it back to the CPU so the CPU can
start factoring it while the accelerator proceeds with the rest of the trailing matrix
update. This overlap allows the factorization to achieve a substantial portion of the
peak dgemm speed, up to 970 Gflop/s with an NVIDIA K40c. The QR factorization
phase was up to 3.6x faster than on the multicore CPU, as seen in Figure 17 (cyan
tier with x hatching).

There are three routines that are solely applying block Householder reflectors,
which are implemented as a series of Level 3 BLAS matrix multiplies entirely on the
accelerator: (1) for QR iteration, generating explicit U; and V; matrices (dorgbr)
(2) for D&C, multiplying U;Us and V41 Vs (dormbr), and (3) for a tall-skinny matrix,
generating an explicit () matrix (dorggr). These were up all up to 3.3x faster when

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 27

Second stage
bulge chasing o

First stage

—_

Fic. 19. Two-stage technique for the reduction phase.

using the accelerator than when using the multicore CPU. We see in Figure 17 that
the time for all three of these phases is substantially reduced.

Overall, MAGMA achieves significant improvements using an accelerator for the
SVD problem. Figure 18 shows that it is about 2x faster than LAPACK in most
cases. For the square, vectors case in Figure 18(b), MAGMA’s SVD using D&C is
2.5x LAPACK’s D&C version, and 2x MAGMA’s SVD using QR iteration, while
MAGMA’s SVD using QR iteration is only 1.6x LAPACK’s QR iteration version,
due to both D&C being inherently faster and having an accelerated version of the
D&C phase. In the tall 1000:1 case in Figure 18(e), MAGMA is 2.6x faster, and
for some sizes as much as 3.5x faster, than LAPACK, and up to 1000x faster than
EISPACK, due to the accelerated QR factorization.

11. Two-stage Reduction. While all the preceding algorithmic and architec-
tural improvements have greatly increased the speed of the SVD, all these one-stage
methods remain limited by the memory-bound, Level 2 BLAS operations. To over-
come the limitations of the one-stage approach, Grofler and Lang [78, 55] introduced
the two-stage bidiagonal reduction, which increases the use of compute-intensive
Level 3 BLAS operations. The idea behind the two-stage algorithm is to split the
original one-stage bidiagonal reduction into a compute-intensive phase (first stage)
and a memory-bound phase (second or bulge-chasing stage), as represented in Fig-
ure 19. The first stage reduces the original general dense matrix to a band form
(either upper or lower), and the second stage reduces the band form to bidiagonal
form (again, either upper or lower). The algorithm maps computational tasks to the
strengths of the available hardware components, taking care of the data reuse. It also
uses techniques to mix between dynamic and static scheduling to extract efficiency
and performance. We implemented two-stage algorithms in the PLASMA library for
multicore environments [82, 83, 62, 60], the DPLASMA library for distributed envi-
ronments [19, 18], and the MAGMA library for accelerator architectures [51]. Similar
two-stage reduction [61] and multi-stage successive band reduction (SBR) [13, 6] to
tridiagonal have been used for the symmetric eigenvalue problem. A multi-stage ap-
proach would also work for the bidiagonal reduction, and could be advantageous to
achieve optimal communication costs at each stage. However, when computing sin-
gular vectors, each stage adds cost to the back transformation, making a multi-stage
approach less favorable.

11.1. First Stage: Compute-Intensive and Efficient Kernels. The first
stage applies a sequence of blocked Householder transformations to reduce the general
dense matrix to an upper (for m > n) band matrix. This stage uses compute-intensive
matrix-multiply kernels that eliminate the memory-bound matrix-vector products
from the one-stage panel factorization.

This manuscript is for review purposes only.



739
740
741
742
743
744

28 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

The first stage proceeds by computing a QR factorization of a block column to
annihilate entries below the diagonal, and updating the trailing matrix, as shown in
Figure 20. It then computes an LQ factorization of a block row to annihilate entries
right of the upper bandwidth, and updates the trailing matrix. It repeats factoring
block columns and block rows, until the entire matrix is brought to band form. The
width of the block columns and rows is the resulting matrix bandwidth, ny.

}nb

—_—

trailing —

T trailing

matrix

F1c. 20. One panel of the first stage reduction to band form.

The PLASMA and DPLASMA implementations use a tile algorithm [1] that
makes it highly parallel. The matrix is split into tiles of size ny x ng, where ny is the
matrix bandwidth. Data within each tile is stored contiguously in memory. A panel
factorization is a series of QR or LQ factorizations done between pairs of tiles; once a
pair of tiles has been factored, updates on the corresponding portions of the trailing
matrix can start immediately, before the rest of the panel has finished factoring. This
unlocks a large amount of parallelism very quickly. The algorithm then proceeds
as a collection of interdependent tasks that operate on the tile data layout and are
scheduled in an out-of-order fashion using either the OpenMP runtime for PLASMA
or the powerful PaRSEC distributed runtime system for DPLASMA.

The MAGMA implementation uses a standard column-wise layout. It does the
QR and LQ factorizations on the CPU, copies the block Householder reflectors to the
accelerator, and updates the trailing matrix on the accelerator. Unlike in the one-
sided factorizations, it cannot start the next panel until the trailing matrix update is
finished due to data dependencies.

The first stage’s cost is §n? operations in Level 3 BLAS. As shown in [60], the
performance of this stage is comparable to the performance of the QR factorization
and can reach a high percentage of the machine’s peak.

11.2. Second Stage: Cache-Friendly Computational Kernels. The sec-
ond stage reduces the band form to the final bidiagonal form using a bulge chasing
technique. It involves 6nyn? operations, so it takes a small percentage of the total
operations, which decreases with n. The operations are memory bound, but are fused
together as Level 2.5 BLAS [69] for cache efficiency. We designed the algorithm to
use fine-grained, memory-aware tasks in an out-of-order, data-flow task-scheduling
technique that enhances data locality [60, 61].

The second stage proceeds in a series of sweeps, each sweep bringing one row to
bidiagonal and chasing the created fill-in elements down to the bottom right of the
matrix using successive orthogonal transformations. It uses three kernels. Kernel 1
(vellow task Tj ;1 in Figure 21(b)) applies a Householder reflector from the right (in-
dicated by the down arrow) to eliminate a row right of the superdiagonal, which also
creates a bulge of fill-in beneath the diagonal. It then applies a Householder reflec-
tor from the left (indicated by the right arrow) to eliminate the first column of the
bulge below the diagonal, and applies the update to the first block column only. The

This manuscript is for review purposes only.



THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 29

task T, 4 T
XXX s[ecppoo__ 2 O CYeXeXeXe)
(XXX XY X} ooloooocooo e[ 0C000J0o000
xXxxrxxl O ele ¢ 0le o]+ + + Ole @ @ @ @[ OO O[O
XXX Y) Sre Pejes|s P Oljce e eele e+ ++
X XXX X o-l*roooooo-l- T OO+ eeeleee++
XXxxx) O+'++eledYooe| 14 OlO + + ole]|e @ @ of+
xXxXxrxxl ®e|e e e[eC00 O+ ++eloeoeole
XXXl Oele ¢ + Cle @ @ @
xXxXxxxl S o lui‘ Oloe e e|e
XXX xxl O Y- ® LX) Olo+ eele
0000 kernel 1| [0 +'+ + X Olo+ + e e
xXxx) eeojo e O+ + +|e
Y kernel 2 Tia (e} oIe Q sweep 1 @)
(X greic O
° kernel 3 o +V+ ° sweep 2 o
T15
(a) initial band matrix (b) tasks in sweep 1 (c) overlap of sweeps
Fic. 21. Bulge-chasing algorithm. “o” indicates eliminated elements; “+” indicates fill.

Arrows show application of Householder reflector on left (—), which update a block row, and on
right (1), which update a block column.

remainder of the bulge is not eliminated, but is instead left for subsequent sweeps to
eliminate, as they would reintroduce the same nonzeros.

Kernel 2 (blue task T 2) continues to apply the left Householder reflector from
kernel 1 (or kernel 3) to the next block column, creating a bulge above the upper
bandwidth. It then applies a right Householder reflector to eliminate the first row of
the bulge right of the upper bandwidth, updating only the first block row.

Kernel 3 (red task T7,3) continues to apply the right Householder reflector from
kernel 2, creating a bulge below the main diagonal. As in kernel 1, it then applies a
left Householder reflector to eliminate the first column of the bulge below the diagonal
and updates just the current block column. After kernel 3, kernel 2 is called again
(blue task Ti 4) to continue application of the left Householder reflector in the next
block column. A sweep consists of calling kernel 1 to bring a row to bidiagonal,
followed by repeated calls to kernels 2 and 3 to eliminate the first column or row of
the resulting bulges, until the bulges are chased off the bottom-right of the matrix.

For parallelism, once a sweep has finished the first kernel 3, a new sweep can start
in parallel. This new sweep is shifted over one column and down one row, as shown in
Figure 21(c). Before task ¢ in sweep s, denoted as T ;, can start, it depends on task
Ts_1,i+3 in the previous sweep being finished, to ensure that kernels do not update
the same entries simultaneously. To maximize cache reuse, tasks are assigned to cores
based on their data location. Ideally, the band matrix fits into the cores’ combined
caches, and each sweep cycles through the cores as it progresses down the band.

11.3. Singular Vectors Computation. The singular vectors of A are com-
puted from the orthogonal transformations used in the reduction to bidiagonal form
and from the singular vectors of the bidiagonal form. Recall that for the classical
one-stage approach, A = U1 BVl and B = UsXV4. After using D&C to obtain Us
and V,, we multiply U = U;Us and V = V;Vj, costing 2n® each for U and V (if
m=mn).

In the case of the two-stage approach, the first stage reduces the original matrix
A to a band matrix by applying a two-sided transformation to A such that A =
UsApanaV,L. Similarly, the second, bulge-chasing stage reduces the band matrix Apang
to bidiagonal form by applying a two-sided transformation such that Ap.nq = Uy B VbT.

This manuscript is for review purposes only.



30 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

As a consequence, the singular vectors must be multiplied according to:
U= UanUQ and V= VaVbVQ.

Hence the two-stage approach introduces a nontrivial amount of extra computation—
the application of U, and V,—when the singular vectors are needed. The total cost of
updating the singular vectors when using the two-stage technique is 2(1+ :L—l;)n‘g +2n3
each for U and V', where n; is the bandwidth and 4, is an internal blocking; usually
iy < myp/4. This extra cost compared with the one-stage approach reduces the potential
speedup, but as it is in Level 3 BLAS, it does not completely negate the large speedup
that we gain by the two-stage bidiagonal reduction.

11.4. PLASMA Implementation for Multicore. The experiments shown in
Figure 22 illustrate the superior efficiency of our two-stage SVD solver compared with
the optimized LAPACK version from Intel MKL. Figure 22(a) shows that the bidiag-
onal reduction itself is 6x faster than LAPACK, both using 16 cores, and 2.5x faster
than the MAGMA one-stage version. The reason is that LAPACK and MAGMA
are bound by the Level 2 BLAS performance, while our two-stage algorithm relies
on Level 3 BLAS for most of its computation. When computing singular vectors in
Figure 22(b), it is still about 1.8x faster than LAPACK, even though it requires an
extra 2 x 2(1 4+ :L—bb)n?’ operations to multiply by U, and V;. Here, the accelerated
MAGMA one-stage version is still faster.

For the tall 3:1 case in Figure 22(c), both LAPACK and MAGMA fare better,
since part of the computation is in the initial QR factorization, which is primarily
efficient Level 3 BLAS operations for all three implementations (LAPACK, MAGMA,
and PLASMA). For the very tall 1000:1 matrices in Figures 22(e) and 22(f), PLASMA
and MAGMA rely on their efficient QR factorization. In PLASMA, this is an imple-
mentation of the tall-skinny QR [1, 29], which even beats the accelerated MAGMA
implementation.

Overall, we expected such an improvement using the two-stage technique, due to
its heavy reliance on Level 3 BLAS. Even when performing more operations, it can
still have an advantage.

11.5. Energy Consumption. As we move toward exascale computing, power
and energy consumption play increasingly critical roles. Figure 23 shows the power
consumption over time during the SVD computation. We observe that PLASMA has
the lowest energy consumption, due to its fast execution, despite having the highest
power rate, indicative of its high compute intensity using Level 3 BLAS. Its energy
consumption is about half that of LAPACK, and 23 x less than EISPACK, as shown in
Figure 24(b). When computing singular values only, no vectors, the difference is even
more remarkable, with PLASMA being 5.6x more energy efficient than LAPACK,
and 40x more energy efficient than EISPACK, as shown in Figure 24(a).

Interestingly, we can correlate the various phases of the computation with the
power consumption. For LAPACK, the long plateau in Figure 23 up to the 105
seconds mark is the reduction to bidiagonal, followed by divide and conquer, where
the power varies significantly, and ending with the two back transformations by U
and Vi from the 130-150 seconds mark. In PLASMA, the reduction to bidiagonal
is significantly shorter, up to the 20 seconds mark, followed by divide and conquer,
and the back transformations by U,, Uy, V,, and V;, which are twice as long as they
are in LAPACK. EISPACK, in contrast, has a very long and steady computation. It
uses only one core, and thus has low power consumption; but the computation itself
is 48x longer than LAPACK.

This manuscript is for review purposes only.



858
859
860
861
862
863
864
865
866
867
868

speedup over
EISPACK

EISPACK

speedup over

speedup over
EISPACK

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM

N
o
o

=

u o u

o o o
T T T

/ Il Il Il Il Il Il Il Il Il Il
4k 8k 12k 16k 20k
columns (matrix size N xN)

o

o
~

(a) square, no vectors

300
250
200
150
100

0k 4k 8k 12k

columns (matrix size 3N xN)

(c) tall, 3:1, no vectors

1400 T T T T
1200
1000

0 200 400 600 800
columns (matrix size 1000N xN)

(e) tall, 1000:1, no vectors

speedup over
EISPACK

EISPACK

speedup over

speedup over
EISPACK

12k 16k
columns (matrix size N xN)

20k

(b) square, with vectors

250
200
150
100

ok 4k 8k 12k

columns (matrix size 3N xN)

(d) tall, 3:1, with vectors

600 T T T T
500 |-
400 |-
300
200 |-
100 -

0 200 400 600 800
columns (matrix size 1000N xN)

(f) tall, 1000:1, with vectors

A=——rp MAGMA D&C
V—= MAGMA QR iter.
O——<> PLASMA 2-stage, D&C

> P> PLASMA 2-stage, QR iter.

¢—4¢ LAPACK D&C
B LAPACK QR iter.

FiG. 22. Comparison of MAGMA, PLASMA, and LAPACK.

31

11.6. MAGMA Accelerated Two-stage Reduction. A two-stage algorithm

can also be implemented very effectively using an accelerator. MAGMA accelerates
the first-stage reduction to band form, as described above, and uses PLASMA for the
second-stage reduction from band to bidiagonal. MAGMA also accelerates compu-
tation of singular vectors, both applying the transformations from the second stage
(e.g., UpUs) and applying the transformations from the first stage (e.g., U, (UpUz2)).
Other steps are as in the accelerated one-stage MAGMA version. The profile in Fig-
ure 17 shows the difference with the one-stage version: the reduction to bidiagonal
(blue with \\ hatching) is significantly reduced, but multiplying U = U Uy = U,UpUs
and V =WV, =V, V5 (orange with // hatching) is increased.

Figure 25 shows the performance of the MAGMA two-stage implementation

This manuscript is for review purposes only.



869
870
871
872
873
874
875
876
877

878
879
880
881
882
883
884
885
886
887
888

32 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

SVD power for N=10000 (with vectors)

T I

250 lapack 230 kJ &< plasma D&CH
S 200 mmmnmm&wm.% - lapack D&C L
g @—@ eispack
5 150 _
3 100 . i
e eispack 2556 k]

50 piP iy o — @ dowas §

0 | | |
0 50 100 150 7250 7300
time (sec)

Fia. 23. Comparison of power during SVD computation for PLASMA, LAPACK, and EIS-
PACK, for square matriz of size n = 10000. The total energy consumed during the computation is
annotated for each.

a5 square, no vectors square, with vectors
T T )| )|

N
w

T

N
o

5 OR-6-0-6-0-4
o

[y
w

=
o

O—<> plasma D&C

times less energy
than eispack

times less energy
than eispack

> —4 lapack D&C ||
O l l l l | 0 l l T T ||
4k 8k 12k 16k 20k 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors

F1a. 24. Reduction in total energy consumption compared to EISPACK.

(dashed line), compared with the PLASMA two-stage and MAGMA one-stage im-
plementations. The square, no vectors case in Figure 25(a) shows that for the bidiag-
onal reduction itself, the two-stage MAGMA is up to 2.4x faster than the two-stage
PLASMA and 6.4x faster than the one-stage MAGMA, and nearly 500x faster than
EISPACK. When computing singular vectors, in Figure 25(b), it is again up to 2.4x
faster than PLASMA, but only 1.7x faster than the one-stage MAGMA, due to the
extra cost in multiplying by U, and V. It also performs well in the tall 3:1 case, while
for the tall 1000:1 case, its time is dominated by the initial QR factorization, so it
performs similarly to the one-stage MAGMA.

11.7. DPLASMA Implementation for Distributed Memory. To cover the
distributed memory environment, we also performed a study on a modern, large dis-
tributed system. It is representative of a vast class of supercomputers commonly used
for computationally intensive workloads. The DPLASMA algorithm is the two-stage
algorithm described above for multicore, but implemented using the PaRSEC runtime
engine [19, 18] to exploit the data flow representation, handle all the communication,
and provide asynchronous task execution based on dependency analysis. PaRSEC
employs the dataflow programming and execution model to provide a dynamic plat-
form that can address the challenges posed by distributed hardware resources. The
PaRSEC runtime combines the source program’s task and dataflow information with
supplementary information provided by the user—such as data distribution or hints

This manuscript is for review purposes only.



889
890
891
892
893
894
895
896
897
898
899

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM

33

500 250
3 400 @ 200
5% 8%
o 300 o 150
Twv 200 Twv 100
o QW
Q 100 Q 50
(%2} "
0 0
0Ok 4k 8k 12k 16k 20k 0k 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors
900 350
5 aoo T T T T T j . S0l T T T ; - I‘ _
Sy loor -¥7 1 Sy 2%0 A~
3% 600 o4 1 33
o< 500 - - ag 200
Sa b 4 Sa
S o 400 ’ u Swn 150
9o 300F v o]
1] 1] 100
& 200} , 9 g
) 100} i 0 50
0 » 1 1 1 1 1 0
0Ok 4k 8k 12k (03 4k 8k 12k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall, 3:1, no vectors (d) tall, 3:1, with vectors
1400 1 1 1 1 600 I I I I
5 1200 5 500 |-
3y 10001 3% 400
aog 800 og
Sa Sa 300
S 600 =10)
bw 400} guw 200F
& 200f & 100f .
0 O l l l l
0 200 400 600 800 0 200 400 600 800
columns (matrix size 1000N xN) columns (matrix size 1000N xN)
(e) tall, 1000:1, no vectors (f) tall, 1000:1, with vectors
A = A MAGMA 2-stage D&C < <> PLASMA 2-stage, D&C
=4 MAGMA D&C > > PLASMA 2-stage, QR iter.

V=¥ MAGMA QR iter.

F1a. 25. Comparison of MAGMA 2-stage with MAGMA 1-stage and PLASMA 2-stage.

about the importance of different tasks—and orchestrates task execution on the avail-
able hardware. From a technical perspective, PARSEC is an event-driven system.
When an event occurs, such as task completion, the runtime reacts by examining the
dataflow to discover what future tasks can be executed based on the data generated
by the completed task. The runtime handles the data exchange between distributed
nodes, and thus it reacts to the events triggered by the completion of data trans-
fers as well. Thus, communications become implicit and are handled automatically
as efficiently as possible by the runtime. When no events are triggered because the
hardware is busy executing application code, the runtime gets out of the way, allowing
all hardware resources to be devoted to the application code’s execution.

We benchmarked our two-stage implementation from the DPLASMA library, and

This manuscript is for review purposes only.



918
919
920
921
922
923
924
925
926
927
928

34 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

square, no vectors square, no vectors
T1F I I T T
=9 DPLASMA X 3.0 =9 DPLASMA
6e-@ scaLaPACK <
= 5 3 25F .
g
S 4 »
; g 2.0 s
s 3 2
o
E 2 S
T 15 -
1 8
("2}
0 1.0 L L L L
50k 100k 150k 200k 50k 100k 150k 200k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors, performance (b) square, no vectors, speedup

Fic. 26. Comparison of DPLASMA and ScaLAPACK computing singular values only for square
matrices on 49 nodes (1764 cores).

the ScaLAPACK SVD routine from Intel MKL. Because only the singular values
computation of our two-stage approach is currently implemented in the distributed
DPLASMA library, we limited our tests to the case where only the singular values are
computed. We performed our experiment on a recent hardware system consisting of
49 distributed nodes, where every node has two sockets of 18-core Intel Xeon E5-2697
(Broadwell) processors, running at 2.6 GHz, providing a total of 1764 cores. Each
socket has 35 MiB of shared L3 cache, and each core has a private 3.5 MiB L2 and
448 KiB L1 cache. The system is equipped with 52 GiB of memory per node. When
only singular values are to be computed, the SVD solution consists of the reduction
to bidiagonal and the computation of the singular values using QR iteration. Note
that QR iteration on the bidiagonal matrix is a sequential process and thus it does
not exploit any parallelism for either DPLASMA or ScaLAPACK. Its computational
time is the same on either 1 or 49 nodes, and this time increases quadratically with
the matrix size. Thus, the percentage of time spent in this portion varies with the
matrix size. QR iteration consists of less than 5% of the time for a matrix of size 20k,
while it reaches about 15% for ScaLAPACK and 26% for DPLASMA for a matrix of
size 200k. As a result, the speedup will be affected by this constant:

timeppLASMA-BRD + tz
speedup =

. b
timescALAPACK-BRD 1 lz

where t, is the time required to perform the bidiagonal singular value computation.
Figure 26 shows the comparison between our implementation versus the ScaLAPACK
pdgesvd. Asymptotically, our code achieves up to a 3x speedup for the largest matri-
ces tested. This is the result of the efficient implementation of the first stage (reduction
to band) using the PaRSEC engine, which enables us to exploit the compute-intensive
nature of this stage, thereby minimizing the communication cost, and also from the
careful design and implementation of the second stage that maps both the algorithm
and the data to the hardware using cache-friendly kernels and data-locality-aware
scheduling. Note that for small matrix sizes (e.g., a matrix of size 20k), there is not
enough parallelism to exploit the 1764 available cores to make our two-stage algorithm
3x faster; the tile size is about 160, so there are only about 125 tiles in each direction.

This manuscript is for review purposes only.



939

940
941
942

943
944

960
961

962
963
964
965

966

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 35

12. Jacobi methods. In contrast to bidiagonalization methods, Jacobi meth-
ods operate on the entire matrix A, without ever reducing to bidiagonal. This allows
Jacobi methods to attain high relative accuracy, which will be discussed in section 13.
Jacobi first proposed his method in 1848 for solving the symmetric eigenvalue prob-
lem [73] by diagonalizing the matrix A using a sequence of plane rotations:

A = 4, Aty = I Awy Ty Ay — Aas k — oo,

Each plane rotation, J) = Jx)(i, j,0), now called a Jacobi or Givens rotation, is an
orthogonal matrix that differs from the identity only in rows and columns ¢ and j:

1

J(Za]ae) = I )

where ¢ = cosf) and s = sind. The angle § is chosen to eliminate the pair a;;, aj;
by applying J(i,7,6) on the left and right of A, which can be viewed as the 2 x 2
eigenvalue problem,

c s r a a c s d 0
ST A3 i Qij i 2
Sy Ay Ty = [5 J [ y .]] [S J = [0 djj} = A1),

Aji Qg

where the notation A is the 2 x 2 submatrix [a” ij } of matrix A. Subsequent

aji - Qjj
eliminations will fill in the eliminated entry, but at each step the norm of off-diagonal
elements,

off (A) = ||A — diag(A)| p = (Z “?J‘)l/z’

i#]

is reduced until the matrix converges to diagonal form, A, revealing the eigenvalues.
Accumulating the plane rotations, V' = Jg)J(1) ..., yields the eigenvectors. Origi-
nally, Jacobi chose to eliminate the off-diagonal pair a;;,aj; of largest magnitude at
each step, giving the largest possible reduction in off(A4). This is inefficient as it in-
troduces an O(n?) search for each rotation of O(n) work. Instead, in modern times
the method was reformulated so that one sweep goes over all n(n —1)/2 combinations
of (i,7) with ¢ < j in a predetermined order, typically cyclic by rows, i.e.,

(1,2),(1,3),...,(1,n);(2,3),...,(2,n);...; (n—1,n),

or cyclic by columns. It converges after a small number of sweeps, typically 5-10.
Wilkinson [116] showed that convergence is ultimately quadratic. Rutishauser [102]
gave a robust implementation in the Wilkinson-Reinsch Handbook.

12.1. Two-sided Jacobi SVD. Jacobi’s eigenvalue method was generalized to
the SVD of a general, nonsymmetric matrix in two different ways. The first way
is the two-sided method due to Kogbetliantz [76], which applies two different plane
rotations, J(4,7,6) on the left of A and K (4, j,¢) on the right of A, to eliminate the
a;; and aj; entries. As before, sweeps are done over the off-diagonal entries until

This manuscript is for review purposes only.



974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

36 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Algorithm 5 Two-sided Jacobi SVD method for n x n matrix A.

function two_sided_jacobi_svd( A )
v=5LV=1I
repeat // loop over sweeps
for each pair (4, j), ¢ < j, in prescribed order
solve 2 x 2 SVD jTA(k)K = A(k+1)
A=JTA //update rows i and j
A=AK //update cols i and j
u=U0J
V=VK
end
until off(A) < tol||Ao||
fori=1,...,n
o; = |ail
if a;; < 0 then u; = —u;
end
sort ¥ and apply same permutation to columns of U and V
return (U,X, V)
end function

the norm of off-diagonal entries is below a specified tolerance, revealing the singular
values, X, via the iteration:

Ay = 4, At = T A K Ay = S as k — oo.

Accumulating the left rotations, U = JigyJ(1) - . ., gives the left singular vectors, while
accumulating the right rotations, V' = K)K(1) ..., gives the right singular vectors.
Determining J (4, 7, 0) and K (4, j, ¢) can be viewed as solving a 2x2 SVD problem,

T
sa N e Sy Qii Qi CK SK| di; _ 2
(8)  JiAmEw) = {_SJ CJ} Lji aj]} |:_5K CK] = [ dj]} = A(k+1)-

The angles for J and K are not uniquely determined, so various methods have been
derived [22, 49, 76]. Brent et al. [22] proposed the algorithm USVD, which uses one
rotation to symmetrize the 2 x 2 subproblem, then a second rotation to eliminate the
off-diagonal entries. This produces an unnormalized SVD, where the diagonal entries
are unsorted and may be negative. Post-processing to sort and adjust the signs of
the singular values and singular vectors yields a standard SVD. They also formulated
the normalized rotation/reflection algorithm NSVD that corrects the signs during the
iteration. Algorithm 5 outlines the two-sided Jacobi method.

Rectangular matrices can be handled by first doing a QR factorization, optionally
with pivoting, and then doing the SVD of the R matrix, as previously described for
bidiagonalization methods (subsection 5.4). For Jacobi, this QR factorization has the
added benefit of preconditioning the system to converge faster, as discussed further
in subsection 12.5.

Heath et al. [67] developed a variant for computing the SVD of a product of
matrices, A = BT C, without explicitly forming A. Applying rotations By1) = ByJ
and C(y41) = C(1y K implicitly applies J and K on both sides of A. When B = C, it
simplifies to the one-sided Jacobi method, discussed next.

This manuscript is for review purposes only.



993
994
995
996
997
998
999
1000

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 37

Algorithm 6 One-sided Jacobi SVD method for m x n matrix A, m >n

function one_sided_jacobi_svd( A )
V=I
repeat // loop over sweeps
done = true
for each pair (7,j), ¢ < j, in prescribed order
bi = AT A = || A)*
bys = AT A; = |4,
bij = A?AJ
if |b1]| Z € biibjj then
solve 2 x 2 symmetric eigenvalue problem JTBJ =D
A=AJ // update cols ¢ and j
V=vJ
done = false
end
end
until done
fori=1,...,n
oi = [lail,
U; = ai/cri
end
sort ¥ and apply same permutation to columns of U and V
return (U,X,V)
end function

12.2. One-sided Jacobi. The second way to generalize the Jacobi method to
the SVD is a one-sided method due to Hestenes [68]. Earlier we noted that the
SVD can be solved by computing the eigenvalues of the Gram matrix, AT A, but
that explicitly forming AT A is undesirable for numerical reasons. Instead, Hestenes
applied plane rotations on only the right side of A to orthogonalize the columns of
A, which implicitly performs the two-sided Jacobi eigenvalue method on AT A. The
columns of A converge to UX, that is, the left singular vectors scaled by the singular
values:

A) = 4, A1y = Ay, Ay = UX as k — oco.

This means that, implicitly, A(k)TA(k) — ¥2. Accumulating the rotations, V =
JoyJay - - -, gives the right singular vectors. Alternatively, V' can be solved for after
the iteration, as described below in subsection 12.5.

The rotations are determined similarly to the Jacobi eigenvalue method, by solv-
ing the 2 x 2 eigenvalue problem

o (B bis] - .

T i 1] _ it
9) Ik |:bij b-] Ty = { d; } ;
where b;; = aiTaj and a; is the i-th column of A(;). Over the coarse of a sweep, it
computes the matrix B = AT A, however, J is not applied directly to AT A, but to A

itself, avoiding the numerical instabilities associated with AT A. Algorithm 6 outlines
the one-sided Jacobi method.

This manuscript is for review purposes only.



1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027
1028
1029
1030

1632

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059
1060
1061

38 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

It skips rotations if |b;;| < €4/b;;bj;, indicating that columns a; and a; are al-
ready numerically orthogonal. It converges when all rotations in a sweep are skipped.
Using this formula to check for convergence is required for attaining high relative
accuracy [32] (see section 13). The b;; column norms can be cached rather than re-
computed for each pair, which reduces operations when rotations are skipped. Note
that the last sweep takes about n® flops computing b;; terms to check for convergence,
without doing any useful work.

A left-handed version can be defined analogously, by applying rotations on the
left to orthogonalize the rows of A [84]. This might be preferred if A is a wide matrix
stored row-wise, rather than a tall matrix stored column-wise.

One-sided Jacobi can be applied to a rectangular matrix, but again, preprocessing
using a QR factorization, and apply Jacobi on the square R matrix, reduces the oper-
ation count and preconditions the system for faster convergence; see subsection 12.5.

12.3. Convergence. For the row and column cyclic orderings, Forsythe and
Henrici [49] proved that all the Jacobi methods (two-sided eigenvalue, one-sided SVD,
and two-sided SVD) converge, provided the rotation angles are bounded below /2
by some b,

(10) 0] <b<m/2.

For the two-sided eigenvalue and one-sided SVD methods, 6 can always be chosen
to satisfy (10); see [102]. For the two-sided SVD method, however, this condition
may fail to hold. In Forsythe and Henrici’s method, the bound is b = 7, which
may introduce a cycle interchanging two singular values without converging. For the
methods of Brent et al. [22], NSVD has a bound b = 37/4 and USVD has a bound
b = 5m/4. Proofs for other orderings, particularly for parallel orderings, have been
elusive. Despite failing to satisfy the convergence proof’s prerequisites, in practice
Jacobi methods reliably converge. Using a threshold to skip updates to small entries
is a common tactic, especially in the first several sweeps, to accelerate and guarantee
convergence [102, 27, 8].

When applied to triangular matrices, Heath et al. [67] and Hari and Veseli¢ [66]
observed that applying one sweep of the two-sided SVD method with the row-cyclic
ordering (without thresholding) converts an upper triangular matrix to lower triangu-
lar, and vice-versa. Hari and Veseli¢ derived rotation angle formulas in the triangular
case, and prove that the angles are bounded below 7/2, guaranteeing convergence.
Hari and Matejas [65] later derived more accurate formulas.

Applying column pivoting during the Jacobi iterations can improve convergence.
In the one-sided method, de Rijk [27] follows the row-cyclic ordering, but at the start
of row 1, searches columns i,...,n for the column of largest norm and pivots it to
column ¢. Unfortunately, using the row-cyclic ordering makes parallelism difficult.
Zhou and Brent [120] likewise show that sorting column norms improves convergence,
and give a parallel ordering for sorting.

12.4. Parallel orderings. In two-sided Jacobi, a pair of rotations applied on
the left and right affect only two rows and two columns. In one-sided Jacobi, each
rotation applied on the right affects only two columns. Therefore, in both cases,
[n/2| rotations can be performed in parallel. However, the row and column cyclic
orderings are not amenable to parallel computation, as they introduce dependencies
between consecutive pairs of elements. Since there are n(n — 1)/2 pairs to eliminate,
an optimal parallel ordering would have n — 1 steps, with each step eliminating n/2

This manuscript is for review purposes only.



1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 39

j) (i<::)‘///, . odd )

OFE 4 6 4 6
1 3 5 714 37 3 5 7 |
- even 4
(a) round-robin (b) odd-even

Fic. 27. Parallel orderings. Rectangles indicating processors are labeled with their assigned
columns. Arrows depict movement of columns between Jacobi sweeps. Clircled pivot column is
stationary.

pairs in parallel (for n even). Many different parallel Jacobi orderings have been
devised. While parallel orderings typically lack a proof of convergence, in practice
they work reliably.

Commonly, for parallel implementations of both one-sided and two-sided Jacobi,
the matrix is distributed by columns. Early systolic implementations placed two
columns [21] or a 2 X 2 submatrix [22] per processor. Later block implementations
placed two block columns [15, 11] or a 2 x 2 block submatrix [12] per processor.
When each processor stores two columns, one-sided Jacobi has the advantage that no
communication is required during an update, whereas in two-sided Jacobi, the left
transformations (J’s) must be broadcast in an all-to-all fashion.

Brent and Luk [21] introduced the round-robin ordering, shown in Figure 27(a),
which had previously been known for chess tournaments. After each Jacobi rotation,
each node sends and receives two columns, except the pivot node that sends and
receives one column. Eberlein [46] gave the odd-even ordering in Figure 27(b). After
each odd sweep, the odd permutation (solid red lines) is used; after even sweeps,
the even permutation (dashed blue lines) is used. Each node sends and receives one
column.

Luk and Park [85] studied the equivalence of orderings, demonstrating that many
orderings are equivalent in the sense that relabeling the columns gives identical or-
derings. For example, choosing a different pivot column in round-robin will give an
equivalent ordering. Luk and Park showed that the two main classes of Jacobi order-
ings are the round-robin and odd-even types. Becka and Vajtersic [12, 11] compared
implementations of the round-robin, odd-even, and a butterfly-like ordering inspired
by the Fast Fourier Transform (FFT), on ring, hypercube, and mesh networks for
block Jacobi methods.

12.5. Preconditioning. Another means to improving the speed of Jacobi meth-
ods is to precondition the matrix to reduce the number of sweeps required for con-
vergence. Drmaé¢ and Veseli¢ [44] introduced several forms of preconditioning for
the one-sided Jacobi method. The major ideas are outlined below, with a simplified
version in Algorithm 7.

First, for a square matrix A, heuristically choose to factor either X = A or
X = AT. They give the example of A = D(, where D is diagonal and @Q is orthogonal.
One-sided Jacobi applied to A implicitly diagonalizes Q7 D?D, while applied to AT
it implicitly diagonalizes D?, which is already diagonal. One heuristic they suggest is
to choose the X that maximizes Hdiag(XTX)HQ, hence minimizing off (X7 X). Their
second heuristic is to choose the X that minimizes the diagonal entropy of X7 X,

This manuscript is for review purposes only.



40 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

Algorithm 7 Preconditioned one-sided Jacobi SVD method (simplified)

function preconditioned_one_sided_jacobi( A )
input: m X n matrix A, m >n
output: U, X, V
transpose = (m == n and ng(AAT) < na(ATA)) // see (11)
if transpose then

A=AT
end
Q.RPT = A // QR factorization with column pivoting
LQ;=R // LQ factorization
(U, %) = onesided_jacobi_svd(L) // Algorithm 6; skip V'
U= QrUl

V=PQIL Y UX) or V=P.R1UY)
if transpose then
swap U &V
end
end function

defined by
(11) na(XTX) =n (diag(XTX)/ trace(XTX)) ,
where the entropy of a vector p with p; > 0, >, p; = 1, is defined as

1
logn

n
(12) n(p) = > pilogp;,  with 0log0 = 0.
i=1

Both heuristics are O(n?).

The second preconditioning technique is to use a QR factorization with column
pivoting (QRP) of A, then factor R. This concentrates the mass of the matrix along
the diagonal of RT R, reducing the number of Jacobi sweeps. For a rectangular m x n
problem, m > n, this also shrinks it to an n X n problem, as in subsection 5.4.

Third, use either an LQ factorization of R, or simply let L = R”, then factor
L. An LQ factorization further concentrates the mass along the diagonal of LT L.
Using LQ is particularly advantageous in the rank deficient case. For a matrix of
rank 7, QRP generates R = [R(;l g;z] with the (n —r) x (n — r) block Rss being
negligible. Doing an LQ factorization of [Rll ng} yields a smaller, r x r, full-rank
matrix L. Alternatively, simply using L = R’ is an implicit step of Rutishauser’s LR
diagonalization applied to RT R, again concentrating mass along the diagonal of LT L
as compared to RTR.

Additionally, Drmaé¢ and Veseli¢’s error analysis based on using QRP and option-
ally LQ factorization shows that computing V' by solving with either of the triangular
matrices L or R is numerically stable and generates an orthogonal matrix; see Al-
gorithm 7 for specifics. This allows us to skip accumulating V' during the one-sided
Jacobi iteration, removing some Level 1 BLAS operations, and adding Level 3 BLAS
operations after the iteration, so we can expect a good performance increase. Their
paper gives detailed algorithms that make choices about which preconditioning to use

This manuscript is for review purposes only.



1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150
1151
1152
1153
1154
1155

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 41

based on condition estimates. Hari [64] and Becka et al. [9] also applied QRP and LQ
preconditioning in the context of parallel one-sided block Jacobi.

In addition to preconditioning, Drma¢ and Veseli¢ [45] introduced optimizations in
the one-sided Jacobi iteration, based on the structure of the preconditioned matrix. In
the first sweep, the zero structure of the triangular matrix can be exploited to reduce
computation. Second, based on work by Mascarenhas [87], they use a modified row-
cyclic strategy to more frequently visit diagonal blocks, since those blocks converge
at a slower rate. Heuristically, based on the expectation that LT L is diagonally
dominant, during the first few sweeps, if two rotations in a row are skipped due to
thresholding, they skip the rest of the row. This avoids computing dot products
when the rotation will likely be skipped. Finally, they use a tiled row-cyclic strategy
to improve cache efficiency. All of these improvements combine for a more efficient
algorithm.

Oksa and Vajtersic [95] showed that the same preconditioning techniques, QRP
factorization optionally followed by LQ factorization, also improve convergence for the
parallel two-sided block Jacobi method. In their tests, preconditioning concentrated
more than 99% of the weight of [|A|, into the diagonal blocks. Depending on the
singular value distribution, this gave up to an order-of-magnitude reduction in time.
This preconditioning was later extended to multiple QR iterations [10].

As noted earlier, two-sided Jacobi preserves the triangular structure when used
with an appropriate cyclic ordering. Hari and Matejas [65, 88, 89] use the QRP and
LQ preprocessing to generate triangular matrices. They prove high relative accuracy
results for the two-sided Jacobi method on such triangular matrices, and utilize a
parallel ordering due to Sameh [103] that preserves the triangular structure.

12.6. Block Jacobi. In section 5, we saw that blocking was a major improve-
ment for SVD methods. Blocking can also be favorably applied to Jacobi methods.
Van Loan [112] and Bischof [15] were among the first to describe two-sided block
Jacobi SVD methods. The method is very similar to the non-block implementation,
with plane rotations J and K operating on two rows or columns now becoming or-
thogonal block rotations operating on two block rows or block columns. For a block
size ny, let N = [n/ng] be the number of blocks. The indices %, j now loop over the
blocks, 1,..., N. We reinterpret the notation A to be the 2 x 2 block matrix

. TA. A
A= i1 1]:| ’
[Aji Ajj

where each A;; is an ny, x np block. Instead of the 2 x 2 SVD (8), it computes a 2 x 2
block SVD,
JTAK = jT [Au‘ Az‘j] k- |:Dii 0 ] 7
i Ajj 0 Djj

either recursively using a serial Jacobi method, or using some other SVD method
such as QR iteration. Each processor now holds two block columns. Block row and
column updates by the orthogonal matrices J and K are applied as Level 3 BLAS
matrix multiplies, greatly enhancing the efficiency of the algorithm.

Bischof [15] investigated two methods to solve the SVD subproblem: using QR
iteration or using a single sweep of two-sided Jacobi. In the later case, using only one
sweep the block method does not fully annihilate the off-diagonal blocks of the 2 x 2

block subproblem, and is in fact simply a reorganization of the non-block method,
but with updates applied using Level 3 BLAS. He found that using Jacobi to solve

This manuscript is for review purposes only.



1170
1171
1172
1173
1174
1175

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

42 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

the subproblem was faster than using QR iteration; however, this was prior to the
fast blocked versions of QR iteration available in LAPACK.

Arbenz and Slapnicar [5] gave an early implementation for the one-sided block
Jacobi SVD method. Again, the block method is very similar to the non-block method,
with the 2 x 2 eigenvalue problem (9) being replaced with a 2 x 2 block eigenvalue
problem,

s i3 sr | B Bij| 5 [Di 0

TAT=J |:Biq; Bj]J {0 Djy]’
with B;; = AT A;, where A; as the i-th block column of A. Arbenz and Slapnicar used
the two-sided Jacobi eigenvalue method to solve the subproblem, which is important
for preserving Jacobi’s high relative accuracy. Hari [64] derived an optimization using
the cosine-sine decomposition as a kind of “fast scaled block-rotation”, reducing the
flop count up to 40%. Boukaram et al. [20] developed batched one-sided Jacobi and
block Jacobi methods for GPUs, to compute SVD factorizations of a batch of small
matrices.

Becka et al. introduced dynamic orderings for the two-sided [8] and one-sided [9]
Jacobi methods. Instead of using a cyclic ordering such as row-cyclic, round-robin, or
odd-even, the idea is to find the off-diagonal blocks of maximum norm to eliminate.
This is Jacobi’s original idea, applied on the block level. Using a greedy solution to
the mazimum-weight perfect matching problem takes O(p?log p) time for p processors
and yields a set of N/2 subproblems of maximum weight to solve in parallel. Their
results show significantly improved convergence and time to solution.

12.7. Performance analysis. While Jacobi methods have a long history, even
predating bidiagonalization methods, many implementations have been either research
codes or for unique systems like the ILLIAC IV [84]. Therefore, we do not have as
rich a collection of historical implementations to compare as for bidiagonalization
methods. We tested four current implementations of Jacobi methods:

e One-sided Jacobi, available in LAPACK as dgesvj, due to Drmag¢ [44].

e Preconditioned one-sided Jacobi, available in LAPACK as dgejsv, due to
Drmac [44].

e Two-sided Jacobi, available in Eigen 3.3.3 [47].

e Preconditioned one-sided block Jacobi, due to Becka et al. [9].

Jacobi has traditionally trailed bidiagonalization methods in performance for two
reasons. First, a comparison of flops in Figure 28 shows that for computing singular
values only (no vectors), Jacobi cannot finish even one sweep in the same flops as
bidiagonalization (%n‘”’). When computing vectors, Jacobi would need to complete
in two sweeps to have fewer flops than QR iteration, and one sweep to have fewer
flops than divide and conquer. However, with optimizations to skip rotations and
take advantage of matrix structure [45, 89], these Jacobi flop counts are significant
overestimates.

However, as we have repeatedly seen, flops are now a poor metric for performance.
It matters whether flops are in compute-intensive Level 3 BLAS or not. For Jacobi,
dot products and plane rotations are Level 1 BLAS, so are memory bandwidth limited.
For preconditioned Jacobi, QR with column pivoting (QRP) has a mixture of Level 2
and Level 3 BLAS operations, similar to the traditional one-stage bidiagonalization
discussed in subsection 5.1, so its performance is also limited by memory bandwidth.
The triangular solve for V' and multiplying QU will both be Level 3 BLAS operations.
The level of parallelism also matters. The two LAPACK implementations, one-sided

This manuscript is for review purposes only.



1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 43

no vectors with vectors

QR iteration %n?’ %n?’ ~ 1703
divide and conquer %n3 %nS’ ~ 9n3
one-sided Jacobi 58n3 75n3
two-sided Jacobi 45n3 8Sn3

preconditioned one-sided Jacobi  5Sn3 + %n?’ 55n° + %7713

preconditioned two-sided Jacobi 45n3 + §n®  6Sn® + in?

Fic. 28. Floating point operation counts for square n X n matriz and S Jacobi sweeps. For
Jacobi, fast Givens rotations [63] are assumed. For preconditioned Jacobi, initial QRP and LQ
factorizations and triangular solve for V are also assumed.

Jacobi and preconditioned one-sided Jacobi, do not use explicit parallelism. Therefore,
the only parallelism is within the BLAS, which is very limited for Level 1 BLAS.
In contrast, the block Jacobi method uses Level 3 BLAS operations and explicit
parallelism via MPI, so we can expect much better performance.

In Figure 29(a), for square matrices without vectors, both one-sided Jacobi meth-
ods were about half EISPACK’s speed, while with vectors in Figure 29(b), precon-
ditioned Jacobi is 2x faster than plain Jacobi, and close to EISPACK’s speed. For
tall, 3:1 matrices in Figure 29(c), the plain one-sided Jacobi does not do an initial
QR factorization, so it remains about half of EISPACK’s speed, while the precondi-
tioned Jacobi improves to about 2x EISPACK’s speed. When computing vectors in
Figure 29(d), the preconditioned Jacobi version gains even more, being over 3x faster
than EISPACK.

For the very tall-skinny 1000:1 case in Figures 29(e) and 29(f), the time with
preconditioned Jacobi is dominated by QRP, which uses more Level 2 and 3 BLAS
operations, so the performance improves to over 100x EISPACK. LAPACK’s QR it-
eration uses a regular QR factorization (no pivoting), which is predominantly Level 3
BLAS, so its performance is significantly faster than Jacobi. However, QRP will gen-
erate a more accurate factorization than regular QR, especially if A is ill-conditioned.

In most cases, the Jacobi single-core performance was identical to its multi-core
performance, indicating that the Level 1 BLAS routines do not have appreciable par-
allelism. For tall matrices, preconditioning gained an advantage when using multiple
cores, shown by the difference between the solid and dashed green lines in Figures 29(c)
to 29(f), due to parallelism within QRP, solving for V, and computing QU.

In all of these results, the two-sided Jacobi implementation available in Eigen was
considerably slower. This can partly be explained because it has to update the matrix
both row-wise and column-wise, making for poor cache performance. For square
matrices, it does not do any preconditioning. For tall matrices, it uses QRP, which
improves its relative performance somewhat. (Note that Eigen can be configured to
instead call LAPACK’s QR iteration method.)

Figure 30 shows results for the precondition one-sided block Jacobi method. We
tested two variants of the preconditioning, one using QR factorization with column
pivoting (QRP), the other using regular QR factorization (no pivoting). In both cases,
this was followed by an LQ factorization. This implementation has explicit parallelism
via MPI. It uses ScaLAPACK for the QRP, QR, and LQ factorizations. We see that

This manuscript is for review purposes only.



44

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

g 3
5% 3 ¥
o % o2
o >
'8 ﬂ Twn
Quw $m
g 0.2} i a
O_OIAIAIIIIII 0ol A—rA | 1 1 1 1
0Ok 4k 8k 12k 16k 20k Ok 4k 8k 12k 16k 20k
columns (matrix size N xN) columns (matrix size N xN)
(a) square, no vectors (b) square, with vectors
4.0
5 5 3%
> > 3.0
s 5% 25
Sx Sx 2.0
Al L2 15
w w
9 oW 10
0 v 0.5
0.0
Ok 2k 4k 6k 8k
columns (matrix size 3N xN) columns (matrix size 3N xN)
(c) tall, 3:1, no vectors (d) tall, 3:1, with vectors
400 300
. 350 o 250
g 300 E% 500
g_u 250 g_u
gé 200 gé 150
D150 ]
g 100 g 100
Y 50 & 50 - i
0 0 = =R -3 -
0 200 400 600 800 0 200 400 600 800
columns (matrix size 1000N xN) columns (matrix size 1000N xN)
(e) tall, 1000:1, no vectors (f) tall, 1000:1, with vectors
A /A Eigen Jacobi p= = P LAPACK Precond. Jacobi (1 core)
=< LAPACK Jacobi B— LAPACK QR iter.
PP | APACK Precond. Jacobi [ = B LAPACK QR iter. (1 core)

Fia. 29. Comparison of LAPACK’s one-sided Jacobi, preconditioned one-sided Jacobi, and

Figen’s two-sided Jacobi.

with QRP + LQ, it performed similarly to ScaLAPACK QR iteration, while with QR
+ LQ, it was a bit faster, matching LAPACK’s QR iteration in performance for the
tall, 3:1 case.

13. Accuracy. While Jacobi methods have struggled to compete with the per-

loy — 63

;i

< O(e)k

formance of bidiagonalization methods, for some classes of matrices they have a dis-
tinct advantage in accuracy, which is now their main motivation. In this section, we
briefly explore the accuracy differences between methods. The traditional perturba-
tion theory [32] for both bidiagonalization and Jacobi methods shows that

(A)a

This manuscript is for review purposes only.



1262
1263
1264
1265
1266
1267

1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 45

60 120 T T T

o 50 o 100
3¥ 40 3% 80
Yo 20 gm 40
& 10 & 20

0 0

0k 2k 4k 6k 8k 0k 2k 4k 6k 8k

columns (matrix size N xN) columns (matrix size 3N xN)
(a) square, with vectors (b) tall, 3:1, with vectors

VY3 Block Jacobi, QR + LQ @@ ScalAPACK
V- = ¥ Block Jacobi, QRP + LQ  @==g LAPACK D&C
PP | APACK Precond. Jacobi =l LAPACK QR iter.

F1a. 30. Comparison of preconditioned one-side block Jacobi, LAPACK’s preconditioned one-
sided Jacobi, QR iteration, and divide and conquer.

where o; and &; are the singular values of A and A + J A, respectively, with a small
perturbation 6A such that [[§Al, < O(e)||A]ly, and x(A) is the condition number
of A. This implies that large singular values are computed accurately, but small
singular values may be totally inaccurate if kK(A) is large. For the one-sided Jacobi
SVD method, this bound can be improved. Specifically, on matrices of the form
A = CD, where C has columns with unit two-norm and D is diagonal, Demmel and
Veseli¢ [32] proved the bound

|03 —-5}

(13) | < 0()r().

0;
Crucially, it can be that k(C) < k(A), particularly in the instance of a strongly
scaled matrix where D is ill-conditioned. If ill-conditioning is artificial, due to poor
scaling, then one-sided Jacobi will be unaffected by it and will compute even small
singular values to high relative accuracy. Demmel et al. [30] extended methods of
computing the SVD with high relative accuracy to a wider class of matrices of the
form A = XDY7T, where D is diagonal, and X and Y are well-conditioned.

Similar results apply for the two-sided Jacobi eigenvalue method with a positive
definite matrix A = DT BD [32]. For eigenvalues of an indefinite matrix, though, QR
iteration may be more accurate than Jacobi [108].

When applied to triangular matrices, Matejas and Hari [88, 89] proved that the
two-sided Jacobi SVD method also attains high relative accuracy. One can preprocess
a general matrix using QRP to obtain such a triangular matrix.

Applied to a bidiagonal matrix, the implicit zero-shift variant of QR iteration and
the bisection method have been shown to achieve high relative accuracy for all sin-
gular values [31]. However, the classical reduction from dense to bidiagonal perturbs
the singular values so the exact singular values of the bidiagonal matrix no longer
have high relative accuracy for the original matrix A. Hence, any method based on
an initial reduction to bidiagonal will lose relative accuracy for small singular values
of an ill-conditioned matrix. To address this deficiency, Barlow [7] developed a more
accurate bidiagonalization, using QRP followed by a Givens rotation based bidiag-
onalization. Recently, Drma¢ [43] demonstrated that preprocessing a matrix with
QRP (LAPACK’s dgeqp3 routine) is sufficient to make a subsequent QR iteration or

This manuscript is for review purposes only.



1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

46

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

10°
105 | geometric ' m*'* arithmetic PARR] cluster at 16
100 F % -6
109 | Ay
10 f L
10 | SN 1\/2 N
100 [ %
10-12 [ 2 x ™ A 2™ A A AN
-14
10716 Ko _ e =
10718
10_20 | I I I I A I | [ — | I I I S S A 5 I [N Y Sy |
2 22%00L5%8%% 2 2200000 hh° 22 h%hY
OSno” o o o T T T T Sn'o” o s T T T T T Sn'o” o s T T T T T
- Q%6 202 S o "On o "T Qo 22 o o "on o T Qo 22 5n o T on o ”
“9“9999—999—9 e 9999—9_9—9 = 9999—9
t rot KO, K(D)
B— QR iter. A—A Eigen 2-sided Jacobi
&---® QRP + QR iter. V—V¥ Bisection
¢—4 D&C *—#% MRRR
P—p 1-sided Jacobi, precond. —_——
<—< 1-sided Jacobi
F1G. 31. Mazimum relative error in singular values, max|6; — o;| /(k(C)o;), fori=1,...,100,

with various test matrices. Figure 32 shows details for three instances indicated by arrows: geometric
distribution with (k(C), k(D)) = (10,10); (10%,1019); (10°,10%9).

bisection have high relative accuracy. (But not divide and conquer, which is not as
accurate as QR iteration.)

Here we test the accuracy of various methods on matrices with three different
distributions of singular values: arithmetic, geometric, and a cluster at 1/x(C), as
described in section 2. For each distribution, we generate singular values ¥ with
condition number x(C), scale them so that 3. ¢? = n, and set C = USV” where
U and V are random orthogonal matrices from the Haar distribution [106]. To
satisfy the conditions of (13), we use the method by Davies and Higham [26] to
make C = CW with columns of unit two-norm, where W is orthogonal. Finally,
we set A = CD, where D is diagonal with entries whose logarithms are random
uniform on (log(1/k(D)),log(1)). For each distribution, we set n = 100 and vary
k(C) € {10,105,10'°} and (D) € {10,10°,10'°,10%°}. For a reference solution, we
used MATLAB’s [90] variable-precision arithmetic (vpa) with 64 digits.

Figure 31 demonstrates the significant difference between one-sided Jacobi meth-
ods and bidiagonalization methods (QR iteration, D&C, bisection, MRRR). Both
one-sided Jacobi methods achieve high relative accuracy for all singular values, at or
below the dashed line representing machine e. For small scaling, with (D) = 10,
all methods achieve high accuracy on all the matrices. Most of the bisection meth-
ods show increased relative errors as the scaling k(D) grows. For k(D) = 10%°, the
maximum errors were sometimes larger than 1, i.e., no correct digits in the smallest
singular values. Among bisection methods, the exception was preprocessing using QR
with column pivoting, then using QR iteration (QRP + QR iter., blue diamonds),
which also achieved high relative accuracy, as predicted by Drmagc.

QR iteration (blue squares) and bisection (purple down triangles) produce ex-

This manuscript is for review purposes only.



1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1346

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

1365

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 47

tremely similar errors, demonstrating that they both accurately compute singular
values of the bidiagonal matrix, and the error occurs in the reduction to bidiagonal.
Once the condition number x(A) exceeds 1/, divide and conquer (red diamonds) has
much worse error than QR iteration. Even with modest scaling, MRRR, (stars) has
the worst error. Eigen’s two-sided Jacobi (orange up triangles) also exhibits signifi-
cant error as the scaling increases. Preprocessing with QRP before Eigen’s two-sided
Jacobi (not shown) improved the accuracy, but not to the high relative accuracy of
one-sided Jacobi. Based on [89], other two-sided Jacobi implementations are expected
to achieve high relative accuracy.

To explain these results in more detail, we look at three specific cases for the
geometric distribution with x(C) = 10° and (D) € {10,10%°,102°}. In Figure 32,
the left column shows the actual singular values, in both log and linear scale, while the
right column shows the relative error in each singular value, o; from ¢ = 1,...,100. In
the top row, with minimal scaling (k(D) = 10), all the methods achieve high accuracy,
below € in almost all cases. Eigen has a little higher error for large singular values,
and MRRR is a little higher for small singular values.

In the middle row, with modest scaling (x(D) = 10'°), the one-sided Jacobi
methods and QRP + QR iteration maintain high relative accuracy for all singular
values. The bidiagonalization methods have high accuracy for the large singular values
(near o1), but the relative error increases for small singular values, losing digits of
accuracy. Figen’s error also increases.

In the bottom row, with large scaling (x(D) = 102Y), the error of bidiagonalization
methods for small singular values grows even more. As seen in the bottom-left graph,
several methods compute singular values that noticeably diverge from the reference
solution. For this matrix with omax ~ 1020, MRRR declares all o; < 107 to be
3.27 x 107, i.e., it cannot resolve smaller singular values. Similarly for D&C, all
o; < 10% are computed as 6.91 x 103. Eigen also has issues for ¢ < 10%, though it
does not flatline as MRRR and D&C do. QR iteration and bisection follow the true
singular values much more closely, but still exhibit significant error for small singular
values.

14. Additional test cases. So far, we have mostly considered the performance
of random uniform matrices. In this section, we look briefly at additional test cases
using various distributions of singular values. Our purpose here is to give the reader
an idea of the variability in performance and how representative the random uniform
tests are. The distribution of singular values affects the performance of various SVD
algorithms differently. For QR iteration and divide and conquer, whenever a singular
value is determined with sufficient accuracy, it can be removed to shrink the problem
size, a process known as deflation, improving the performance. For MRRR, having
singular values close to one another will cause it to recurse further in the representation
tree, decreasing its performance [119]. For one-sided Jacobi, matrices that are close
to orthogonal—i.e., most of the weight of AT A is near the diagonal-—converge faster.

Figure 33 shows results for six methods on various matrices. These all use the
LAPACK implementations, except MRRR which uses a modification of the bisection
dgesvdx code, as described in section 9. Note that the y-axis scale is different for
QR iteration, divide and conquer, and MRRR than for Jacobi and bisection. See
section 2 for a description of the matrix types. For each algorithm, the first, blue bar
is for a random uniform matrix, matching most of the results elsewhere in this paper.
The geometric and log-random distributions themselves are similar, so in most cases
their performance trends are similar, except when using bisection. We see that for

This manuscript is for review purposes only.



1366
1367
1368
1369
1370

48 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

singular values relative error
loi “ T T T T 7 20 ;
10
v 10° 15 o
-2 E
gl E g
10" 0
ST S e S v— —
0 20 40 60 80 100
(a) minimal scaling, x(C) = 10, k(D) = 10, k(A) = 2.4 x 10°
singular values x10' relative error
. 7 1.2 T T
10
-4 1.0
(]
© 10° B 108
% 103 K Joe ?
)] ©
8 1o {os
1072 F\ | 02
OO O8N 0.0
0 20 40 60 80 100 0 20 40 60 80 100
(b) moderate scaling, k(C) = 105, k(D) = 1019, x(A) = 6.9 x 10'3
102 |smngllar velllues | 102 10° relative error
1018 ‘ 4 1.0 loz
1015 ] 10
P 1312 [ 0.8 e 03k
S 100 [l {065 10°°
0w | — -
(o] 106 :“\ 0.4 8 1160_12
° :|.03 -\ YA g 10_15 L
10° F| 5102 10718
30N
10" oo o o Woo 107 - . ;
0 20 40 60 80 100 0 20 40 60 80 100

c) large scaling, < =107, k =107, k =5.2x10
1 1 C 5 D 20 A 23

B—H Reference solution, log scale »>—> 1-sided Jacobi, precond.
¢—< Reference solution, linear scale ~ <¢—< 1-sided Jacobi

—— ¢ A—A Eigen 2-sided Jacobi
B— QR iter. W - ¥ Bisection

@---@ QRP + QR iter. *—% MRRR

¢—4¢ D&C

Fi1a. 32. Singular values of A = CD are plotted twice in left column, once in log scale (black
squares), once in linear scale (gray diamonds). In most cases, computed singular values are visually
coincident with reference solution (log scale). Right column shows relative error in each singular
value, |65 — 0| /(k(C)o;). x azis indexses the singular values from largest to smallest, i = 1,...,100.

QR iteration, the performance for most matrices is similar to that of random uniform,
with a few being up to 18% slower. For divide and conquer, the arithmetic distribution
(cyan) was up to 24% slower, while log-random (green) was up to 23% faster than
random uniform. The two clusters (red, orange) were 77% and 60% faster, due to
significant deflation. MRRR is more variable, with geometric (purple) and log-random

This manuscript is for review purposes only.



= e e
W W W W W w w
S T R W N

ES RS RS RS BERS BRSPS B |

~

"_“
w
oo

1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392
1393
1394

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 49

20F T T T 600 T T T
500 E
i 15F 400 .
[0
(2]
; 10k 300 —
E

0
QR iter. D&C MRRR 1-sided 1-sided bisection
Jacobi Jacobi,
precond.

. entries random uniform . geometric, k=10 . log-random, x =10°
. arithmetic, k=10 . geometric, k =10° . log-random, x =10
. arithmetic, k=10° . geometric, k=10 . cluster at 1/, k=10°
. arithmetic, x =10" . log-random, k=10 E cluster at 1, k=10°

Fic. 33. Time to compute full SVD for n = 3000. Note change in y axis; dashed line at t = 20
corresponds to y axis in left plot.

(green) being up to 47% and 52% slower on ill-conditioned matrices (x = 101?), while
both clusters of repeated singular values were up to 3x faster than random uniform.
Arithmetic (cyan) was not significantly affected by conditioning.

Because one-sided Jacobi and bisection were significantly slower, they are plot-
ted with a different y axis. In all cases, one-sided Jacobi and bisection were slower
than QR iteration, divide and conquer, and MRRR. The geometric (purple) and log-
random (green) matrices exhibited opposite behavior for the two Jacobi methods: for
plain Jacobi, both matrices became slower as the conditioning worsened, while for
preconditioned Jacobi, both became faster. A cluster at 1/x took similar time to
random. A cluster at 1 was much faster, because AT A is already nearly diagonal, but
preconditioning did not further improve it. Bisection was surprisingly 4.9x faster for
a well-conditioned (k = 10) log-random matrix, but the speedup decreased for poorer
conditioning. As we saw earlier in section 8 when computing a subset of vectors,
clusters were not advantageous.

While the performance does vary for different classes of matrices—sometimes
substantially—at a high level, our performance conclusions remain valid: divide and
conquer is the fastest (being tied with MRRR in one case), then QR iteration, then
MRRR. One-sided Jacobi is the slowest method, with preconditioning generally im-
proving its speed, often by a factor of 2x or more. For computing all vectors, bisec-
tion is also slow; its main advantage is in computing a subset of vectors, as previously
shown in section 8.

15. Conclusions. As we have seen, algorithms to compute the SVD have con-
tinually evolved to address changes in computer hardware design, as well as advance-
ments in mathematics. Early implementations such as EISPACK demonstrated that

This manuscript is for review purposes only.



1395
1396
1397
1398
1399
1400
1401

50 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

computing the SVD stably was feasible. Later implementations focused on improving
the performance, first by using Level 1 BLAS for vector computers, then by refor-
mulating the algorithm for Level 3 BLAS to address the emergence of cache-based
memory hierarchies. More recently, a two-stage algorithm shifted even more oper-
ations from Level 2 to Level 3 BLAS. These changes have addressed the growing
gap between memory bandwidth and computational speed, as well as enabled greater
use of parallel hardware. Implementations have also taken advantage of different ar-
chitectures such as distributed memory computers and accelerators. Mathematical
advancements have been important in reducing the number of operations performed.
For tall-skinny problems, using an initial QR factorization can eliminate a quarter to
half of the operations. For square matrices, the divide and conquer algorithm reduces
operations by nearly half. For Jacobi methods, preconditioning has been vital to im-
prove convergence, while at the same time making computation of singular vectors
more efficient. Block Jacobi methods with dynamic selection of subproblems have be-
come competitive with some bidiagonalization methods. Improvements in algorithms
used to preprocess a matrix, such as using a CAQR factorization [29] for tall-skinny
matrices, or future improvements to QRP methods, are immediately applicable to
benefit SVD performance.

As we build the next generation of linear algebra software targeting exascale com-
puters [77], the goal is to integrate these techniques—such as the two-stage reduction
to bidiagonal, accelerators, and distributed computing—into a scalable SVD solver.
While the techniques have been demonstrated to work, the challenge is being able
to hide communication latencies in large distributed machines. Bottlenecks due to
Amdahl’s law, such as solving the bidiagonal SVD, will also be crucial to resolve.
Improving algorithms to remove communication and memory bandwidth limitations
becomes critically important.

For certain classes of matrices that are strong scaled, classical methods based
on reduction to bidiagonal will not accurately compute small singular values. In
these cases, one should turn to Jacobi methods or preprocessing the matrix using QR
factorization with column pivoting (QRP) to attain high relative accuracy.

We have focused on solving dense systems. There are of course different techniques
for solving SVD problems with sparse linear systems. Also, if one is concerned with
only an approximate, low-rank solution, then using a randomized SVD algorithm [99]
may be another avenue to pursue. This is often the case for huge systems arising from
big data problems.

Here we have compared implementations on a common, modern architecture. To
give some historical perspective, in 1977, EISPACK took 0.79 seconds (1.7 Mflop/s)
to compute singular values for n = 80 on an IBM 370/195 [105]. Today, the same
EISPACK code achieves 0.74 Gflop/s on large problems, yielding over two orders-
of-magnitude advancement in single core hardware speed. On top of this, we have
shown an additional two orders-of-magnitude improvement going from EISPACK to
PLASMA (146 Gflop/s) on a multicore architecture, and four orders of magnitude to
DPLASMA (6.8 Tflop/s) on a distributed-memory machine—while moving from solv-
ing systems of dimension 100 to over 100,000—yielding over six orders-of-magnitude
performance improvement in 40 years.

Acknowledgments. We thank Martin Becka, Gabriel Oksa, and Marian Va-
jtersic for use of their block Jacobi code; Osni Marques for assistance with the MRRR
code; and the anonymous reviewers for feedback to improve the quality and scope of
this work.

This manuscript is for review purposes only.



1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 51

References.

1

[15]

E. Acurro, B. HaDRrI, H. LTAIEF, AND J. DONGARRRA, Comparative study
of one-sided factorizations with multiple software packages on multi-core hard-
ware, in Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis (SC’09), ACM, 2009, p. 20, https://doi.org/10.
1145/1654059.1654080.

E. ANDERSON, Z. Bai, C. BIscHOF, S. BLACKFORD, J. DONGARRA,
J. Du Croz, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND
D. SORENSEN, LAPACK wusers’ guide, STAM, Philadelphia, third ed., 1999,
https://doi.org,/10.1137/1.9780898719604.

H. ANDREWS AND C. PATTERSON, Singular value decomposition (SVD) image
coding, IEEE Transactions on Communications, 24 (1976), pp. 425-432, https:
//doi.org/10.1109/TCOM.1976.1093309.

P. ARBENZ AND G. GOLUB, On the spectral decomposition of Hermitian matri-
ces modified by low rank perturbations with applications, SIAM Journal on Ma-
trix Analysis and Applications, 9 (1988), pp. 40-58, https://doi.org/10.1137/
0609004.

P. ARBENZ AND I. SLAPNICAR, An analysis of parallel implementations of the
block-Jacobi algorithm for computing the SVD, in Proceedings of the 17th In-
ternational Conference on Information Technology Interfaces ITI, vol. 95, 1995,
pp. 13-16, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.4595.

G. BALLARD, J. DEMMEL, AND N. KNIGHT, Avoiding communication in suc-
cessive band reduction, ACM Transactions on Parallel Computing, 1 (2015),
p. 11, https://doi.org/10.1145/2686877.

J. L. BARLOW, More accurate bidiagonal reduction for computing the singular
value decomposition, SIAM Journal on Matrix Analysis and Applications, 23
(2002), pp. 761-798, https://doi.org/10.1137/S0895479898343541.

M. BECKA, G. OKSA, AND M. VAJTERSIC, Dynamic ordering for a parallel
block-Jacobi SVD algorithm, Parallel Computing, 28 (2002), pp. 243-262, https:
//doi.org/10.1016/50167-8191(01)00138-7.

M. BECKA, G. OKSA, AND M. VAJTERSIC, New dynamic orderings for the
parallel one—sided block-Jacobi SVD algorithm, Parallel Processing Letters, 25
(2015), p. 1550003, https://doi.org/10.1142/S0129626415500036.

M. BECKA, G. OKSA, M. VAJTERSIC, AND L. GRIGORI, On iterative QR pre-
processing in the parallel block-Jacobi SVD algorithm, Parallel Computing, 36
(2010), pp. 297-307, https://doi.org/10.1016/j.parco.2009.12.013.

M. BECKA AND M. VAJTERSIC, Block-Jacobi SVD algorithms for distributed
memory systems I: hypercubes and rings, Parallel Algorithms and Application,
13 (1999), pp. 265-287, https://doi.org/10.1080/10637199808947377.

M. BECKA AND M. VAJTERSIC, Block-Jacobi SVD algorithms for distributed
memory systems II: meshes, Parallel Algorithms and Application, 14 (1999),
pp. 37-56, https://doi.org/10.1080/10637199808947370.

C. BiscHor, B. LANG, AND X. SUN, Algorithm 807: The SBR Toolbor—
software for successive band reduction, ACM Transactions on Mathematical
Software (TOMS), 26 (2000), pp. 602-616, https://doi.org/10.1145/365723.
365736.

C. BiscHOF AND C. VAN LOAN, The WY representation for products of
Householder matrices, STAM Journal on Scientific and Statistical Computing, 8
(1987), pp. 2-13, https://doi.org/10.1137/0908009.

C. H. BiscHOF, Computing the singular value decomposition on a distributed

This manuscript is for review purposes only.


https://doi.org/10.1145/1654059.1654080
https://doi.org/10.1145/1654059.1654080
https://doi.org/10.1145/1654059.1654080
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1109/TCOM.1976.1093309
https://doi.org/10.1109/TCOM.1976.1093309
https://doi.org/10.1109/TCOM.1976.1093309
https://doi.org/10.1137/0609004
https://doi.org/10.1137/0609004
https://doi.org/10.1137/0609004
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.4595
https://doi.org/10.1145/2686877
https://doi.org/10.1137/S0895479898343541
https://doi.org/10.1016/S0167-8191(01)00138-7
https://doi.org/10.1016/S0167-8191(01)00138-7
https://doi.org/10.1016/S0167-8191(01)00138-7
https://doi.org/10.1142/S0129626415500036
https://doi.org/10.1016/j.parco.2009.12.013
https://doi.org/10.1080/10637199808947377
https://doi.org/10.1080/10637199808947370
https://doi.org/10.1145/365723.365736
https://doi.org/10.1145/365723.365736
https://doi.org/10.1145/365723.365736
https://doi.org/10.1137/0908009

1494
1495
1496
1497
1498
1499

52

[27]

[28]

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

system of vector processors, Parallel Computing, 11 (1989), pp. 171-186, https:
//doi.org/10.1016/0167-8191(89)90027-6.

L. S. BLACkFORD, J. CHOI, A. CLEARY, E. D’AZEVEDO, J. DEMMEL,
I. DHILLON, J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET,
ET AL., ScaLAPACK users’ guide, STAM, Philadelphia, 1997, https://doi.org/
10.1137/1.9780898719642.

L. S. BLACKFORD, A. PETITET, R. P0ozo, K. REMINGTON, R. C. WHALEY,
J. DEMMEL, J. DONGARRA, I. DUFF, S. HAMMARLING, G. HENRY, ET AL.,
An updated set of basic linear algebra subprograms (BLAS), ACM Transactions
on Mathematical Software (TOMS), 28 (2002), pp. 135-151, https://doi.org/
10.1145/567806.567807.

G. Bosinca, A. BOUTEILLER, A. DANALIS, M. FAVERGE, A. HAIDAR,
T. HEraurr, J. KUuRzZAK, J. LANGOU, P. LEMARINIER, H. LTAIEF, ET AL.,
Flexible development of dense linear algebra algorithms on massively parallel
architectures with DPLASMA, in 2011 IEEE International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum (IPDPSW), IEEE,
2011, pp. 1432-1441, https://doi.org/10.1109/IPDPS.2011.299.

G. BosiLca, A. BOUTEILLER, A. DANALIS, T. HERAULT, P. LEMARINIER,
AND J. DONGARRA, DAGuE: A generic distributed DAG engine for high perfor-
mance computing, Parallel Computing, 38 (2012), pp. 37-51, https://doi.org/
10.1016/j.parco.2011.10.003.

W. H. BoukaraM, G. TURKIYYAH, H. LTAIEF, AND D. E. KEYES, Batched
QR and SVD algorithms on GPUs with applications in hierarchical matriz com-
pression, Parallel Computing, (2017), https://doi.org/10.1016/j.parco.2017.09.
001.

R. P. BRENT AND F. T. LUK, The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays, STAM Journal on Scientific and
Statistical Computing, 6 (1985), pp. 69-84, https://doi.org/10.1137/0906007.
R. P. BrenT, F. T. LUK, AND C. VAN LoAN, Computation of the singular
value decomposition using mesh-connected processors, Journal of VLSI and com-
puter systems, 1 (1985), pp. 242-270, http://maths-people.anu.edu.au/~brent/
pd/rpb080i.pdf.

T. F. CHAN, An improved algorithm for computing the singular value decompo-
sition, ACM Transactions on Mathematical Software (TOMS), 8 (1982), pp. 72—
83, https://doi.org/10.1145/355984.355990.

J. CHo1, J. DONGARRA, AND D. W. WALKER, The design of a paral-
lel dense linear algebra software library: reduction to Hessenberg, tridiag-
onal, and bidiagonal form, Numerical Algorithms, 10 (1995), pp. 379-399,
https://doi.org/10.1007/BF02140776.

J. J. M. CuPPEN, A divide and conquer method for the symmetric tridiagonal
eigenproblem, Numerische Mathematik, 36 (1980), pp. 177-195, https://doi.
org/10.1007/BF01396757.

P. 1. Davies AND N. J. HiGHAM, Numerically stable generation of correlation
matrices and their factors, BIT Numerical Mathematics, 40 (2000), pp. 640-651,
https://doi.org/10.1023/A:102238421.

P. P. M. bE RUK, A one-sided Jacobi algorithm for computing the singular
value decomposition on a vector computer, SIAM Journal on Scientific and Sta-
tistical Computing, 10 (1989), pp. 359-371, https://doi.org/10.1137/0910023.
S. DEERWESTER, S. T. Dumais, G. W. Furnas, T. K. LANDAUER, AND
R. HARSHMAN, Indexing by latent semantic analysis, Journal of the Ameri-

This manuscript is for review purposes only.


https://doi.org/10.1016/0167-8191(89)90027-6
https://doi.org/10.1016/0167-8191(89)90027-6
https://doi.org/10.1016/0167-8191(89)90027-6
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1109/IPDPS.2011.299
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1137/0906007
http://maths-people.anu.edu.au/~brent/pd/rpb080i.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb080i.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb080i.pdf
https://doi.org/10.1145/355984.355990
https://doi.org/10.1007/BF02140776
https://doi.org/10.1007/BF01396757
https://doi.org/10.1007/BF01396757
https://doi.org/10.1007/BF01396757
https://doi.org/10.1023/A:102238421
https://doi.org/10.1137/0910023

= e

—_
~N
—_

N}

w

PN RS |

1SN

J—
~

—

v Ov Ot Ot Ot Ot Ot Ot QOuv Ot Ot C

=~

e
ESERS RS |
© 00

J—
o

—
co
—_

—_
o0
N

o

w

oo
=

(o)
t

= e e

x

—_
oo

-3

o
co

© o
o ©

J—
—_

—_
v Oov Ot Ot Ot Ot Qv Qv Qv Ot Ov Ot Ot Qt Ot

©
w N

©

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 53

can society for information science, 41 (1990), p. 391, https://doi.org/10.1002/
(SICI)1097-4571(199009)41:6(391::AID-ASI1)3.0.CO;2-9.

[29] J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, Communication-
optimal parallel and sequential QR and LU factorizations, SIAM Journal of
Scientific Computing, 34 (2012), pp. A206-A239, https://doi.org/10.1137/
080731992.

[30] J. DEMMEL, M. Gu, S. EISENSTAT, I. SLAPNICAR, K. VESELIC, AND
Z. DRMAC, Computing the singular value decomposition with high relative ac-
curacy, Linear Algebra and its Applications, 299 (1999), pp. 21-80, https:
//doi.org/10.1016/S0024-3795(99)00134-2.

[31] J. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices,
STAM Journal on Scientific and Statistical Computing, 11 (1990), pp. 873-912,
https://doi.org/10.1137/0911052.

[32] J. DEMMEL AND K. VESELI'C, Jacobi’s method is more accurate than QR,
STAM Journal on Matrix Analysis and Applications, 13 (1992), pp. 1204-1245,
https://doi.org/10.1137/0613074.

[33] J. W. DEMMEL, Applied Numerical Linear Algebra, STAM, Philadelphia, 1997,
https://doi.org/10.1137/1.9781611971446.

[34] J. W. DEMMEL, I. DHILLON, AND H. REN, On the correctness of some
bisection-like parallel eigenvalue algorithms in floating point arithmetic, Elec-
tronic Transactions on Numerical Analysis, 3 (1995), pp. 116-149, http://emis.
ams.org/journals/ETNA /vol.3.1995/pp116-149.dir/pp116-149.pdf.

[35] I. S. DHILLON, A New O(n?) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem, PhD thesis, EECS Department, University of Cali-
fornia, Berkeley, 1997, http://www.dtic.mil/docs/citations/ ADA637073.

[36] I. S. DHILLON AND B. N. PARLETT, Multiple representations to compute or-
thogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra and its
Applications, 387 (2004), pp. 1-28, https://doi.org/10.1016/j.laa.2003.12.028.

[37] I. S. DHILLON AND B. N. PARLETT, Orthogonal eigenvectors and relative gaps,
SIAM Journal on Matrix Analysis and Applications, 25 (2004), pp. 858-899,
https://doi.org/10.1137/S0895479800370111.

[38] I. S. DHILLON, B. N. PARLETT, AND C. VOMEL, The design and implemen-
tation of the MRRR algorithm, ACM Transactions on Mathematical Software
(TOMS), 32 (2006), pp. 533560, https://doi.org/10.1145/1186785.118678S.

[39] J. DoNcARRA, J. R. BuncH, C. B. MOLER, AND G. W. STEWART,
LINPACK users’ guide, STAM, Philadelphia, 1979, https://doi.org/10.1137/1.
9781611971811.

[40] J. DONGARRA, J. Du CrOZ, S. HAMMARLING, AND I. S. DUFF, 4 set of
level 8 basic linear algebra subprograms, ACM Transactions on Mathematical
Software (TOMS), 16 (1990), pp. 1-17, https://doi.org/10.1145/77626.79170.

[41] J. DONGARRA, J. DU CrOZ, S. HAMMARLING, AND R. J. HANSON, An ex-
tended set of FORTRAN basic linear algebra subprograms, ACM Transactions
on Mathematical Software (TOMS), 14 (1988), pp. 1-17, https://doi.org/10.
1145/42288.42291.

[42] J. DONGARRA, D. C. SORENSEN, AND S. J. HAMMARLING, Block reduction of
matrices to condensed forms for eigenvalue computations, Journal of Compu-
tational and Applied Mathematics, 27 (1989), pp. 215-227, https://doi.org/10.
1016,/0377-0427(89)90367-1. Special Issue on Parallel Algorithms for Numerical
Linear Algebra.

[43] Z. DRMAC, Algorithm 977: A QR-preconditioned QR SVD method for comput-

This manuscript is for review purposes only.


https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1016/S0024-3795(99)00134-2
https://doi.org/10.1016/S0024-3795(99)00134-2
https://doi.org/10.1016/S0024-3795(99)00134-2
https://doi.org/10.1137/0911052
https://doi.org/10.1137/0613074
https://doi.org/10.1137/1.9781611971446
http://emis.ams.org/journals/ETNA/vol.3.1995/pp116-149.dir/pp116-149.pdf
http://emis.ams.org/journals/ETNA/vol.3.1995/pp116-149.dir/pp116-149.pdf
http://emis.ams.org/journals/ETNA/vol.3.1995/pp116-149.dir/pp116-149.pdf
http://www.dtic.mil/docs/citations/ADA637073
https://doi.org/10.1016/j.laa.2003.12.028
https://doi.org/10.1137/S0895479800370111
https://doi.org/10.1145/1186785.1186788
https://doi.org/10.1137/1.9781611971811
https://doi.org/10.1137/1.9781611971811
https://doi.org/10.1137/1.9781611971811
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1016/0377-0427(89)90367-1
https://doi.org/10.1016/0377-0427(89)90367-1
https://doi.org/10.1016/0377-0427(89)90367-1

1594
1595
1596
1597
1598
1599
1600
1601
1602

1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

54

[52]

[53]

[54]

[55]

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

ing the SVD with high accuracy, ACM Transactions on Mathematical Software
(TOMS), 44 (2017), p. 11, https://doi.org/10.1145/3061709.

Z. DRMAC AND K. VESELIC, New fast and accurate Jacobi SVD algorithm, I,
SIAM Journal on Matrix Analysis and Applications, 29 (2008), pp. 1322-1342,
https://doi.org,/10.1137/050639193.

Z. DRMAC AND K. VESELI'C, New fast and accurate Jacobi SVD algorithm, II,
STAM Journal on Matrix Analysis and Applications, 29 (2008), pp. 1343-1362,
https://doi.org/10.1137/05063920X.

P. EBERLEIN, On one-sided Jacobi methods for parallel computation, STAM
Journal on Algebraic Discrete Methods, 8 (1987), pp. 790-796, https://doi.org/
10.1137/0608064.

EIGEN, Eigen 8.3.3, 2017, http://eigen.tuxfamily.org/.

K. V. FERNANDO AND B. N. PARLETT, Accurate singular values and differ-
ential qd algorithms, Numerische Mathematik, 67 (1994), pp. 191-229, https:
//doi.org/10.1007/s002110050024.

G. E. FORSYTHE AND P. HENRICI, The cyclic Jacobi method for computing
the principal values of a complex matrixz, Transactions of the American Mathe-
matical Society, 94 (1960), pp. 1-23, https://doi.org/10.2307/1993275.

B. S. GarBow, J. M. BoyLE, C. B. MOLER, AND J. DONGARRA, Ma-
triz eigensystem routines — FEISPACK guide extension, vol. 51 of Lecture
Notes in Computer Science, Springer, Berlin, 1977, https://doi.org/10.1007/
3-540-08254-9.

M. GATES, S. ToMoOVv, AND J. DONGARRAA, Accelerating the SVD two stage
bidiagonal reduction and divide and conquer using GPUs, Parallel Computing,
74 (2018), pp. 3-18, https://doi.org/10.1016/j.parco.2017.10.004.

G. GoLuB, Some modified matriz eigenvalue problems, SIAM Review, 15
(1973), pp. 318-334, https://doi.org/10.1137/1015032.

G. GoLuB AND W. KAHAN, Calculating the singular values and pseudo-inverse
of a matriz, STAM Journal on Numerical Analysis (Series B), 2 (1965), pp. 205—
224, https://doi.org/10.1137/0702016.

G. GorLuB AND C. REINSCH, Singular value decomposition and least squares
solutions, Numerische Mathematik, 14 (1970), pp. 403-420, https://doi.org/10.
1007/BF02163027.

B. GROSSER AND B. LANG, Efficient parallel reduction to bidiagonal
form, Parallel Computing, 25 (1999), pp. 969-986, https://doi.org/10.1016/
S0167-8191(99)00041-1.

M. Gu, J. DEMMEL, AND I. DHILLON, Efficient computation of the singular
value decomposition with applications to least squares problems, Tech. Report
LBL-36201, Lawrence Berkeley Laboratory, September 29 1994, http://www.
cs.utexas.edu/users/inderjit /public_papers/least_squares.pdf.

M. Gu AND S. C. EISENSTAT, A divide and conquer algorithm for the
bidiagonal SVD, Tech. Report YALEU/DCS/TR-933, Department of Com-
puter Science, Yale University, November 1992, http://cpsc.yale.edu/research/
technical-reports/1992-technical-reports.

M. Gu AND S. C. EISENSTAT, A stable and efficient algorithm for the rank-
one modification of the symmetric eigenproblem, SIAM Journal on Matrix
Analysis and Applications, 15 (1994), pp. 1266-1276, https://doi.org/10.1137/
S089547989223924X.

M. Gu AnND S. C. EISENSTAT, A divide-and-conquer algorithm for the bidi-
agonal SVD, SIAM Journal on Matrix Analysis and Applications, 16 (1995),

This manuscript is for review purposes only.


https://doi.org/10.1145/3061709
https://doi.org/10.1137/050639193
https://doi.org/10.1137/05063920X
https://doi.org/10.1137/0608064
https://doi.org/10.1137/0608064
https://doi.org/10.1137/0608064
http://eigen.tuxfamily.org/
https://doi.org/10.1007/s002110050024
https://doi.org/10.1007/s002110050024
https://doi.org/10.1007/s002110050024
https://doi.org/10.2307/1993275
https://doi.org/10.1007/3-540-08254-9
https://doi.org/10.1007/3-540-08254-9
https://doi.org/10.1007/3-540-08254-9
https://doi.org/10.1016/j.parco.2017.10.004
https://doi.org/10.1137/1015032
https://doi.org/10.1137/0702016
https://doi.org/10.1007/BF02163027
https://doi.org/10.1007/BF02163027
https://doi.org/10.1007/BF02163027
https://doi.org/10.1016/S0167-8191(99)00041-1
https://doi.org/10.1016/S0167-8191(99)00041-1
https://doi.org/10.1016/S0167-8191(99)00041-1
http://www.cs.utexas.edu/users/inderjit/public_papers/least_squares.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/least_squares.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/least_squares.pdf
http://cpsc.yale.edu/research/technical-reports/1992-technical-reports
http://cpsc.yale.edu/research/technical-reports/1992-technical-reports
http://cpsc.yale.edu/research/technical-reports/1992-technical-reports
https://doi.org/10.1137/S089547989223924X
https://doi.org/10.1137/S089547989223924X
https://doi.org/10.1137/S089547989223924X

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

[60]

[61]

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 55

pp. 79-92, https://doi.org/10.1137/S0895479892242232.

A. HAIDAR, J. KURZAK, AND P. LUSZCZEK, An improved parallel singular
value algorithm and its implementation for multicore hardware, in Proceedings
of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC’13), ACM, 2013, p. 90, https://doi.org/10.1145/
2503210.2503292.

A. HAIDAR, H. LTAIEF, AND J. DONGARRA, Parallel reduction to condensed
forms for symmetric eigenvalue problems wusing aggregated fine-grained and
memory-aware kernels, in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), ACM,
2011, pp. 8:1-8:11, https://doi.org/10.1145/2063384.2063394.

A. HADAR, H. LTAIEF, P. LUSZCZEK, AND J. DONGARRA, A comprehen-
sive study of task coalescing for selecting parallelism granularity in a two-stage
bidiagonal reduction, in 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2012, pp. 25-35, https://doi.org/10.
1109/IPDPS.2012.13.

S. HAMMARLING, A note on modifications to the Givens plane rotation, IMA
Journal of Applied Mathematics, 13 (1974), pp. 215-218, https://doi.org/10.
1093 /imamat/13.2.215.

V. HARI, Accelerating the SVD block-Jacobi method, Computing, 75 (2005),
pp. 27-53, https://doi.org/10.1007/s00607-004-0113-z.

V. HARI AND J. MATEJAS, Accuracy of two SVD algorithms for 2x 2 triangular
matrices, Applied Mathematics and Computation, 210 (2009), pp. 232-257,
https://doi.org/10.1016/j.amc.2008.12.086.

V. Harl AND K. VESELIC, On Jacobi methods for singular value decomposi-
tions, STAM Journal on Scientific and Statistical Computing, 8 (1987), pp. 741
754, https://doi.org/10.1137/0908064.

M. HeaTH, A. LAUB, C. PAIGE, AND R. WARD, Computing the singular
value decomposition of a product of two matrices, SIAM Journal on Scientific
and Statistical Computing, 7 (1986), pp. 11471159, https://doi.org/10.1137/
0907078.

M. R. HESTENES, Inversion of matrices by biorthogonalization and related re-
sults, Journal of the Society for Industrial and Applied Mathematics, 6 (1958),
pp. 51-90, https://doi.org/10.1137/0106005.

G. W. HoweLL, J. W. DEMMEL, C. T. FurLTtoN, S. HAMMARLING, AND
K. MarMOL, Cache efficient bidiagonalization using BLAS 2.5 operators, ACM
Transactions on Mathematical Software (TOMS), 34 (2008), p. 14, https://doi.
org/10.1145/1356052.1356055.

IBM CORPORATION, ESSL Guide and Reference, 2016, http://publib.boulder.
ibm.com/epubs/pdf/a2322688.pdf.

INTEL CORPORATION, User’s Guide for Intel Math Kernel Library for Linux
08, 2015, http://software.intel.com/en-us/mkl-for-linux-userguide.

I. C. F. IPSEN, Computing an eigenvector with inverse iteration, STAM Review,
(2006), pp. 254-291, https://doi.org/10.1137/S0036144596300773.

C. G. J. Jacosl, Uber ein leichtes verfahren die in der theorie der
sdcularstorungen vorkommenden gleichungen numerisch aufzuldsen., Journal
fir die reine und angewandte Mathematik, 30 (1846), pp. 51-94, http://eudml.
org/doc/147275.

E. JESSUP AND D. SORENSEN, A divide and conquer algorithm for computing
the singular value decomposition, in Proceedings of the Third STAM Conference

This manuscript is for review purposes only.


https://doi.org/10.1137/S0895479892242232
https://doi.org/10.1145/2503210.2503292
https://doi.org/10.1145/2503210.2503292
https://doi.org/10.1145/2503210.2503292
https://doi.org/10.1145/2063384.2063394
https://doi.org/10.1109/IPDPS.2012.13
https://doi.org/10.1109/IPDPS.2012.13
https://doi.org/10.1109/IPDPS.2012.13
https://doi.org/10.1093/imamat/13.2.215
https://doi.org/10.1093/imamat/13.2.215
https://doi.org/10.1093/imamat/13.2.215
https://doi.org/10.1007/s00607-004-0113-z
https://doi.org/10.1016/j.amc.2008.12.086
https://doi.org/10.1137/0908064
https://doi.org/10.1137/0907078
https://doi.org/10.1137/0907078
https://doi.org/10.1137/0907078
https://doi.org/10.1137/0106005
https://doi.org/10.1145/1356052.1356055
https://doi.org/10.1145/1356052.1356055
https://doi.org/10.1145/1356052.1356055
http://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
http://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
http://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
http://software.intel.com/en-us/mkl-for-linux-userguide
https://doi.org/10.1137/S0036144596300773
http://eudml.org/doc/147275
http://eudml.org/doc/147275
http://eudml.org/doc/147275

56 DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

on Parallel Processing for Scientific Computing, Philadelphia, PA, 1989, STAM,
pp. 61-66.

[75] W. KAHAN, Accurate eigenvalues of a symmetric tri-diagonal matriz, tech. re-
port, Stanford University, Stanford, CA, USA, 1966, http://www.dtic.mil/docs/
citations/AD0638796.

[76] E. KOGBETLIANTZ, Solution of linear equations by diagonalization of coef-
ficients matriz, Quarterly of Applied Mathematics, 13 (1955), pp. 123-132,
http://www.ams.org/journals/qam/1955-13-02/S0033-569X-1955-88795-9/
S0033-569X-1955-88795-9.pdf.

[77] J. KurzAak, P. Wu, M. GATEs, I. YAMAZAKI, P. Luszczek, G. RAGGHI-
ANTI, AND J. DONGARRA, Designing SLATE: Software for linear algebra target-
ing erascale, SLATE Working Note 3, Innovative Computing Laboratory, Uni-
versity of Tennessee, Sep 2017, http://www.icl.utk.edu/publications/swan-003.

[78] B. LANG, Parallel reduction of banded matrices to bidiagonal form, Paral-
lel Computing, 22 (1996), pp. 1-18, https://doi.org/10.1016/0167-8191(95)
00064-X.

[79] C. L. Lawson, R. J. HansoN, D. R. Kincaip, anD F. T. KROGH, Basic
linear algebra subprograms for FORTRAN usage, ACM Transactions on Math-
ematical Software (TOMS), 5 (1979), pp. 308-323, https://doi.org/10.1145/
355841.355847.

[80] R.-C. L1, Solving secular equations stably and efficiently, Tech. Report
UCB//CSD-94-851, University of California Berkeley, Computer Science Di-
vision, 1994, http://www.netlib.org/lapack/lawns/. Also: LAPACK Working
Note 89.

[81] S. L1, M. Gu, L. CHENG, X. CHI, AND M. SUN, An accelerated divide-and-
conquer algorithm for the bidiagonal SVD problem, SIAM Journal on Matrix
Analysis and Applications, 35 (2014), pp. 1038-1057, https://doi.org/10.1137/
130945995.

[82] H. Lraier, J. KURzZAK, AND J. DONGARRA, Parallel two-sided matriz re-
duction to band bidiagonal form on multicore architectures, IEEE Transac-
tions on Parallel and Distributed Systems, 21 (2010), pp. 417-423, https:
//doi.org/10.1109/TPDS.2009.79.

[83] H. Lraler, P. Luszczek, AND J. DONGARRA, High-performance bidiagonal
reduction using tile algorithms on homogeneous multicore architectures, ACM
Transactions on Mathematical Software (TOMS), 39 (2013), pp. 16:1-16:22,
https://doi.org/10.1145/2450153.2450154.

[84] F. T. Luk, Computing the singular-value decomposition on the ILLIAC IV,
ACM Transactions on Mathematical Software (TOMS), 6 (1980), pp. 524-539,
https://doi.org/10.1145/355921.355925.

[85] F. T. Luk AND H. PARK, On parallel Jacobi orderings, SIAM Journal on
Scientific and Statistical Computing, 10 (1989), pp. 18-26, https://doi.org/10.
1137,/0910002.

[86) O. MARQUES AND P. B. VASCONCELOS, Computing the bidiagonal SVD
through an associated tridiagonal eigenproblem, in International Conference
on Vector and Parallel Processing (VECPAR), Springer, 2016, pp. 64-74,
https://doi.org/10.1007/978-3-319-61982-8_8.

[87) W. F. MASCARENHAS, On the convergence of the Jacobi method for arbi-
trary orderings, SIAM Journal on Matrix Analysis and Applications, 16 (1995),
pp. 1197-1209, https://doi.org/10.1137/S0895479890179631.

[88] J. MATEJAS AND V. HARI, Accuracy of the Kogbetliantz method for scaled diag-

This manuscript is for review purposes only.


http://www.dtic.mil/docs/citations/AD0638796
http://www.dtic.mil/docs/citations/AD0638796
http://www.dtic.mil/docs/citations/AD0638796
http://www.ams.org/journals/qam/1955-13-02/S0033-569X-1955-88795-9/S0033-569X-1955-88795-9.pdf
http://www.ams.org/journals/qam/1955-13-02/S0033-569X-1955-88795-9/S0033-569X-1955-88795-9.pdf
http://www.ams.org/journals/qam/1955-13-02/S0033-569X-1955-88795-9/S0033-569X-1955-88795-9.pdf
http://www.icl.utk.edu/publications/swan-003
https://doi.org/10.1016/0167-8191(95)00064-X
https://doi.org/10.1016/0167-8191(95)00064-X
https://doi.org/10.1016/0167-8191(95)00064-X
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
http://www.netlib.org/lapack/lawns/
https://doi.org/10.1137/130945995
https://doi.org/10.1137/130945995
https://doi.org/10.1137/130945995
https://doi.org/10.1109/TPDS.2009.79
https://doi.org/10.1109/TPDS.2009.79
https://doi.org/10.1109/TPDS.2009.79
https://doi.org/10.1145/2450153.2450154
https://doi.org/10.1145/355921.355925
https://doi.org/10.1137/0910002
https://doi.org/10.1137/0910002
https://doi.org/10.1137/0910002
https://doi.org/10.1007/978-3-319-61982-8_8
https://doi.org/10.1137/S0895479890179631

1744
1745
1746
1747
1748
1749
1750
1751
1752
17

~N ~I \I
;t [SL I
Tt W

OC

=

1
17
17
1
17
17

57
58
5¢

1760

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793

[100]

[101]

[102]

[103]

[104]

[105]

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 57

onally dominant triangular matrices, Applied Mathematics and Computation,
217 (2010), pp. 3726-3746, https://doi.org/10.1016/j.amc.2010.09.020.

J. MATEJAS AND V. HARI, On high relative accuracy of the Kogbetliantz
method, Linear Algebra and its Applications, 464 (2015), pp. 100-129, https:
//doi.org/10.1016/j.1aa.2014.02.024.

MATHWORKS, MATLAB, 2017, http://www.mathworks.com/products/
matlab.html.

J. D. McCALPIN, A survey of memory bandwidth and machine balance in
current high performance computers, IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, (1995), pp. 19-25,
http://tab.computer.org/tcca/NEWS /DEC95/dec95_mecalpin.ps.

B. MOORE, Principal component analysis in linear systems: Controllability,
observability, and model reduction, IEEE Transactions on Automatic Control,
26 (1981), pp. 17-32, https://doi.org/10.1109/TAC.1981.1102568.

MPI ForuMm, MPI: A message-passing interface standard: Version 3.1, June
2015, http://www.mpi-forum.org/.

NVIDIA CORPORATION, CUDA Toolkit 7.0, March 2015, http://developer.
nvidia.com/cuda-zone.

G. OkSA AND M. VAJTERSIC, Efficient pre-processing in the parallel block-
Jacobi SVD algorithm, Parallel Computing, 32 (2006), pp. 166-176, https://
doi.org/10.1016/j.parco.2005.06.006.

OPENBLAS, OpenBLAS User Manual, 2016, http://www.openblas.net /.

B. N. PARLETT, The new qd algorithms, Acta Numerica, 4 (1995), pp. 459-491,
https://doi.org/10.1017/50962492900002580.

B. N. PARLETT AND I. S.DHILLON, Fernando’s solution to Wilkinson’s prob-
lem: An application of double factorization, Linear Algebra and its Applications,
267 (1997), pp. 247-279, https://doi.org/10.1016/S0024-3795(97)80053-5.

V. ROKHLIN, A. SzZLAM, AND M. TYGERT, A randomized algorithm for prin-
cipal component analysis, STAM Journal on Matrix Analysis and Applications,
31 (2009), pp. 1100-1124, https://doi.org/10.1137/080736417.

H. RUTISHAUSER, Der quotienten-differenzen-algorithmus, Zeitschrift fir ange-
wandte Mathematik und Physik ZAMP, 5 (1954), pp. 233-251, https://doi.org/
10.1007/BF01600331.

H. RUTISHAUSER, Solution of eigenvalue problems with the LR-transformation,
National Bureau of Standards Applied Mathematics Series, 49 (1958), pp. 47—
81.

H. RUTISHAUSER, The Jacobi method for real symmetric matrices, in Handbook
for Automatic Computation: Volume II: Linear Algebra, vol. 186 of Grundlehren
Der Mathematischen Wissenschaften, Springer-Verlag, New York, NY, 1971,
pp. 202-211, https://doi.org/10.1007/978-3-642-86940-2.

A. H. SAMEH, On Jacobi and Jacobi-like algorithms for a parallel computer,
Mathematics of Computation, 25 (1971), pp. 579-590, https://doi.org/10.1090/
S0025-5718-1971-0297131-6.

R. SCHREIBER AND C. VAN LOAN, A storage-efficient WY representation for
products of Householder transformations, STAM Journal on Scientific and Sta-
tistical Computing, 10 (1989), pp. 53-57, https://doi.org/10.1137/0910005.

B. T. SmiTH, J. M. BOYLE, J. DONGARRA, B. S. GARBOW, Y. IKEBE, V. C.
KrLEMA, AND C. B. MOLER, Matriz Eigensystem Routines — EISPACK Guide,
Second Edition, vol. 6 of Lecture Notes in Computer Science, Springer, Berlin,
1976, https://doi.org/10.1007/3-540-07546-1.

This manuscript is for review purposes only.


https://doi.org/10.1016/j.amc.2010.09.020
https://doi.org/10.1016/j.laa.2014.02.024
https://doi.org/10.1016/j.laa.2014.02.024
https://doi.org/10.1016/j.laa.2014.02.024
http://www.mathworks.com/products/matlab.html
http://www.mathworks.com/products/matlab.html
http://www.mathworks.com/products/matlab.html
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
https://doi.org/10.1109/TAC.1981.1102568
http://www.mpi-forum.org/
http://developer.nvidia.com/cuda-zone
http://developer.nvidia.com/cuda-zone
http://developer.nvidia.com/cuda-zone
https://doi.org/10.1016/j.parco.2005.06.006
https://doi.org/10.1016/j.parco.2005.06.006
https://doi.org/10.1016/j.parco.2005.06.006
http://www.openblas.net/
https://doi.org/10.1017/S0962492900002580
https://doi.org/10.1016/S0024-3795(97)80053-5
https://doi.org/10.1137/080736417
https://doi.org/10.1007/BF01600331
https://doi.org/10.1007/BF01600331
https://doi.org/10.1007/BF01600331
https://doi.org/10.1007/978-3-642-86940-2
https://doi.org/10.1090/S0025-5718-1971-0297131-6
https://doi.org/10.1090/S0025-5718-1971-0297131-6
https://doi.org/10.1090/S0025-5718-1971-0297131-6
https://doi.org/10.1137/0910005
https://doi.org/10.1007/3-540-07546-1

1794
1795
1796
1797
1798
1799
1800
1801
1802

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

58

[106]

[107]
[108]

[109]

[110]

[111]

[112)

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

DONGARRA, GATES, HAIDAR, KURZAK, LUSZCEK, TOMOV, YAMAZAKI

G. W. STEWART, The efficient generation of random orthogonal matrices with
an application to condition estimators, SIAM Journal on Numerical Analysis,
17 (1980), pp. 403—409, https://doi.org/10.1137/0717034.

G. W. STEWART, On the early history of the singular value decomposition,
SIAM Review, 35 (1993), pp. 551-566, https://doi.org/10.1137/1035134.

G. W. STEWART, QR sometimes beats Jacobi, Tech. Report CS-TR-3434, Uni-
versity of Maryland, 1995, http://drum.lib.umd.edu/handle/1903/709.

S. Tomov, R. NATH, AND J. DONGARRA, Accelerating the reduction to upper
Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based com-
puting, Parallel Computing, 36 (2010), pp. 645654, https://doi.org/10.1016/].
parco.2010.06.001.

S. Tomov, R. NarH, H. LTAIEF, AND J. DONGARRA, Dense linear alge-
bra solvers for multicore with GPU accelerators, in 2010 IEEE International
on Parallel and Distributed Processing Symposium, Workshops and Phd Fo-
rum (IPDPSW), IEEE, 2010, pp. 1-8, https://doi.org/10.1109/TPDPSW.2010.
5470941.

M. A. Turk AND A. P. PENTLAND, Face recognition using eigenfaces, in
Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE
Computer Society Conference on, IEEE, 1991, pp. 586-591, https://doi.org/10.
1109/CVPR.1991.139758.

C. VAN LOAN, The block Jacobi method for computing the singular value decom-
position, Tech. Report TR 85-680, Cornell University, 1985, https://ecommons.
cornell.edu/handle/1813/6520.

F. G. VAN ZEE, R. A. VAN DE GELIN, AND G. QUINTANA-ORTI, Restruc-
turing the tridiagonal and bidiagonal QR algorithms for performance, ACM
Transactions on Mathematical Software (TOMS), 40 (2014), p. 18, https:
//doi.org/10.1145/2535371.

F. G. VAN ZgE, R. A. VAN DE GELN, G. QUINTANA-ORTI, AND G. J.
EL1ZONDO, Families of algorithms for reducing a matriz to condensed form,
ACM Transactions on Mathematical Software (TOMS), 39 (2012), p. 2, https:
//doi.org/10.1145/2382585.2382587.

R. C. WHALEY AND J. DONGARRA, Automatically tuned linear algebra soft-
ware, in Proceedings of the 1998 ACM/IEEE Conference on Supercomput-
ing, IEEE Computer Society, 1998, pp. 1-27, https://doi.org/10.1109/SC.1998.
10004.

J. H. WILKINSON, Note on the quadratic convergence of the cyclic Jacobi pro-
cess, Numerische Mathematik, 4 (1962), pp. 296-300, https://doi.org/10.1007/
BF01386321.

J. H. WILKINSON AND C. REINSCH, Handbook for Automatic Computation:
Volume II: Linear Algebra, vol. 186 of Grundlehren Der Mathematischen Wis-
senschaften, Springer-Verlag, New York, NY, 1971, https://doi.org/10.1007/
978-3-642-86940-2.

P. R. WILLEMS AND B. LANG, A framework for the MR3 algorithm: theory and
implementation, SIAM Journal on Scientific Computing, 35 (2013), pp. A740—
AT66, https://doi.org/10.1137/110834020.

P. R. WILLEMS, B. LANG, AND C. VOMEL, Computing the bidiagonal SVD us-
ing multiple relatively robust representations, SIAM Journal on Matrix Analysis
and Applications, 28 (2006), pp. 907-926, https://doi.org/10.1137/050628301.
B. B. Zuou AND R. P. BRENT, A parallel ring ordering algorithm for effi-
cient one-sided Jacobi SVD computations, Journal of Parallel and Distributed

This manuscript is for review purposes only.


https://doi.org/10.1137/0717034
https://doi.org/10.1137/1035134
http://drum.lib.umd.edu/handle/1903/709
https://doi.org/10.1016/j.parco.2010.06.001
https://doi.org/10.1016/j.parco.2010.06.001
https://doi.org/10.1016/j.parco.2010.06.001
https://doi.org/10.1109/IPDPSW.2010.5470941
https://doi.org/10.1109/IPDPSW.2010.5470941
https://doi.org/10.1109/IPDPSW.2010.5470941
https://doi.org/10.1109/CVPR.1991.139758
https://doi.org/10.1109/CVPR.1991.139758
https://doi.org/10.1109/CVPR.1991.139758
https://ecommons.cornell.edu/handle/1813/6520
https://ecommons.cornell.edu/handle/1813/6520
https://ecommons.cornell.edu/handle/1813/6520
https://doi.org/10.1145/2535371
https://doi.org/10.1145/2535371
https://doi.org/10.1145/2535371
https://doi.org/10.1145/2382585.2382587
https://doi.org/10.1145/2382585.2382587
https://doi.org/10.1145/2382585.2382587
https://doi.org/10.1109/SC.1998.10004
https://doi.org/10.1109/SC.1998.10004
https://doi.org/10.1109/SC.1998.10004
https://doi.org/10.1007/BF01386321
https://doi.org/10.1007/BF01386321
https://doi.org/10.1007/BF01386321
https://doi.org/10.1007/978-3-642-86940-2
https://doi.org/10.1007/978-3-642-86940-2
https://doi.org/10.1007/978-3-642-86940-2
https://doi.org/10.1137/110834020
https://doi.org/10.1137/050628301

1844

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM

Computing, 42 (1997), pp. 1-10, https://doi.org/10.1006/jpdc.1997.1304.

This manuscript is for review purposes only.

99


https://doi.org/10.1006/jpdc.1997.1304

	Introduction
	Experimental Setup
	EISPACK Implementation
	LINPACK Implementation Using BLAS
	LAPACK Implementation Based on Blocked Householder Transformations
	Blocked Householder Transformations
	QR Iteration
	Computation of Singular Vectors
	Initial QR Factorization
	Results
	Level 2.5 BLAS Implementation

	ScaLAPACK Implementation
	Singular Vectors from the Divide and Conquer Process
	Bisection and Inverse Iteration
	Multiple Relatively Robust Representations (MRRR)
	MAGMA Implementation for Accelerator Architectures
	Two-stage Reduction
	First Stage: Compute-Intensive and Efficient Kernels
	Second Stage: Cache-Friendly Computational Kernels
	Singular Vectors Computation
	PLASMA Implementation for Multicore
	Energy Consumption
	MAGMA Accelerated Two-stage Reduction
	DPLASMA Implementation for Distributed Memory

	Jacobi methods
	Two-sided Jacobi SVD
	One-sided Jacobi
	Convergence
	Parallel orderings
	Preconditioning
	Block Jacobi
	Performance analysis

	Accuracy
	Additional test cases
	Conclusions

