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Abstract

This paper describes a recursive method for the LU factorization of sparse matrices. The recursive formulation of

common linear algebra codes has been proven very successful in dense matrix computations. An extension of the recursive

technique for sparse matrices is presented. Performance results given here show that the recursive approach may perform

comparable to leading software packages for sparse matrix factorization in terms of execution time, memory usage, and

error estimates of the solution.

1 Introduction

Typically, a system of linear equations has the form:
Ax = b; (1)

where A is n by n real matrix (A 2 R
n�n), and x and b are n-dimensional real vectors (b; x 2 R

n). The values of A and b
are known and the task is to �nd x satisfying (1). In this paper, it is assumed that the matrix A is large (of order commonly
exceeding ten thousand) and sparse (there is enough zero entries in A that it is bene�cial to use special computational
methods to factor the matrix rather than to use a dense code). There are two common approaches that are used to deal
with such a case, namely, iterative [31] and direct methods [17].

Iterative methods, in particular Krylov subspace techniques such as the Conjugent Gradient algorithm, are the methods
of choice for the discretizations of elliptic or parabolic partial di�erential equations where the resulting matrix is often
guaranteed to be positive de�nite or close to it. However, when the linear system matrix is strongly unsymmetric or
inde�nite, as is the case with matrices originating from systems of ordinary di�erential equations or the inde�nite matrices
arising from shift-invert techniques in eigenvalue methods, one has to revert to direct methods which are the focus of this
paper.

In direct methods, Gaussian elimination with partial pivoting is performed to �nd a solution of (1). Most commonly, the
factored form of A is given by means of matrices L, U , P and Q such that:

LU = PAQ; (2)

where:

� L is a lower triangular matrix with unitary diagonal,

� U is an upper triangular matrix with arbitrary diagonal,

� P and Q are row and column permutation matrices, respectively (each row and column of these matrices contains
single a non-zero entry which is 1, and the following holds: PP T = QQT = I , with I being the identity matrix).

A simple transformation of (1) yields:
(PAQ)Q�1x = Pb; (3)

which in turn, after applying (2), gives:
LU(Q�1x) = Pb; (4)



Solution to (1) may now be obtained in two steps:

Ly = Pb (5)

U(Q�1x) = y (6)

and these steps are performed through forward/backward substitution since the matrices involved are triangular. The most
computationally intensive part of solving (1) is the LU factorization de�ned by (2). This operation has computational
complexity of order O(n3) when A is a dense matrix, as compared to O(n2) for the solution phase. Therefore, optimization
of the factorization is the main determinant of the overall performance.

When both of the matrices P and Q of (2) are non-trivial, i.e. neither of them is an identity matrix, then the factorization
is said to be using complete pivoting. In practice, however, Q is an identity matrix and this strategy is called partial pivoting
which tends to be suÆcient to retain numerical stability of the factorization, unless the matrix A is singular or nearly so.
Moderate values of the condition number � = kA�1k � kAk guarantee a success for a direct method as opposed to matrix
structure and spectrum considerations required for iterative methods.

When the matrix A is sparse, i.e. enough of its entries are zeros, it is important for the factorization process to operate
solely on the non-zero entries of the matrix. The �ll-in phenomenon, however, causes the number of non-zero entries in the
factors (we use the notation �(A) for the number of nonzeros in a matrix) to be (almost always) greater than that of the
original matrix A: �(L+U) � �(A). The amount of �ll-in can be controlled with the matrix ordering performed prior to the
factorization and consequently, for the sparse case, both of the matrices P and Q of (2) are non-trivial. Matrix Q induces
the column reordering that minimizes �ll-in and P permutes rows so that pivots selected during the Gaussian elimination
guarantee numerical stability.

Recursion started playing an important role in applied numerical linear algebra with the introduction of the Strassen's
algorithm [6, 30, 34] which reduced the complexity of the matrix-matrix multiply operation from O(n3) to O(nlog2 7). Later
on it was recognized that factorization codes may also be formulated recursively [3, 4, 21, 25, 27] and codes formulated
this way perform better [36] than leading linear algebra packages [2] which apply only a blocking technique to increase
performance. Unfortunately, the recursive approach cannot be applied directly for sparse matrices because the sparsity
pattern of a matrix has to be taken into account in order to reduce both the storage requirements and the 
oating point
operation count, which are the determining factors of the performance of a sparse code.

2 Dense Recursive LU factorization

Fig. 1 shows the classical LU factorization code which uses Gaussian elimination. Rearrangement of the loops and introduction
of blocking techniques can signi�cantly increase the performance of this code [2, 9]. However, the recursive formulation of
the Gaussian elimination shown in Fig. 2 exhibits superior performance [25]. It does not contain any looping statements
and most of the 
oating point operations are performed by the Level 3 BLAS [14] routines: xTRSM() and xGEMM(). These
routines achieve near-peak MFLOP/s rates on modern computers with a deep memory hierarchy. They are incorporated in
many vendor-optimized libraries, and they are used in the Atlas project [16] which automatically generated implementations
tuned to speci�c platforms.

Yet another implementation of the recursive algorithm is shown in Fig. 3, this time without pivoting code. Experiments
show that this code performs equally well as the code from Fig. 2. The experiments also provide indications that further
performance improvements are possible, if the matrix is stored recursively [26]. Such a storage scheme is illustrated in
Fig. 4. This scheme causes the dense submatrices to be aligned recursively in memory. The recursive algorithm from Fig. 3
then traverses the recursive matrix structure all the way down to the level of a single dense submatrix. At this point an
appropriate computational routine is called (either BLAS or xGETRF()). Depending on the size of the submatrices (referred
to as a block size [2]), it is possible to achieve higher execution rates than for the case when the matrix is stored in the
column-major or row-major order. This observation made us adopt the code from Fig. 3 as the base for the sparse recursive
algorithm presented below.

3 Sparse Matrix Factorization

Matrices originating from the Finite Element Method [33], or most other discretizations of Partial Di�erential Equations,
have most of their entries equal to zero. During factorization of such matrices it pays o� to take advantage of the sparsity
pattern for a signi�cant reduction in the number of 
oating point operations and execution time. The major issue of the
sparse factorization is the �ll-in phenomenon, i.e. the new nonzero entries that are introduced in the L and U factors which
are not present in the original matrix A of (2). It turns out that the proper ordering of the matrix, represented by the matrices
P and Q, may reduce the amount of �ll-in. However, the search for the optimal ordering is an NP-complete problem [37].
Therefore, many heuristics have been devised to �nd an ordering which approximates the optimal one. These heuristics
range from the divide and conquer approaches such as Nested Dissection [22, 29] to the greedy schemes such as Minimum
Degree [1, 35]. For certain types of matrices, bandwidth and pro�le reducing orderings such as Reverse Cuthill-McKee [8, 23]
and the Sloan ordering [32] may perform well.

Once the amount of �ll-in is minimized through the appropriate ordering, it is still desirable to use the optimized BLAS to
perform the 
oating point operations. This poses a problem since the sparse matrix coeÆcients are usually stored in a form



function xGETRF(matrix (Rn�n 3)A � [aij ]; i; j = 1; : : : ; n)
begin

for i = 2; : : : ; n do
begin

aij := 1
ajj

(aij �
j�1P
k=1

aikakj); j = 1; : : : ; i� 1

aij := (aij �
i�1P
k=1

aikakj); j = i; : : : ; n

end
end

Figure 1: Iterative LU factorization function of a dense matrix A. It is equivalent to LAPACK's xGETRF() function and is
performed using Gaussian elimination (without a pivoting clause).

function xGETRF(matrix A 2 R
m�n)

begin

if (A 2 R
n�1) If the matrix has just one column.

begin

jak1j := max
1�i�n

jai1j Find a suitable pivot.

a11 :=: ak1 Exchange a11 with ak1.

A := 1
a11

� A
Scale the matrix { equivalent

to the Level 1 BLAS xSCAL().

end
else begin

m1 := bm=2c; n1 := bn=2c;
m2 := m� bm=2c; n2 := n� bn=2c;
Divide the matrix A into four submatrices.

A =

�
A11 A12

A21 A22

�
2 R

m�n

A11 2 R
m1�n1 , A21 2 R

m2�n1 , A12 2 R
m1�n2 , A22 2 R

m2�n2

xGETRF(
h
A11

A21

i
); Recursive call.

xLASWP(
h
A12

A22

i
);

Apply pivoting from

the recursive call.

Perform a lower triangular solve which is equivalent

to the Level 3 BLAS xTRSM() function.

Find X12 such that: L11 �X12 = A12

where:
L11 2 R

m1�n1 is a lower triangular matrix of A11

with unitary diagonal
A12 := X12;

Compute the Schur's complement which is

equivalent to a matrix-matrix multiply performed

by the Level 3 BLAS xGEMM() function.

A22 := A22 �A21 �A12;

xGETRF(A22); Recursive call.

end
end.

Figure 2: Recursive LU factorization function of a dense matrix A equivalent to the LAPACK's xGETRF() function with a
partial pivoting code.



function xGETRF(matrix A 2 R
n�n)

begin

if (A 2 R
1�1) return; Do nothing for matrices of order 1.

n1 := bn=2c;
n2 := n� bn=2c;
Divide the matrix A into four submatrices.

A =

�
A11 A12

A21 A22

�
2 R

n�n

A11 2 R
n1�n1 , A21 2 R

n2�n1 , A12 2 R
n1�n2 , A22 2 R

n2�n2

xGETRF(A11); Recursive call.

Perform an upper triangular solve which is equivalent to

the Level 3 BLAS xTRSM() function.

Find X21 such that: X21 � U11 = A21

where:
U11 2 R

n1�n1 is an upper triangular matrix of A11

(including diagonal)
A21 := X21;

Perform a lower triangular solve which is equivalent to

the Level 3 BLAS xTRSM() function.

Find X12 such that: L11 �X12 = A12

where:
L11 2 R

n1�n1 is a lower triangular matrix of A11

with unitary diagonal
A12 := X12;

Compute the Schur's complement which is

equivalent to a matrix-matrix multiply performed

by the Level 3 BLAS xGEMM() function.

A22 := A22 �A21 �A12;

xGETRF(A22); Recursive call.

end.

Figure 3: Recursive LU factorization function used for sparse matrices (no pivoting is performed).

Column-major storage scheme:
1 8 15 22 29 36 43
2 9 16 23 30 37 44
3 10 17 24 31 38 45
4 11 18 25 32 39 46
5 12 19 26 33 40 47
6 13 20 27 34 41 48
7 14 21 28 35 42 49

Recursive storage scheme:
1 4 5 22 23 28 29
2 6 8 24 26 30 32
3 7 9 25 27 31 33

10 14 16 34 36 42 44
11 15 17 35 37 43 45
12 18 20 38 40 46 48
13 19 21 39 41 47 49

function convert(matrix A 2 R
n�n)

begin
if (A 2 R

1�1)
Copy current element of A;
Go to the next element of A;

else
begin

A =

�
A11 A12

A21 A22

�
;

convert(A11);
convert(A21);
convert(A12);
convert(A22);

end
end.

Figure 4: Column-major storage scheme versus recursive storage (left) and function for converting a square matrix from the
column-major to recursive storage (right.)



that is not suitable for BLAS. There exist two major approaches that eÆciently cope with this, namely the multifrontal [20]
and supernodal [5] methods. The SuperLU package [28] is an example of a supernodal code, whereas UMFPACK [11, 12] is
a multifrontal one.

Factorization algorithms for sparse matrices typically include the following phases, which sometimes are intertwined:

� matrix ordering to reduce �ll-in,

� symbolic factorization,

� search for dense submatrices,

� numerical factorization.

The �rst phase is aimed at reducing the aforementioned amount of �ll-in. Also, it may be used to improve the numerical
stability of the factorization (it is then referred to as a static pivoting [18]). In our code, this phase serves both of these
purposes, whereas in SuperLU and UMFPACK the pivoting is performed only during the factorization. The actual pivoting
strategy being used in theses packages is called a threshold pivoting: the pivot is not necessarily the largest in absolute
value in the current column (which is the case in the dense codes) but instead, it is just large enough to preserve numerical
stability. This makes the pivoting much more eÆcient, especially with the complex data structures involved in the sparse
factorization.

The next phase �nds the �ll-in and allocates the required storage space. This process can be performed solely based
on the matrix sparsity pattern information without considering matrix values. Substantial performance improvements are
obtained in this phase if graph-theoretic concepts such as elimination trees and elimination dags [24] are eÆciently utilized.

The last two phases are usually performed jointly. They aim at executing the required 
oating point operations at the
highest rate possible. This may be achieved in a portable fashion through the use of BLAS. SuperLU uses supernodes, i.e. sets
of columns of a similar sparsity structure, to call the Level 2 BLAS. Memory bandwidth is the limiting factor of the Level 2
BLAS, so, to reuse the data in cache and consequently improve the performance, the BLAS calls are reorganized yielding
the so-called Level 2:5 BLAS technique [13, 28]. UMFPACK uses frontal matrices that are formed during the factorization
process. They are stored as dense matrices and may be passed to the Level 3 BLAS.

4 Sparse Recursive Factorization Algorithm

The essential part of any sparse factorization code is the data structure used for storing matrix entries. The storage scheme
for the sparse recursive code is illustrated in Fig. 5. It has the following characteristics:

� the data structure that describes the sparsity pattern is recursive,

� the storage scheme for numerical values has two levels:

{ the lower level, which consists of dense square submatrices (blocks) which enable direct use of the Level 3 BLAS,
and

{ the upper level, which is a set of integer indices that describe the sparsity pattern of the blocks.

There are two important rami�cations of this scheme. First, the number of integer indices that describe the sparsity
pattern is decreased because each of these indices refers to a block of values rather than individual values. It allows for
more compact data structures and during the factorization it translates into a shorter execution time because there is less
sparsity pattern data to traverse and more 
oating operations are performed by eÆcient BLAS codes { as opposed to in code
that relies on compiler optimization. Second, the blocking introduces additional nonzero entries that would not be present
otherwise. These arti�cial nonzeros amount to an increase in storage requirements. Also, the execution time is longer because
it is spent on 
oating point operations that are performed on the additional zero values. This leads to the conclusion that
the sparse recursive storage scheme performs best when almost dense blocks exist in the L and U factors of the matrix. Such
a structure may be achieved with the band-reducing orderings such as Reverse Cuthill-McKee [8, 23] or Sloan [32]. These
orderings tend to incur more �ll-in than others such as Minimum Degree [1, 35] or Nested Dissection [22, 29], but this e�ect
can be expected to be alleviated by the aforementioned compactness of the data storage scheme and utilization of the Level
3 BLAS.

The algorithm from Fig. 3 remains almost unchanged in the sparse case { the di�erences being that calls to BLAS are
replaced by the calls to their sparse recursive counterparts and that the data structure is no longer the same. Fig. 6 and Fig. 7
show the recursive BLAS routines used by the sparse recursive factorization algorithm. They traverse the sparsity pattern
and upon reaching a single dense block level they call the dense BLAS which perform actual 
oating point operations.

5 Performance Results

To test the performance of the sparse recursive factorization code it was compared to SuperLU Version 2.0 (available at http:
//www.nersc.gov/~xiaoye/SuperLU/) and UMFPACK Version 3.0 (available at http://www.cise.ufl.edu/research/

sparse/umfpack/). The tests were performed on a Pentium III Linux workstation with characteristics given in Table 1.
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Figure 5: Sparse recursive blocked storage scheme with the blocking factor equal 2.

C := C �A �B
A,B,C are arbitrary rectangular matrices
function xGEMM('N','N',� = �1,A,B, � = 1,C)
begin

A =

�
A11 A12

A21 A22

�
; B =

�
B11 B12

B21 B22

�
; C =

�
C11 C12

C21 C22

�
;

C11 := C11 �A11 �B11

xGEMM('N','N',� = �1,A11,B11, � = 1,C11);

C21 := C21 �A21 �B11

xGEMM('N','N',� = �1,A21,B11, � = 1,C21);

C11 := C11 �A12 �B21

xGEMM('N','N',� = �1,A12,B21, � = 1,C11);

C21 := C21 �A22 �B21

xGEMM('N','N',� = �1,A22,B21, � = 1,C21);

C12 := C12 �A11 �B12

xGEMM('N','N',� = �1,A11,B12, � = 1,C12);

C12 := C12 �A12 �B22

xGEMM('N','N',� = �1,A12,B22, � = 1,C12);

C22 := C22 �A21 �B12

xGEMM('N','N',� = �1,A21,B12, � = 1,C22);

C22 := C22 �A22 �B22

xGEMM('N','N',� = �1,A22,B22, � = 1,C22);

end.

Figure 6: Recursive formulation of the xGEMM() function which is used in the sparse recursive factorization.



B := B � U�1

U is an upper triangular matrix
with non-unitary diagonal

function xTRSM('R','U','N','N',U,B)
begin

B =

�
B11 B12

B21 B22

�
; U =

�
U11 U12

0 U22

�
;

B11 := B11 � U
�1
11

xTRSM('R','U','N','N',U11,B11);

B21 := B21 � U
�1
11

xTRSM('R','U','N','N',U11,B21);

B22 := B22 �B21 � U12

xGEMM('N','N',� = �1,B21,U12, � = 1,B22);

B22 := B22 � U
�1
22

xTRSM('R','U','N','N',U22,B22);

B12 := B12 �B11 � U12

xGEMM('N','N',� = �1,B11,U12, � = 1,B12);

B12 := B12 � U
�1
22

xTRSM('R','U','N','N',U22,B12);

end.

B := L�1 �B
L is a lower triangular matrix

with unitary diagonal
function xTRSM('L','L','N','U',L,B)
begin

B =

�
B11 B12

B21 B22

�
; L =

�
L11 0
L21 L22

�
;

B11 := L�111 �B11;
xTRSM('L','L','N','U',L11,B11);

B21 := B21 � L21 �B11;
xGEMM('N','N',�= �1,L21,B11, � = 1,B21);

B21 := L�122 �B21;
xTRSM('L','L','N','U',L22,B21);

B12 := L�111 �B12;
xTRSM('L','L','N','U',L11,B12);

B22 := B22 � L12 �B12;
xGEMM('N','N',�= �1,L12,B12, � = 1,B22);

B22 := L�122 �B22;
xTRSM('L','L','N','U',L22,B22);

end.

Figure 7: Recursive formulation of the xTRSM() functions used in the sparse recursive factorization.

Hardware speci�cations
CPU type Pentium III
CPU clock rate 550 MHz
Bus clock rate 100 MHz
L1 data cache 16 Kbytes
L1 instruction cache 16 Kbytes
L2 uni�ed cache 512 Kbytes
Main memory 512 MBytes

CPU performance
Peak 550 MFLOP/s
Matrix-matrix multiply 390 MFLOP/s
Matrix-vector multiply 100 MFLOP/s

Table 1: Parameters of the machine used in the tests.



Matrix SuperLU UMFPACK Recursion
name T [s] FERR T [s] FERR T [s] FERR

af23560 44.2 5 � 10�14 29.3 4 � 10�04 31.3 2 � 10�14

ex11 109.7 3 � 10�05 66.2 2 � 10�03 55.3 1 � 10�06

goodwin 6.5 1 � 10�08 17.8 2 � 10�02 6.7 5 � 10�06

jpwh 991 0.2 3 � 10�15 0.1 2 � 10�12 0.3 3 � 10�15

mcfe 0.1 1 � 10�13 0.2 2 � 10�13 0.2 9 � 10�13

memplus 0.3 2 � 10�12 20.1 4 � 10�11 12.7 7 � 10�13

olafu 26.2 1 � 10�06 19.6 2 � 10�06 22.1 4 � 10�09

orsreg 1 0.5 1 � 10�13 0.3 2 � 10�12 0.5 2 � 10�13

psmigr 1 110.8 8 � 10�11 242.6 2 � 10�08 88.6 1 � 10�05

raefsky3 62.1 1 � 10�09 52.4 5 � 10�10 69.7 4 � 10�13

raefsky4 82.5 2 � 10�06 101.9 5 � 10+01� 104.3 4 � 10�06

saylr4 0.9 3 � 10�11 0.7 2 � 10�07 1.0 1 � 10�11

sherman3 0.6 6 � 10�13 0.5 2 � 10�11 0.7 5 � 10�13

sherman5 0.3 1 � 10�13 0.3 4 � 10�12 0.3 6 � 10�15

wang3 84.1 2 � 10�14 132.1 5 � 10�08 79.2 2 � 10�14

T - combined time for symbolic and numerical factorization

FERR = kx̂�xk1
kxk1

(forward error)
� the matrix raefsky4 requires the threshold pivoting in UMFPACK
to be enabled in order to give a satisfactory forward error

Table 2: Factorization time and error estimates for the test matrices for three factorization codes.

Each of the codes were used to factor selected matrices from the Harwell-Boeing collection [19], and Tim Davis' [10]
matrix collection. These matrices were used to evaluate the performance of SuperLU [28]. The matrices are unsymmetric so
they cannot be used directly with the Conjugent Gradient method and there is no general method for �nding the optimal
iterative method other than trying each one in turn or running all of the methods in parallel [7]. Table 2 shows the total
execution time of factorization (including symbolic and numerical phases) and forward error estimates.

The performance of a sparse factorization code can be tuned for a given computer architecture and a particular matrix.
For SuperLU, the most in
uential parameter was the �ll-in-reducing ordering used prior to factorization. All of the available
ordering schemes that come with SuperLU were used and Table 2 gives the best time that was obtained. UMFPACK
supports only one kind of ordering (a column oriented version of the Approximate Minimum Degree algorithm [1]) so it was
used without tuning, with threshold pivoting disabled. For the recursive approach all of the matrices were ordered using the
Reverse Cuthill-McKee ordering. However, the block size selected somewhat in
uences the execution time. Table 2 shows
the best running time out of the block sizes ranging between 40 and 120. The block size depends mostly on the size of the
Level 1 cache but also on the sparsity pattern of the matrix. Nevertheless, running times for the di�erent block sizes are
comparable. SuperLU and UMFPACK also have tunable parameters that functionally resemble the block size parameter
but their importance is marginal as compared to that of the matrix ordering.

The total factorization time from Table 2 favors the recursive approach for some matrices, e.g., ex11, psmigr 1 and
wang3, and for others it strongly discourages its use (matrices mcfe, memplus and raefsky4). There are two major reasons
for the poor performance of the recursive code on the second class. First, there is an average density factor which is the ratio
of the true nonzero entries of the factored matrix to all the entries in the blocks. It indicates how many arti�cial nonzeros
were introduced by the blocking technique. Whenever this factor drops below 70%, i.e. 30% of the factored matrix entries
do not come from the L and U factors, the performance of the recursive code will most likely su�er. Even when the density
factor is satisfactory, still, the amount of �ll-in incurred by the Reverse Cuthill-McKee ordering may substantially exceed
that of other orderings. In both cases, i.e. with a low value of the density factor or excessive �ll-in, the recursive approach
performs too many unnecessary 
oating point operations and even the high execution rates of the Level 3 BLAS are not able
to o�set it.

The computed forward error is similar for all of the codes despite the fact that two di�erent approaches to pivoting were
employed. Only SuperLU was doing threshold pivoting while the other two codes had the threshold pivoting either disabled
(UMFPACK) or there was no code for any kind of pivoting.

Table 3 shows the matrix parameters and storage requirements for the test matrices. It can be seen that SuperLU and
UMFPACK use slightly less memory and consequently perform fewer 
oating point operations. This may be attributed to
the Minimum Degree algorithm used as an ordering strategy by these codes which minimizes the �ll-in and thus the space
required to store the factored matrix.



Matrix parameters SuperLU UMFPACK Recursion
Name N NZ�103 L + U L + U L + U block

[MB] [MB] [MB] size

af23560 23560 461 132.2 96.6 149.7 120
ex11 16614 1097 210.2 129.2 150.6 80
goodwin 7320 325 31.3 57.0 35.0 40
jpwh 991 991 6 1.4 1.4 2.3 40
mcfe 765 24 0.9 0.7 1.8 40
memplus 17758 126 5.9 112.5 195.7 60
olafu 16146 1015 83.9 63.3 96.1 80
orsreg 1 2205 14 3.6 2.8 3.9 40
psmigr 1 3140 543 64.6 76.2 78.4 100
raefsky3 21200 1489 147.2 150.1 193.9 120
raefsky4 19779 1317 156.2 171.5 234.4 80
saylr4 3564 22 6.0 4.6 7.2 40
sherman3 5005 20 5.0 3.5 7.3 60
sherman5 3312 21 3.0 1.9 3.1 40
wang3 26064 177 116.7 249.7 256.7 120

N - order of the matrix
NZ - number of nonzero entries in the matrix
L + U - size of memory required to store the L and U factors

Table 3: Parameters of the test matrices and their storage requirements for three factorization codes.

6 Conclusions and Future Work

We have shown that the recursive approach to the sparse matrix factorization may lead to an eÆcient implementation.
The execution time, storage requirements, and error estimates of the solution are comparable to that of supernodal and
multifrontal codes. However, there are still matrices for which the recursive code does not perform well. These cases should
be investigated further and possibly a metric devised that would allow selecting the best factorization method for a given
matrix. This metric will probably include the aforementioned density factor. During a preprocessing phase, the density
factor is computed and only if it exceeds a certain threshold the recursive code is used. An open question is which code to
choose when the recursive one is not appropriate. A performance model is necessary that links together the features of the
multifrontal and supernodal approaches with the characteristics of the matrix to be factored and machnie it is to be used
on.

The problem with low values of the density factor may be regarded as a future research direction. The aim should be to
make the recursive code more adaptive to the matrix sparsity pattern. It could allow the use of matrix orderings other than
Reverse Cuthill-McKee because the high average density of the blocks will not be as crucial any more.

Another outstanding issue is the numerical stability of the factorization process. As it is now, it does not perform pivoting
and still delivers acceptable accuracy. On other matrices that those tested, the method may still fail, and even iterative
re�nement may be unable to regain suÆcient accuracy. Therefore, an extended version that performs at least some form of
pivoting would likely be much more robust.
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