
An Iterative Solver Benchmark
Lapack working note 152

Jack Dongarra, Victor Eijkhout, Henk van der Vorst�

revision 2001/06/01

Abstract

We present a benchmark of iterative solvers for sparse matrices. The benchmark

contains several common methods and data structures, chosen to be representative

of the performance of a large class of commonly used methods. We give results on

some high performance processors that show that performance is largely determined

by memory bandwidth.

1 Introduction

In scienti�c computing, several benchmarks exist that give a user some idea of
the to-be-expected performance given a code and a speci�c computer. One widely
accepted performance measurement is the Linpack benchmark [4], which evaluates
the eÆciency with which a machine can solve a dense system of equations. Since this
operation allows for considerable reuse of data, it is possible to show performance
�gures that are a sizeable percentage of peak performance, even for machines with
a severe unbalance between memory and processor speed.

However, sparse linear systems are at least as important in scienti�c computing,
and for these the question of data reuse is more complicated. Sparse systems can
be solved by direct or iterative methods, and especially for iterative methods one
can say that there is little or no reuse of data. Thus, such operations will have a
performance bound by the slower of the processor and the memory, in practice: the
memory.

We aim to measure the performance of a representative sample of iterative tech-
niques on any given machine; we are not interested in comparing, say, one precondi-
tioner on one machine against another preconditioner on another machine. In fact,
the range of possible preconditioners is so large, and their performance so much de-
pendent on the speci�c problem, that we do not even compare one preconditioner
to another on the same machine. Instead, we identify kernels that will have a rep-
resentative performance, and test those; the performance of a whole code is then a
composite of the performances of the various sparse kernels.

An earlier report on the performance of supercomputers on sparse equation solvers
can be found in [5].

� This research is sponsored in part by Subcontract #R71700J-29200099 with William Marsh

Rice University and Subcontract #B503962 with The Regents of the University of California.

1

2 Motivation

Iterative methods are hard to benchmark. The ultimate measure one is interested
in is `time expended to reach a certain accuracy'. This number is a function of at
least the following variables:

1. The iterative method: for each type of linear system (symmetric / hermitian /
general, de�nite / almost de�nite / inde�nite, et cetera) there are several can-
didate methods with di�ering mathematical and computational characteris-
tics. For instance, GMRES [9] has as advantage over BiCGstab [10] that it
minimizes residuals, and is able to use Level 3 BLAS; it has as disadvantage
that work per iteration is higher and memory demands larger.

2. The preconditioner: some systems are well-conditioned enough that a simple
Jacobi preconditioner (or equivalently, diagonal scaling before the iteration
process) will be good enough, others require complicated preconditioners to
tame the spectrum.

3. Data structures used: the same matrix can be stored in a number of formats,
some of which may have computational advantages. For instance, problems
with several physical variables per node can be expressed in such a way that
dense matrix operations can be used.

4. The implementation of computational kernels: di�erent implementations of
the same operation can have di�erent performance characteristics.

5. Architectural details of the machine used, in particular the processor speed
and the memory bandwidth. Also, depending on the operation, the one or the
other may be of more or less importance.

6. Computer Arithmetic: some problems maybe solvable to a desired accuracy in
single precision, others may require double precision. Even at a given precision,
two di�erent implementations of arithmetic may give di�erent results, so that
the same program on two di�erent machines will not behave the same.

7. The problem to be solved. The behaviour of all of the above points is a function
of the problem to be solved. The number of iterations (that is, behaviour of
the iterative method and preconditioner) is a function of the spectrum of the
matrix. The
op rate per iteration (determined by implementation of kernels,
and processor characteristics) is a function of the sparsity structure of the
matrix.

8. Problem size. Even ignoring such obvious factors as performance degradation
because of page swapping, the size of a problem's data set can in
uence per-
formance strongly. On vector machines, increasing the problem size will most
likely increase the vector length and hence performance. Cache-based ma-
chines will reach optimum performance for a problem that �ts in cache. Some
architectures (notable the Alpha chip) have a large enough cache that realis-
tic problems can actually be solved in-cache. In general, however, increasing
the problem size will always over
ow the cache, and iterative methods have
in general little opportunity for cache reuse. Hence we expect decreasing per-
formance to some `asymptotic' limit determined more by bandwidth than by
processor speed.

Given this plethora of variables, it should be clear that the desired metric is unfor-
tunately not a benchmarkable one.

This situation contrasts starkly with that of dense, direct, solvers. There, the only
problem parameter determining performance is the size of the system. Thus, it is

2

truly possible to benchmark a machine.

In order to provide a comprehensive iterative benchmark, a package would have to
cover the range of choices of items 1{3. Taking into account possible criticism of the
quality of implementation used (item 4), we see that a comprehensive benchmark
is almost equivalent to a library of all high-quality implementations of all existing
methods. Clearly, this is not a practical proposition. Even if we were to provide
such a large collection of well-implemented methods, we would have to provide a
set of standard problems (this is necessary in order to make comparisons between
machines), and this may very well overlook a particular kind of problem the user is
interested in, and which has its own set of performance characteristics.

Instead of even attempting the above-sketched perfect benchmark, we have opted
for providing a small set of iterative methods, preconditioners and storage schemes,
on the criterion that they have a performance representative of larger classes. We
then envision the following scenario for the use of our benchmark: user solve a few
representative test problem with their preferred solver, thus gaining a notion of
convergence speed in terms of numbers of iterations. They can then consult our
benchmark to gauge the per-iteration performance of their solver, which combined
with their prototype run on the test problem gives an accurate impression of the
expected running time.

We want to stress from the outset that we did not aim to present the most sophisti-
cated methods. Rather, by considering combinations of the representative elements
used in the benchmark a user should be able to get a good notion of the expected
performance of methods not included. In e�ect, our benchmark only indicates per-
formance per occurrence of a computational kernel. Users can then estimate their
codes' performance by combining these numbers, applied to their speci�c imple-
mentation, with the numbers of iterations needed for their problem.

Consistent with this philosophy, we terminate each benchmark run after a �xed
number of iterations. The number of iterations to the desired accuracy is mostly a
function of the problem, and only to a minor extent of the computer architecture.
It is almost independent of the computational kernels that are the subject of this
benchmark, since these can only in
uence the convergence through di�erent round-
o� behaviour. For the most part we will assume that di�erent implementations of
the same kernel have roughly the same round-o� characteristics, so that our per-
iteration measurement is a suÆcient predictor of the overall eÆciency.

To account for the e�ects of caching in our benchmark, we run a series of problems
of increasing size for each choice of method, preconditioner, and storage scheme. In
this sequence we measure both the maximum attained performance, often a clear
function of cache size, and we estimate an `asymptotic' performance as the problem
scales up; see sections 3.2 and 7.

We conclude this section by giving a brief description of the sparse kernels. More
detailed discussion will follow in section 4.

As storage schemes we o�er diagonal storage, and compressed row storage. Both
of these formats represent typical matrices for three-dimensional �nite element or
�nite di�erence methods. The diagonal storage, using seven diagonals, is the natural
mode for problems on a regular (`brick') domain; the compressed row storage1 is the

1. Use of compressed column storage should give roughly the same performance.

3

natural storage scheme for irregular domains. Thus these choices are representative
for most single-variable physical problems.

The iterative methods provided are CG and GMRES. The plain Conjugate Gradi-
ents method is representative of all �xed-storage methods, including sophisticated
methods for nonsymmetric problems such as BiCGstab; the GMRES method repre-
sents the class of methods that have a storage demand that grows with the number
of iterations.

Each iterative method can be run unpreconditioned { which is computationally
equivalent to using a Jacobi preconditioner { or with an ILU preconditioner. For
the diagonal storage scheme a block Jacobi method is also provided; this gives a
good indication of domain decomposition methods. If such methods are used with
inexact subdomain solves, the ILU preconditioner gives the expected performance
for these.

3 Structure of the benchmark

We have implemented a benchmark that constructs a test matrix and precondi-
tioner, and solves a linear system with them. Separate
op counters and timers
are kept for the work expended in vector operations, matrix vector products, pre-
conditioner solves, and other operations involved in the iterative method. The
op
counts and
ops rates in each of these categories, as well as the overall
ops rates,
are reported at the end of each run.

The benchmark comprises several storage formats, iterative methods, and precon-
ditioners. Together these form a representative sample of the techniques in typical
sparse matrix applications. We describe these elements in more detail in section 4.

We o�er a reference code, which is meant to represent a portable implementation
of the various methods, without any machine-speci�c optimisations. The reference
code is written in Fortran, using double precision arithmetic throughout; imple-
menters are not allowed to increase speed by switching to single precision. In ad-
dition to the reference code we supply a number of variants that should perform
better on certain machines, and most likely worse on some others; see section 6.

3.1 Conformance of the benchmark

Since we leave open the possibility that a local implementer make fargoing changes
to the benchmark code (see section 3.2), we need to ascertain that the optimised
code still conforms to the original, that is, that the implementer has only optimised
the implementation of the algorithms for a speci�c machine, and has not replaced
one algorithm by another. Unfortunately, by the nature of iterative methods, this
is a hard problem.

Iterative methods such as Conjugate Gradients are forward unstable; they do not
have a self-correction mechanism the way stationary iterative methods have. This
means that comparing the computed quantities of one method against another,
or, if it were possible, comparing it against an exact arithmetic method, would be
essentially meaningless. Likewise, any bounds from using interval arithmetic would
be so large as to be useless. The reason that conjugacy-based iterative methods are

4

usefull despite this unstable behaviour, is that a more careful analysis shows that
accumulated roundo� does not cause divergence, but will only delay convergence
by a modest number of iterations (see [6, 7]).

Thus we are in the predicament of having to enforce the numerical conformance of
a method that is intrinsically unstable in the naive sense of the term. Our practical
test, therefore, checks how much an optimised code di�ers from the original after
computing one iteration, that is, before any large divergence from exact arithmetic
starts to show up.

There are several ways this test can be implemented speci�cally, and none of them
are totally satisfying. Absent an implementation in exact arithmetic, we basically
have the choice of comparing optimised code against a reference code on the same
machine, and code on some reference machine. For the �rst option, we would ba-
sically trust that arithmetic is implemented in a reasonable manner on machines
available today, so that the reference code, without any optimisations that alter the
straightforward execution of instructions, is indeed a reasonable reference point.
The second option raises the question what machine would be trustworthy enough
to function as a supplier of reference results. We can evade that question by ob-
serving that, under the above assumption that all machines on the market today
have a `reasonable' implementation of arithmetic, the di�erence between two con-
crete implementations of the benchmark is bounded by the sum of the di�erences
between either and an exact arithmetic implementation. Our measurement of dif-
ference against a result on �le { generated by us, the producers of the benchmark {
would then give a small overestimate of the true error.

This latter strategy, comparison against results on �le, is the one we have chosen.
(We are in good company with this decision: the NAS parallel benchmarks [1] use the
same veri�cation scheme, and in fact with a far stricter test than ours.) In practice,
we test whether the deviation remains under 100 times the machine precision. The
number `100' itself is somewhat arbitrary; it re
ects the limited number of nonzeros
in each matrix row, but it does not re
ect the worst-case error bound of O(N) that
comes in through the inner product calculations in the iterative method. A test
after one iteration could conceivably be performed against an interval arithmetic
implementation, but we have not done so.

We emphasize that this is a static test, designed to allow only changes to the
reference code that are not numerically signi�cant. In particular, it precludes an
implementer from replacing the preconditioner by a di�erent one. We justify this
from our standpoint that the benchmark is not a test of the best possible precon-
ditioner or iterative method, but rather of methods representative for a wider class
with respect to computer performance.

Since the benchmark includes ILU preconditioners, this static conformance test
would a priori seem to be biased against parallel implementations of the benchmark.
This point is further elaborated in section 5.

3.2 Benchmark reporting

An implementer of the benchmark can report performance results on various levels,
each next level encompassing all of the earlier options.

1. Using only compiler
ags in the compilation of the reference code.

5

2. Using compiler directives in the source of the reference code.
3. Rewriting the reference code in such a way that any di�erences are solely in

a di�erent order of scheduling the operations.
4. Rewriting the reference code by replacing some algorithm by a mathemati-

cally equivalent formulation of the algorithm (that is: in exact arithmetic the
(intermediate) results should be the same).

The last two levels may or will in general in
uence the numerical results, so results
from codes thus rewritten should be accompanied by proof that the speci�c realisa-
tion of the benchmark reproduces the reference results within a certain tolerance.

Each run of the benchmark code ends with a report on how many
oating point
operations were performed in the various operations. Implementers should use these
numbers to do reporting (rather than using hardware
op counters, for instance),
but they are free to substitute their own timers.

The benchmark comes with shell scripts that run a number of tests, and report both
best performance and asymptotic performance for the whole code and elements of
it. Asymptotic performance is determined by making a least-squares �t y = a+bx�1

through the data points, where y is the observed mega
op rate and x is the dataset
size. The asymptotic performance is then the value of a.

This assumption on the performance behaviour accomodates both cache-processors,
for which we expect b > 0 as the dataset size over
ows the cache, and vector
processors, for which we expect b < 0 as performance goes up with increasing
vector length. For cache-based processors we may expect a plateau behaviour if the
cache is large; we discard the front of this plateau when calculating the asymptotic
performance.

4 Elements of the benchmark code

The user of the benchmark has the following choices in determining the problem to
run.

4.1 Storage formats

The matrix can be in the following formats:

� Diagonal storage for a seven-diagonal matrix corresponding to �nite di�er-
ences in three dimensions;

� Compressed row storage of a matrix where the sparsity structure is randomly
generated; each row has between 2 and 20 nonzeros, each themselves randomly
generated, and the bandwidth is � n2=3 which again corresponds to a problem
in three space dimensions.

For both formats a symmetric variant is given, where only half the matrix is stored.

The diagonal storage is very regular, giving code that has a structure of loop nests
of depth three. Vector computers should perform very eÆciently on this storage
scheme. In general, all index calculation of o�sets can be done statically.

Matrix-vector operations on compressed row storage may have a di�erent perfor-
mance in the transpose case from the regular case. Such an operation in the regular
case is based on inner products; in the transpose case it uses vector updates (axpy

6

operations). Since these two operations have di�erent load/store characteristics,
they may yield di�erent
ops rates. In the symmetric case, where we store only
half the matrix, such operations use in fact the regular algorithm for half the ma-
trix, and the transpose algorithm for the other half. Thus, the performance of,
for instance, the matrix-vector product, will be di�erent in GMRES from in the
Conjugate Gradient method.

The CRS format gives algorithms that consist of an outer loop over the matrix
rows, with an inner loop that involves indirect addressing. Thus, we expect a lower
performance, especially on machines where the indirect addressing involves an access
to memory.

4.2 Iterative methods

The following iterative methods have been implemented (for more details on the
methods mentioned, see the Templates book [2]):

� Conjugate Gradients method; this is the archetypical Krylov space method for
symmetric systems. We have included this, rather than MINRES or SYMLQ,
for its ease of coding, and for the fact that its performance behaviour is rep-
resentative of the more complicated methods. The results for CG are also
more-or-less representative for transpose-free methods for nonsymmetric sys-
tems, such as BiCGstab, which also have a storage demand constant in the
number of iterations.

� BiConjugate Gradients. In many ways this method has the same performance
characteristics as CG, but it di�ers in that it additionally uses a product
with the transpose matrix At. In many cases forming this product is imprac-
tical, and for this reason BiCG and such methods as QMR are less used than
transpose-free methods such as BiCGstab. We have included it nevertheless,
since the performance of this kernel can not be derived from others. For di-
agonal matrix storage there is actually no di�erence between the regular and
transpose matrix-vector product; for compressed storage it is the di�erence
between a dot product and a vector update, both indirectly addressed.

� Generalized Minimum Residual method, GMRES. This popular method has
been included because its performance behaviour is very di�erent from CG:
storage and computational complexity are an increasing function of the iter-
ation count. For that reason GMRES is most often used in cycles of m steps.
For low values of m, the computational performance for GMRES will not be
much di�erent than for CG. For larger values, say m > 5, the j inner prod-
ucts in the j-th iteration may in
uence the performance. We have included
GMRES(20) in our benchmark.

The Conjugate and BiConjugate gradient methods (see �gure 1) involve, outside
the matrix-vector product and preconditioner application, only simple vector oper-
ations. Thus, their performance can be characterised as similar to that of Level 1
BLAS. The GMRES method (see �gure 2), on the other hand, uses orthogonalisa-
tion of each new generated Krylov vector against all previous, so a certain amount
of cache reuse should be possible. See also section 6 for a rewritten version that uses
Level 3 BLAS kernels.

7

Let A, M , x, b be given;
compute r1 = Ax� b;
for i = 1 : : : 10

solve preconditioner: z =M�1r
inner product �i = rtz
if i > 1, update p z + p(�i=�i�1)
matrix vector product: q = Ap
inner product � = ptq
update x x� p�

r r � q�

Figure 1: Conjugate Gradient algorithm

Let A, M , x, b be given;
for i = 1 : : : 10

matrix and preconditioner apply: z = AM�1r
orthogonalize z against all earlier vj , j < i
normalize vi z=kzk.
update QR factorisation of size i+ 1� i Hessenberg matrix

Update x x�
P

i vici

Figure 2: One restart cycle of the Generalized Minimum Residual method

4.3 Preconditioners

The following preconditioners are available2:

� No preconditioner;
� Point ILU; for the diagonal storage a true ILU-D is implemented, in the CRS

case we use SSOR, which has the same algorithmic structure as ILU;
� Line ILU for the diagonal storage scheme only; this makes a factorisation of

the line blocks.
� Block Jacobi for the diagonal storage scheme only; this is parallel on the

level of the plane blocks. The block Jacobi preconditioner gives a performance
representative of domain decomposition methods, including Schwarz methods.

The point ILU method is typical of commonly used preconditioners. It has largely
the structure of the matrix-vector product, but on parallel machines its sequential
nature inhibits eÆcient execution.

The line ILU method uses a Level 2 BLAS kernel, namely the solution of a banded
system. It is also a candidate for algorithm replacement, substituting a Neumann
expansion for the system solution with the line blocks.

2. We have not included the commonly used Jacobi preconditioner, since this is mathematically

equivalent to scaling the matrix to unit diagonal, a strategy that has the exact same performance

as using no preconditioner.

8

5 Parallel realisation

Large parts of the benchmark code are conceptually parallel. Thus we encourage
the submission of results on parallel machines. However, the actual implementation
of the methods in the reference code is sequential. In particular, the benchmark
includes ILU preconditioners using the natural ordering of the variables.

It has long been realised that ILU factorisations can only be implemented eÆciently
on a parallel architecture if the variables are renumbered from the natural ordering
to, for instance, a multi-colour or nested dissection ordering.

Because of our strict conformance test (see section 3.1), the implementer is not
immediately at liberty to replace the preconditioner by an ILU based on a di�erent
ordering. Instead, we facilitate the parallel execution of the benchmark by providing
several orderings of the test matrices, namely:

� Reverse Cuthill-McKee ordering.
� Multi-colour ordering; here we do not supply the numbering with the minimal

number of colours, but rather a colouring based on [8].
� Nested dissection ordering; this is an ordering based on edge-cutting, rather

than �nding a separator set of nodes.

The implementer then has the freedom to improve parallel eÆciency by optimising
the implementation for a particular ordering.

Again, the implementer should heed the distinction of section 3.2 between execution
by using only compiler
ags or directives in the code, and explicit rewrites of the
code to force the parallel distribution.

6 Code variants

We supply a few variants of the reference code that incorporate transformations
that are unlikely or impossible to be done by a compiler. These transformations
target speci�c architecture types, possibly giving a higher performance than the
reference code, while still conforming to it; see section 3.1.

Naive coding of regular ILU Putting the tests for boundary conditions in the
inner loop is bad coding practice, except for data
ow machines, where it
exposes the structure of the loop.

Wavefront ordering of regular ILU We supply a variant of the code where the
triple loop nest has been rearranged explicitly to a sequential outer loop and
two fully parallel inner loops. This may bene�t data
ow and vector machines.

Long vectors At the cost of a few super
uous operations on zeros, the vector
length in the diagonal-storage matrix-vector product can be increased from
O(n) to O(n3). This should bene�t vector computers.

Di�erent GMRES orthogonalisation algorithms There are at least two re-
formulations of the orthogonalisation part of the GMRES method. They can
enable use of Level 3 BLAS operations and, in parallel context, combine inner
product operations. However, these code transformations no longer preserve
the semantics under computer { rather than exact { arithmetic.

9

7 Results

The following tables contain preliminary results for the machines listed in table 1.
In table 2 we report the top speed reported regardless the iterative method, pre-
conditioner, and problem size. This speed is typically reported on a fairly small
problem, where presumably the whole data set �ts in cache.

All results are double precision, that is, 64-bit arithmetic.

We compute an `asymptotic speed' by a least-squares �t as described in section 3.2.
We report this asymptotic speed for the following components:

� The matrix vector product. We report this in regular storage, and in com-
pressed row storage separately for the symmetric case (cg) and the nonsym-
metric case since these may have di�erent performance characteristics; see
section 4.1.

� The ILU solve. We also report this likewise in three variants.
� Vector operations. These are the parts of the algorithm that are independent

of storage formats. We report the eÆciency of vector operations for the CG
method; in case of GMRES a higher eÆciency can be attained by using Level
2 BLAS and Level 3 BLAS routines. We have not tested this.

The results published here are only preliminary; a fuller database { both with more
machines and of more aspects of the methods tested, as well as code variants { will
be maintained on netlib.

We report both `highest performance on any problem' and `asymptotic perfor-
mance', but the former number is of limited value. On superscalar machines like the
ones tested here { and unlike on vector machines to which we had no ready access {
it is of necessity reached for a small, hence unrealistic problem. In particular on
machines with a relatively small cache the number reported is further unreliable
since small problems easily drop under the timer resolution. We will �x this in later
version by o�ering PAPI [3] support and adaptively raising the maximum number
of iterations3 to match the timer resolution.

We see from the results that the performance of these sparse operations, in contrast
to the dense operations in for instance the Linpack benchmark, is almost completely
determined by the quality of the memory subsystem. The highest performance in
obtained in the vector operations, closely followed by the diagonal-storage matrix-
vector product, as these are the only operations that do not involve indirection due
to general sparse storage.

Beyond such simple observations, however, performance becomes harder to analyse,
a fact that is already familiar from dense benchmark suites. For instance, on most
machines, the regular CRS matrix-vector product predictably performs slighly bet-
ter than the transpose product, which involves more memory references. However,
the product with a symmetrically stored matrix, which in implementation is a regu-
lar product with the upper triangle and a transpose product with the lower triangle,
has a lower performance than either. The CRS ILU solve, in turn, which has a very
similar structure to the matrix-vector product, has these rankings exactly reverse
for a few machines. A full analysis of such results would go far beyond the scope of
this paper.

3. Note however, that this will only increase the reliability of the performance of the whole

problem: the times for the individual components will be almost vanishingly small.

10

Processor Manufacturer / Clock peak M
ops Compiler /
type rate (MHz) rate options

Alpha EV67 Compaq 500 1000 f77 -O5
Athlon AMD 1000 2000 g77 -O3 -malign-double -funroll-loops
MIPS R12000 SGI Octane 270 1080 f77 -Ofast
PIII Dell 550 550 g77 -O3 -malign-double -funroll-loops
P4 Dell 1500 1500 g77 -O3 -malign-double -funroll-loops
Power3 IBM 200 800 xlf -O4
UltraSparcII Sun 296 296 f77 -fast

Table 1: List of machines used

Machine M
op/s

Compaq Alpha EV67 932
IBM Power3 807
Intel Pentium III 386
Intel Pentium 4 259
Athlon 235
MIPS R12000 219
UltraSparcII 146

Table 2: Highest attained performance

Machine M
op/s

IBM Power3 183
Compaq Alpha EV67 129
Athlon 60
UltraSparcII 55
MIPS R12000 53
Intel Pentium III 46
Intel Pentium 4 41

Table 3: Asymptotic performance of Diagonal storage Matrix-vector product

Machine M
op/s

IBM Power3 117
Compaq Alpha EV67 117
Intel Pentium 4 88
Athlon 46
MIPS R12000 39
Intel Pentium III 34
UltraSparcII 23

Table 4: Asymptotic performance of CRS Matrix-vector product

11

Machine M
op/s

IBM Power3 92
Compaq Alpha EV67 76
Intel Pentium 4 56
Athlon 29
Intel Pentium III 24
MIPS R12000 22
UltraSparcII 16

Table 5: Asymptotic performance of Symmetrically stored CRS Matrix-vector prod-
uct

Machine M
op/s

IBM Power3 108
Compaq Alpha EV67 99
Intel Pentium 4 67
MIPS R12000 45
Athlon 44
Intel Pentium III 26
UltraSparcII 19

Table 6: Asymptotic performance of Transpose CRS Matrix-vector product

Machine M
op/s

Compaq Alpha EV67 100
IBM Power3 97
Intel Pentium 4 49
MIPS R12000 45
Intel Pentium III 32
Athlon 32
UltraSparcII 24

Table 7: Asymptotic performance of Diagonal storage ILU solve

Machine M
op/s

Intel Pentium 4 57
Compaq Alpha EV67 57
IBM Power3 40
Athlon 27
Intel Pentium III 21
MIPS R12000 17
UltraSparcII 10

Table 8: Asymptotic performance of CRS ILU solve

12

Machine M
op/s

Compaq Alpha EV67 81
IBM Power3 64
Intel Pentium 4 44
Athlon 34
Intel Pentium III 28
MIPS R12000 25
UltraSparcII 19

Table 9: Asymptotic performance of Symmetrically stored CRS ILU solve

Machine M
op/s

IBM Power3 64
Intel Pentium 4 55
Compaq Alpha EV67 50
MIPS R12000 30
Athlon 26
Intel Pentium III 19
UltraSparcII 12

Table 10: Asymptotic performance of Transpose CRS ILU solve

Machine M
op/s

Compaq Alpha EV67 262
IBM Power3 258
MIPS R12000 142
Intel Pentium 4 110
Intel Pentium III 86
Athlon 68
UltraSparcII 59

Table 11: Asymptotic performance of Vector operations in CG

13

8 Obtaining and running the benchmark

The benchmark code can be obtained from http://www.netlib.org/benchmark/sparsebench.
The package contains Fortran code, and shell scripts for installation and post-
processing. Results can be reported automatically to sparsebench@cs.utk.edu,
which address can also be used for questions and comments.

References

[1] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. The NAS parallel benchmarks.
Intl. Journal of Supercomputer Applications, 5:63{73, 1991.

[2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Do-
nato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and
Henk van der Vorst. Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. SIAM, Philadelphia PA, 1994.
http://www.netlib.org/templates/templates.ps.

[3] S. Browne, J Dongarra, N. Garner, G. Ho, and P. Mucci. A portable program-
ming interface for performance evaluation on modern processors. International
Journal of High Performance Computing Applications.

[4] Jack Dongarra. Performance of various computers using standard linear equa-
tions software. http://www.netlib.org/benchmark/performance.ps.

[5] Jack Dongarra and Henk van der Vorst. Performance of various computers us-
ing sparse linear equations software in a fortran environment. Supercomputer,
1992.

[6] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadel-
phia, 1997.

[7] A. Greenbaum and Z. Strakos. Predicting the behavior of �nite precision
Lanczos and Conjugate Gradient computations. pages 121{137, 1992.

[8] M.T. Jones and P.E. Plassmann. A parallel graph coloring heuristic. SIAM J.

Sci. Stat. Comput., 14, 1993.
[9] Yousef Saad and Martin H. Schultz. GMRes: a generalized minimal residual al-

gorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.,
7:856{869, 1986.

[10] Henk van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.

Comput., 13:631{644, 1992.

14

