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Scientific discovery and engineering innovation 
requires unifying traditionally separated high- 
performance computing and big data analytics. 

BY DANIEL A. REED AND JACK DONGARRA 

NEARLY TWO CENTURIES  ago, the English chemist 
Humphrey Davy wrote “Nothing tends so much to the 
advancement of knowledge as the application of a new 
instrument. The native intellectual powers of men 
in different times are not so much the causes of the 
different success of their labors, as the peculiar nature of 
the means and artificial resources in their possession.” 
Davy’s observation that advantage accrues to those who 
have the most powerful scientific tools is no less true 
today. In 2013, Martin Karplus, Michael Levitt, and Arieh 
Warshel received the Nobel Prize in chemistry for their 
work in computational modeling. The Nobel committee 
said, “Computer models mirroring real life have 
become crucial for most advances made in chemistry 
today,”17 and “Computers unveil chemical processes, 
such as a catalyst’s purification of exhaust fumes or 
the photosynthesis in green leaves.” 

Whether describing the advantages of high-energy 
particle accelerators (such as the Large Hadron Collider 

and the 2013 discovery of the Higgs bo-
son), powerful astronomy instruments 
(such as the Hubble Space Telescope, 
which yielded insights into the uni-
verse’s expansion and dark energy), or 
high-throughput DNA sequencers and 
exploration of metagenomics ecology, 
ever-more powerful scientific instru-
ments continually advance knowl-
edge. Each such scientific instrument, 
as well as a host of others, is critically 
dependent on computing for sensor 
control, data processing, international 
collaboration, and access. 

However, computing is much more 
than an augmenter of science. Unlike 
other tools, which are limited to partic-
ular scientific domains, computational 
modeling and data analytics are appli-
cable to all areas of science and engi-
neering, as they breathe life into the 
underlying mathematics of scientific 
models. They enable researchers to un-
derstand nuanced predictions, as well 
as shape experiments more efficiently. 
They also help capture and analyze the 
torrent of experimental data being pro-
duced by a new generation of scientific 
instruments made possible by advanc-
es in computing and microelectronics. 

Computational modeling can il-
luminate the subtleties of complex 
mathematical models and advance 
science and engineering where time, 
cost, or safety precludes experimen-
tal assessment alone. Computational 
models of astrophysical phenomena, 
on temporal and spatial scales as di-

Exascale 
Computing 
and Big Data 

 key insights
 ˽ The tools and cultures of high-

performance computing and big data 
analytics have diverged, to the detriment 
of both; unification is essential to address 
a spectrum of major research domains. 

 ˽ The challenges of scale tax our ability 
to transmit data, compute complicated 
functions on that data, or store  
a substantial part of it; new approaches  
are required to meet these challenges. 

 ˽ The international nature of science demands  
further development of advanced 
computer architectures and global 
standards for processing data, even as 
international competition complicates  
the openness of the scientific process. 
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puting and data-analysis systems, 
along with a host of new design chal-
lenges at massive scale, are raising 
new questions about advanced com-
puting research investment priorities, 
design, and procurement models, as 
well as global collaboration and com-
petition. This article examines some 
of these technical challenges, the 
interdependence of computational 
modeling and data analytics, and the 
global ecosystem and competition for 
leadership in advanced computing. 
We begin with a primer on the history 
of advanced computing. 

Advanced Computing Ecosystems 
By definition, an advanced computing 
system embodies the hardware, soft-
ware, and algorithms needed to deliver 
the very highest capability at any given 
time. As in Figure 1, the computing 
and data analytics ecosystems share 
some attributes, notably reliance on 
open source software and the x86 hard-
ware ecosystem. However, they differ 
markedly in their foci and technical 
approaches. As scientific research in-
creasingly depends on both high-speed 

verse as planetary system formation, 
stellar dynamics, black hole behavior, 
galactic formation, and the interplay 
of baryonic and putative dark matter, 
have provided new insights into theo-
ries and complemented experimental 
data. Sophisticated climate models 
that capture the effects of greenhouse 
gases, deforestation, and other plan-
etary changes have been key to under-
standing the effects of human behavior 
on the weather and climate change. 

Computational science and engi-
neering also enable multidisciplinary 
design and optimization, reducing 
prototyping time and costs. Advanced 
simulation has enabled Cummins to 
build better diesel engines faster and 
less expensively, Goodyear to design 
safer tires much more quickly, Boeing 
to build more fuel-efficient aircraft, 
and Procter & Gamble to create better 
materials for home products. 

Similarly, “big data,” machine 
learning, and predictive data analytics 
have been hailed as the fourth para-
digm of science,12 allowing researchers 
to extract insights from both scientific 
instruments and computational simu-

lations. Machine learning has yielded 
new insights into health risks and the 
spread of disease via analysis of social 
networks, Web-search queries, and 
hospital data. It is also key to event 
identification and correlation in do-
mains as diverse as high-energy phys-
ics and molecular biology. 

As with successive generations of 
other large-scale scientific instru-
ments, each new generation of ad-
vanced computing brings new capa-
bilities, along with technical design 
challenges and economic trade-offs. 
Broadly speaking, data-generation ca-
pabilities in most science domains are 
growing more rapidly than compute 
capabilities, causing these domains 
to become data-intensive.23 High-
performance computers and big-data 
systems are tied inextricably to the 
broader computing ecosystem and its 
designs and markets. They also sup-
port national-security needs and eco-
nomic competitiveness in ways that 
distinguish them from most other sci-
entific instruments. 

This “dual use” model, together 
with the rising cost of ever-larger com-

Figure 1. Data analytics and computing ecosystem compared. 
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computing and data analytics, the po-
tential interoperability and scaling 
convergence of these two ecosystems is 
crucial to the future. 

Scientific computing. In the 1980s, 
vector supercomputing dominated 
high-performance computing, as em-
bodied in the eponymously named 
systems designed by the late Seymour 
Cray. The 1990s saw the rise of massively 
parallel processing (MPPs) and shared 
memory multiprocessors (SMPs) built 
by Thinking Machines, Silicon Graphics, 
and others. In turn, clusters of commod-
ity (Intel/AMD x86) and purpose-built 
processors (such as IBM’s BlueGene), 
dominated the previous decade. 

Today, these clusters are augmented 
with computational accelerators in the 
form of coprocessors from Intel and 
graphical processing units (GPUs) from 
Nvidia; they also include high-speed, 
low-latency interconnects (such as In-
finiband). Storage area networks (SANs) 
are used for persistent data storage, 
with local disks on each node used only 
for temporary files. This hardware eco-
system is optimized for performance 
first, rather than for minimal cost. 

Atop the cluster hardware, Linux 
provides system services, augmented 
with parallel file systems (such as Lustre) 
and batch schedulers (such as PBS and 
SLURM) for parallel job management. 
MPI and OpenMP are used for internode 
and intranode parallelism, augmented 
with libraries and tools (such as CUDA and 
OpenCL) for coprocessor use. Numerical 
libraries (such as LAPACK and PETSc) and 
domain-specific libraries complete the 
software stack. Applications are typically 
developed in FORTRAN, C, or C++. 

Data analytics. Just a few years ago, 
the very largest data storage systems 
contained only a few terabytes of sec-
ondary disk storage, backed by auto-
mated tape libraries. Today, commer-
cial and research cloud-computing 
systems each contain many petabytes 
of secondary storage, and individual 
research laboratories routinely process 
terabytes of data produced by their 
own scientific instruments. 

As with high-performance comput-
ing, a rich ecosystem of hardware and 
software has emerged for big-data 
analytics. Unlike scientific-computing 
clusters, data-analytics clusters are 
typically based on commodity Ethernet 
networks and local storage, with cost 

and capacity the primary optimization 
criteria. However, industry is now turn-
ing to FPGAs and improved network 
designs to optimize performance. 

Atop this hardware, the Apache 
Hadoop25 system implements a Ma-
pReduce model for data analytics. Ha-
doop includes a distributed file system 
(HDFS) for managing large numbers 
of large files, distributed (with block 
replication) across the local storage of 
the cluster. HDFS and HBase, an open-
source implementation of Google’s 
BigTable key-value store,3 are the big-
data analogs of Lustre for computa-
tional science, albeit optimized for dif-
ferent hardware and access patterns.

Atop the Hadoop storage system, 
tools (such as Pig18) provide a high-
level programming model for the two-
phase MapReduce model. Coupled 
with streaming data (Storm and Flume), 
graph (Giraph), and relational data 
(Sqoop) support, the Hadoop ecosystem 
is designed for data analysis. Moreover, 
tools (such as Mahout) enable classifi-
cation, recommendation, and predic-
tion via supervised and unsupervised 
learning. Unlike scientific computing, 
application development for data ana-
lytics often relies on Java and Web ser-
vices tools (such as Ruby on Rails). 

Scaling Challenges 
Given the rapid pace of technologi-
cal change, leading-edge capability is 
a moving target. Today’s smartphone 
computes as fast as yesterday’s super-
computer, and today’s personal music 

collection is as large as yesterday’s en-
terprise-scale storage. 

Lest this seem an exaggeration, the 
measured performance of an Apple 
iPhone 6 or Samsung Galaxy S5 on stan-
dard linear algebra benchmarks now 
substantially exceeds that of a Cray-1, 
which is widely viewed as the first suc-
cessful supercomputer. That same 
smartphone has storage capacity rival-
ing the text-based content of a major 
research library. 

Just a few years ago, teraflops (1012 
floating point operations/second) and 
terabytes (1012 bytes of secondary stor-
age) defined state-of-the-art advanced 
computing. Today, those same values 
represent a desk-side PC with Nvidia 
or Intel Xeon Phi accelerator and local 
storage. Advanced computing is now 
defined by multiple petaflops (1015 float-
ing operations/second) supercomput-
ing systems and cloud data centers with 
many petabytes of secondary storage. 

Figure 2 outlines this exponential 
increase in advanced computing capa-
bility, based on the widely used High-
Performance LINPACK (HPL) bench-
mark6 and Top500 list of the world’s 
fastest computers.16 Although solution 
of dense linear systems of equations is 
no longer the best measure of delivered 
performance on complex scientific and 
engineering applications, this histori-
cal data illustrates how rapidly high-
performance computing has evolved. 
Though high-performance computing 
has benefited from the same semicon-
ductor advances as commodity com-

Figure 2. Advanced computing performance measured by the HPL benchmark. 
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many research groups to apply ma-
chine learning to large-scale scientific 
data without deep knowledge of ma-
chine-learning algorithms. The same 
is true of community codes for compu-
tational science modeling. 

Hardware, software, data, and poli-
tics. Historically, high-performance 
computing advances have been largely 
dependent on concurrent advances in 
algorithms, software, architecture, and 
hardware that enable higher levels of 
floating-point performance for com-
putational models. Advances today are 
also shaped by data-analysis pipelines, 
data architectures, and machine learn-
ing tools that manage large volumes of 
scientific and engineering data. 

However, just as changes in scien-
tific instrumentation scale bring new 
opportunities, they also bring new 
challenges, some technical but others 
organizational, cultural, and econom-
ic, and they are not self-similar across 
scales. Today, exascale computing sys-
tems cannot be produced in an afford-
able and reliable way or be subject to 
realistic engineering constraints on 
capital and operating costs, usability, 
and reliability. As the costs of advanced 
computing and data-analysis systems, 
whether commercial or scientific, have 
moved from millions to billions of dol-
lars, design and decision processes 
have necessarily become more com-
plex and fraught with controversy. This 
is a familiar lesson to those in high-
energy physics and astronomy, where 
particle accelerators and telescopes 
have become planetary-scale instru-
mentation and the province of inter-
national consortia and global politics. 
Advanced computing is no exception. 

The research-and-development costs 
to create an exascale computing system 
have been estimated by many experts 
to exceed one billion U.S. dollars, with 
an annual operating cost of tens of mil-
lions of dollars. Concurrently, there is 
growing recognition that governments 
and research agencies have substan-
tially underinvested in data retention 
and management, as evinced by multi-
billion-dollar private-sector investments 
in big data and cloud computing. The 
largest commercial cloud data centers 
each cost more than $500 million to con-
struct, and Google, Amazon, Microsoft, 
Facebook, and other companies operate 
global networks of such centers. 

puting, sustained system performance 
has improved even more rapidly due to 
increasing system size and parallelism. 

The growth of personal, business, 
government, and scientific data has 
been even more dramatic and well doc-
umented. Commercial cloud providers 
are building worldwide networks of 
data centers, each costing hundreds 
of millions of dollars, to support Web 
search engines, social networks, and 
cloud services. Concurrently, the vol-
ume of scientific data produced annu-
ally now challenges the budgets of na-
tional research agencies. 

As an example, Figure 3 outlines the 
exponential growth in the number of 
objects stored in Amazon’s Simple Stor-
age Service (S3). Atop such low-level ser-
vices, companies (such as Netflix) imple-
ment advanced recommender systems to 
suggest movies to subscribers and then 
stream selections. Scientific research-
ers also increasingly explore these same 
cloud services and machine-learning 
techniques for extracting insight from 
scientific images, graphs, and text data. 
There are natural technical and econom-
ic synergies among the challenges facing 
data-intensive science and exascale  
computing, and advances in both are 
necessary for future scientific break-
throughs. Data-intensive science 
relies on the collection, analysis, and 
management of massive volumes of 
data, whether obtained from scientific 
simulations or experimental facilities. 
In each case, national and international 
investment in “extreme scale” systems 
will be necessary to analyze the massive 
volumes of data that are now common-
place in science and engineering. 

Race to the future. For scientific 
and engineering computing, exas-
cale (1018 operations per second) is 
the next proxy in the long trajectory 
of exponential performance increases 
that has continued for more than half 
a century. Likewise, large-scale data 
preservation and sustainability within 
and across disciplines, metadata cre-
ation and multidisciplinary fusion, and 
digital privacy and security define the 
frontiers of big data. This multifaceted 
definition of advanced computing en-
compasses more than simply quantita-
tive measures of sustained arithmetic 
operation rates or storage capacity and 
analysis rates; it is also a relative term 
encompassing qualitative improve-
ments in the usable capabilities of ad-
vanced computing systems at all scales. 
As such, it is intended to suggest a new 
frontier of practical, delivered capa-
bility to scientific and engineering re-
searchers across all disciplines. 

However, there are many challenges 
on the road to ever more advanced com-
puting, including, but not limited to, 
system power consumption and envi-
ronmentally friendly cooling, massive 
parallelism, and component failures, 
data and transaction consistency, meta-
data and ontology management, preci-
sion and recall at scale, and multidisci-
plinary data fusion and preservation. 

Above all, advanced computing sys-
tems must not become so arcane and 
complex that they and their services 
are unusable by all but a handful of 
experts. Open source toolkits (such as 
Hadoop, Mahout, and Giraph), along 
with a growing set of domain-specific 
tools and languages, have allowed 

Figure 3. Growth of Amazon S3 objects. 
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Against this backdrop, U.S. support 
for basic research is at a decadal low, 
when adjusted for inflation,2 and both 
the U.S. and the European Union con-
tinue to experience weak recoveries 
from the economic downturn of 2008. 
Further exacerbating the challenges, 
the global race for advanced com-
puting hegemony is convolved with 
national-security desires, economic 
competitiveness, and the future of the 
mainstream computing ecosystem. 

The shift from personal comput-
ers to mobile devices has also further 
raised competition between the U.S.-
dominated x86 architectural ecosys-
tem and the globally licensed ARM eco-
system. Concurrently, concerns about 
national sovereignty, data security, and 
Internet governance have triggered 
new competition and political con-
cerns around data services and cloud-
computing operations. 

Despite these challenges, there is 
reason for cautious optimism. Every 
advance in computing technology has 
driven industry innovation and eco-
nomic growth, spanning the entire 
spectrum of computing, from the 
emerging Internet of Things to ubiq-
uitous mobile devices to the world’s 
most powerful computing systems and 
largest data archives. These advances 
have also spurred basic and applied re-
search in every domain of science. 

Solving the myriad technical, po-
litical, and economic challenges will be 
neither easy nor even possible by tack-
ling them in isolation. Rather, it will 
require coordinated planning across 
government, industry, and academia, 
commitment to data sharing and sus-
tainability, collaborative research and 
development, and recognition that both 
competition and collaboration will be 
necessary for success. The future of big 
data and analytics should not be pitted 
against exascale computing; both are 
critical to the future of advanced com-
puting and scientific discovery. 

Scientific and Engineering 
Opportunities 
Researchers in the physical sciences and 
engineering have long been major users 
of advanced computing and computa-
tional models. The more recent adoption 
by the biological, environmental, and so-
cial sciences has been driven in part by 
the rise of big-data analytics. In addition, 

advanced computing is now widely used 
in engineering and advanced manufac-
turing. From understanding the subtle-
ties of airflow in turbomachinery to 
chemical molecular dynamics for con-
sumer products to biomass feedstock 
modeling for fuel cells, advanced com-
puting has become synonymous with 
multidisciplinary design and optimiza-
tion and advanced manufacturing. 

Looking forward, only a few exam-
ples are needed to illustrate the deep 
and diverse scientific and engineering 
benefits from advanced computing: 

Biology and biomedicine. Biology and 
biomedicine have been transformed 
through access to large volumes of ge-
netic data. Inexpensive, high-through-
put genetic sequencers have enabled 
capture of organism DNA sequences 
and made possible genome-wide asso-
ciation studies for human disease and 
human microbiome investigations, as 
well as metagenomics environmental 
studies. More generally, biological and 
biomedical challenges span sequence 
annotation and comparison, protein-
structure prediction; molecular simula-
tions and protein machines; metabolic 
pathways and regulatory networks; 
whole-cell models and organs; and or-
ganisms, environments, and ecologies; 

High-energy physics. High-energy 
physics is both computational- and 
data-intensive. First-principles compu-
tational models of quantum chromo-
dynamics provide numerical estimates 
and validations of the Standard Model. 
Similarly, particle detectors require the 
measurement of probabilities of “inter-
esting” events in large numbers of obser-
vations (such as in 1016 or more particle 
collisions observed in a year). The Large 
Hadron Collider and its experiments 
necessitated creating a worldwide com-
puting grid for data sharing and reduc-
tion, driving deployment of advanced 
networks and protocols, as well as a 
hierarchy of data repositories. All were 
necessary to identify the long-sought 
Higgs boson; 

Climate science. Climate science is 
also critically dependent on the avail-
ability of a reliable infrastructure for 
managing and accessing large hetero-
geneous quantities of data on a global 
scale. It is inherently a collaborative 
and multidisciplinary effort requiring 
sophisticated modeling of the physical 
processes and exchange mechanisms 

Computing 
technology is 
poised at important 
inflection points, 
at the very 
largest scale, 
or leading-edge 
high-performance 
computing, and the 
very smallest scale, 
or semiconductor 
processes. 
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neutron by providing data on the in-
ternal structure of materials from the 
atomic scale (atomic positions and ex-
citations) up to the mesoscale (such as 
the effects of stress); 

Steel production. Steel production 
via continuous casting accounts for 
an important fraction of global energy 
consumption and greenhouse gases 
production. Even small improvements 
to this process would have profound 
societal benefits and save hundreds of 
millions of dollars. High-performance 
computers are used to improve under-
standing of this complex process via 
comprehensive computational mod-
els, as well as to apply those models to 
find operating conditions to improve 
the process; and 

Text and data mining. The explosive 
growth of research publications has 
made finding and tracking relevant 
research increasingly difficult. Beyond 
the volume of text, principles have 
different or similar names across do-
mains. Text classification, semantic 
graph visualization tools, and recom-
mender systems are increasingly be-
ing used to identify relevant topics and 
suggest relevant papers for study. 

There are two common themes 
across these science and engineering 
challenges. The first is an extremely 
wide range of temporal and spatial 
scales and complex, nonlinear inter-
actions across multiple biological and 
physical processes. These are the most 
demanding of computational simula-
tions, requiring collaborative research 
teams, along with the very largest and 
most capable computing systems. In 
each case, the goal is predictive simu-
lation, or gleaning insight that tests 
theories, identifies subtle interactions, 
and guides new research. 

The second theme is the enormous 
scale and diversity of scientific data 
and the unprecedented opportuni-
ties for data assimilation, multidis-
ciplinary correlation, and statistical 
analysis. Whether in biological or 
physical sciences, engineering or busi-
ness, big data is creating new research 
needs and opportunities. 

Technical Challenges in 
Advanced Computing 
The scientific and engineering oppor-
tunities made possible through ad-
vanced computing and data analytics 

among multiple Earth realms—atmo-
sphere, land, ocean, and sea ice—and 
comparing and validating these simu-
lations with observational data from 
various sources, all collected over long 
periods. To encourage exploration, 
NASA has made climate and Earth sci-
ence satellite data available through 
Amazon Web Services; 

Cosmology and astrophysics. Cosmol-
ogy and astrophysics are now critically 
dependent on advanced computational 
models to understand stellar structure, 
planetary formation, galactic evolution, 
and other interactions. These models 
combine fluid processes, radiation 
transfer, Newtonian gravity, nuclear 
physics, and general relativity (among 
other processes). Underlying them is a 
rich set of computational techniques 
based on adaptive mesh refinement 
and particle-in-cell, multipole algo-
rithms, Monte Carlo methods, and 
smoothed-particle hydrodynamics;

Astronomy. Complementing com-
putation, whole-sky surveys, and a new 
generation of automated telescopes 
are providing new insights. Rather 
than capture observational data to an-
swer a known question, astronomers 
now frequently query extant datasets 
to discover previously unknown pat-
terns and trends. Big-data reduction 
and unsupervised learning systems are 
an essential part of this exploratory im-
age analysis; 

Cancer treatment. Effective cancer 
treatment depends on early detection 
and targeted treatments via surgery, 
radiation, and chemotherapy. In turn, 
tumor identification and treatment 
planning are dependent on image en-
hancement, feature extraction and clas-
sification, segmentation, registration, 
3D reconstruction, and quantification. 
These and other machine-learning 
techniques provide not only diagnostic 
validation, they are increasingly used to 
conduct comparative and longitudinal 
analysis of treatment regimes; 

Experimental and computational 
materials science. Experimental and 
computational materials science is 
key to understanding materials prop-
erties and engineering options; for 
example, neutron scattering allows 
researchers to understand the struc-
ture and properties of materials, mac-
romolecular and biological systems, 
and the fundamental physics of the 

It is important for 
all of computer 
science to design 
algorithms that 
communicate as 
little as possible, 
ideally attaining 
lower bounds on 
the amount of 
communication 
required.
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are deep, but the technical challenges 
in designing, constructing, and op-
erating advanced computing and 
data-analysis systems of unprecedented 
scale are just as daunting. Although 
cloud-computing centers and exascale 
computational platforms are seem-
ingly quite different, as discussed ear-
lier, the underlying technical challenges 
of scale are similar, and many of the 
same companies and researchers are 
exploring dual-use technologies appli-
cable to both. 

In a series of studies over the past five 
years, the U.S. Department of Energy 
identified 10 research challenges10,15,24 
in developing a new generation of ad-
vanced computing systems, including 
the following, augmented with our own 
comparisons with cloud computing: 

Energy-efficient circuit, power, and 
cooling technologies. With current semi-
conductor technologies, all proposed 
exascale designs would consume hun-
dreds of megawatts of power. New de-
signs and technologies are needed to 
reduce this energy requirement to a 
more manageable and economically 
feasible level (such as 20MW–40MW) 
comparable to that used by commer-
cial cloud data centers; 

High-performance interconnect tech-
nologies. In the exascale-computing re-
gime, the energy cost to move a datum 
will exceed the cost of a floating-point 
operation, necessitating very energy 
efficient, low-latency, high-bandwidth 
interconnects for fine-grain data ex-
changes among hundreds of thou-
sands of processors. Even with such 
designs, locality-aware algorithms and 
software will be needed to maximize 
computation performance and reduce 
energy needs; 

Driven by cost necessity, commer-
cial cloud computing systems have 
been built with commodity Ethernet 
interconnects and adopted a bulk syn-
chronous parallel computation model. 
Although this approach has proven 
effective, as evidenced by widespread 
adoption of MapReduce toolkits (such 
as Hadoop), a lower-cost, convergence 
interconnect would benefit both com-
putation and data-intensive platforms 
and open new possibilities for fine-
grain data analysis. 

Advanced memory technologies to 
improve capacity. Minimizing data 
movement and minimizing energy use 

are also dependent on new memory 
technologies, including processor-in-
memory, stacked memory (Micron’s 
HMC is an early example), and non-
volatile memory approaches. Although 
the particulars differ for computation 
and data analysis, algorithmic deter-
minants of memory capacity will be 
a significant driver of overall system 
cost, as the memory per core for very 
large systems will necessarily be small-
er than in current designs; 

Scalable system software that is pow-
er and failure aware. Traditional high-
performance computing software has 
been predicated on the assumption 
that failures are infrequent; as we ap-
proach exascale levels, systemic resil-
ience in the face of regular component 
failures will be essential. Similarly, dy-
namic, adaptive energy management 
must become an integral part of sys-
tem software, for both economic and 
technical reasons. 

Cloud services for data analytics, 
given their commercial quality-of-
service agreements, embody large 
numbers of resilience techniques, in-
cluding geo-distribution, automatic 
restart and failover, failure injection, 
and introspective monitoring; the 
Netflix “Simian Army”a is illustrative 
of these techniques. 

Data management software that can 
handle the volume, velocity, and diver-
sity of data. Whether computationally 
generated or captured from scientific 
instruments, efficient in situ data anal-
ysis requires restructuring of scientific 
workflows and applications, building 
on lessons gleaned from commer-
cial data-analysis pipelines, as well as 
new techniques for data coordinating, 
learning, and mining. Without them, 
I/O bottlenecks will limit system utility 
and applicability; 

Programming models to express mas-
sive parallelism, data locality, and resil-
ience. The widely used communicating 
sequential process model, or MPI pro-
gramming, places the burden of local-
ity and parallelization on application 
developers. Exascale computing sys-
tems will have billion-way parallelism 
and frequent faults. Needed are more 
expressive programming models able 
to deal with this behavior and simplify 

a http://techblog.netflix.com/2011/07/netflix-
simian-army.html

the developer’s efforts while support-
ing dynamic, fine-grain parallelism. 

Much can be learned from Web and 
cloud services where abstraction lay-
ers and domain-specific toolkits allow 
developers to deploy custom execution 
environments (virtual machines) and 
leverage high-level services for reduc-
tion of complex data. The scientific 
computing challenge is retaining ex-
pressivity and productivity while also 
delivering high performance. 

Reformulation of science problems 
and refactoring solution algorithms. 
Many thousands of person-years have 
been invested in current scientific and 
engineering codes and in data mining 
and learning software. Adapting scien-
tific codes to billion-way parallelism 
will require redesigning, or even rein-
venting, the algorithms and potentially 
reformulating the science problems. 
Integrating data-analytics software 
and tools with computation is equally 
daunting; programming languages 
and models differ, as do the communi-
ties and cultures. Understanding how 
to do these things efficiently and ef-
fectively will be key to solving mission-
critical science problems; 

Ensuring correctness in the face of 
faults, reproducibility, and algorithm 
verification. With frequent transient 
and permanent faults, lack of repro-
ducibility in collective communication, 
and new mathematical algorithms 
with limited verification, computation 
validation and correctness assurance 
will be much more important for the 
next generation of massively parallel 
systems, whether optimized for scien-
tific computing, data analysis, or both; 

Mathematical optimization and un-
certainty quantification for discovery, 
design, and decision. Large-scale com-
putations are themselves experiments 
that probe the sample space of numeri-
cal models. Understanding the sen-
sitivity of computational predictions 
to model inputs and assumptions, 
particularly when they involve com-
plex, multidisciplinary applications 
requires new tools and techniques 
for application validation and assess-
ment. The equally important analogs 
in large-scale data analytics and ma-
chine learning are precision (the frac-
tion of retrieved data that is relevant) 
and recall (the fraction of relevant data 
retrieved); and 
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Chip power limits have stimulat-
ed great interest in the ARM proces-
sor ecosystem. Because ARM designs 
were optimized for embedded and 
mobile devices, where limited power 
consumption has long been a design 
driver, they have simpler pipelines and 
instruction decoders than x86 designs. 

In this new world, hardware/soft-
ware co-design becomes de rigeur, 
with devices and software systems 
interdependent. The implications 
are far fewer general-purpose perfor-
mance increases, more hardware di-
versity, elevation of multivariate opti-
mization (such as power, performance, 
and reliability) in programming mod-
els, and new system-software-resource-
management challenges. 

Resilience and energy efficiency at 
scale. As advanced computing and data 
analysis systems grow ever larger, the 
assumption of fully reliable operation 
becomes much less credible. Although 
the mean time before failure for indi-
vidual components continues to in-
crease incrementally, the large overall 
component count for these systems 
means the systems themselves will fail 
more frequently. To date, experience 
has shown failures can be managed 
but only with improved techniques for 
detecting and understanding compo-
nent failures. 

Data from commercial cloud data 
centers suggests some long-held as-
sumptions about component failures 
and lifetimes are incorrect.11,20–22 A 
2009 Google study22 showed DRAM 
error rates were orders-of-magnitude 
higher than previously reported, 
with over 8% of DIMMs affected by 
errors in a year. Equally surprising, 
these were hard errors, rather than 
soft, correctable (via error-correcting 
code) errors. 

In addition to resilience, scale also 
brings new challenges in energy man-
agement and thermal dissipation. To-
day’s advanced computing and data-
analysis systems consume megawatts 
of power, and cooling capability and 
peak power loads limit where many 
systems can be placed geographically. 
As commercial cloud operators have 
learned, energy infrastructure and pow-
er are a substantial fraction of total sys-
tem cost at scale, necessitating new in-
frastructure approaches and operating 
models, including low-power designs, 

Software engineering and support-
ing structures to enable productivity. 
Although programming tools, com-
pilers, debuggers, and performance-
enhancement tools shape research 
productivity for all computing sys-
tems, at scale, application design and 
management for reliable, efficient, 
and correct computation is especially 
daunting. Unless researcher produc-
tivity increases, the time to solution 
may be dominated by application de-
velopment, not computation. 

Similar hardware and software stud-
ies1,14 chartered by the U.S. Defense Ad-
vanced Research Projects Agency iden-
tified the following challenges, most 
similar to those cited by the Depart-
ment of Energy studies: 

Energy-efficient operation. Energy-
efficient operation to achieve desired 
computation rates subject to overall 
power dissipation; 

Memory capacity. Primary and sec-
ondary memory capacity and access 
rates, subject to power constraints; 

Concurrency and locality. Concur-
rency and locality to meet performance 
targets while allowing some threads to 
stall during long-latency operations; 

Resilience. Resilience, given large 
component counts, shrinking silicon 
feature sizes, low-power operation, and 
transient and permanent component 
failures; 

Application scaling. Application scal-
ing subject to memory capacity and 
communication latency constraints; 

Managing parallelism. Expressing 
and managing parallelism and locality 
in system software and portable pro-
gramming models, including runtime 
systems, schedulers, and libraries; and

Software tools. Software tools for 
performance tuning, correctness as-
sessment, and energy management. 

Moreover, a 2011 study by the U.S. 
National Academy of Sciences (NAS)9 
suggested that, barring a break-
through, the exponential increases in 
performance derived from shrinking 
semiconductor feature size and ar-
chitectural innovation are nearing an 
end. This study, along with others, sug-
gests computing technology is poised 
at important inflection points, at the 
very largest scale, or leading-edge high-
performance computing, and the very 
smallest scale, or semiconductor pro-
cesses. The computing community re-

mains divided on possible approaches, 
with strong believers that technical 
obstacles limiting extension of current 
approaches will be overcome and oth-
ers who believe more radical technol-
ogy and design approaches (such as 
quantum and superconducting devic-
es) may be required. 

Hardware and architecture chal-
lenges. Although a complete descrip-
tion of the hardware and software 
technical challenges just outlined is 
beyond the scope of this article, review 
of a selected subset is useful to illu-
minate the depth and breadth of the 
problems and their implications for 
the future of both advanced computing 
and the broader deployment of next-
generation consumer- and business-
computing technologies. 

Post-Dennard scaling. For decades, 
Moore’s “law” has held true due to 
the hard work and creativity of a great 
many people, as well as many billions 
of dollars of investment in process 
technology and silicon foundries. It 
has also rested on the principle of 
Dennard scaling,5,13 providing a recipe 
for shrinking transistors and yielding 
smaller circuits with the same power 
density. Decreasing a transistor’s lin-
ear size by a factor of two thus reduced 
power by a factor of four, or with both 
voltage and current halving. 

Although transistor size continues 
to shrink, with 22-nanometer feature 
size now common, transistor power 
consumption no longer decreases ac-
cordingly. This has led to limits on chip 
clock rates and power consumption, 
along with design of multicore chips 
and the rise of dark silicon—chips with 
more transistors than can be active si-
multaneously due to thermal and pow-
er constraints.8 

These semiconductor challenges 
have stimulated a rethinking of chip de-
sign, where the potential performance 
advantage of architectural tricks—su-
perpipelining, scoreboarding, vector-
ization, and parallelization—must 
be balanced against their energy con-
sumption. Simpler designs and func-
tion-specific accelerators often yield a 
better balance of power consumption 
and performance. This architectural 
shift will be especially true if the bal-
ance of integer, branch, and floating-
point operations shifts to support in 
situ data analysis and computing. 
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cooling approaches, energy account-
ability, and operational efficiencies. 

Software and algorithmic challenges. 
Many of the software and algorithmic 
challenges for advanced computing 
and big-data analytics are themselves 
consequences of extreme system scale. 
As noted earlier, advanced scientific 
computing shares many of the scaling 
problems of Web and cloud services 
but differs in its price-performance 
optimization balance, emphasizing 
high levels of performance, whether 
for computation or for data analysis. 
This distinction is central to the design 
choices and optimization criteria. 

Given the scale and expected error 
rates of exascale computing systems, 
design and implementation of algo-
rithms must be rethought from first 
principles, including exploration of 
global synchronization-free (or at least 
minimal) algorithms, fault-oblivious 
and error-tolerant algorithms, archi-
tecture-aware algorithms suitable for 
heterogeneous and hierarchical orga-
nized hardware, support for mixed-
precision arithmetic, and software for 
energy-efficient computing. 

Locality and scale. As noted earlier, 
putative designs for extreme-scale 
computing systems are projected to re-
quire billion-way computational con-
currency, with aggressive parallelism 
at all system levels. Maintaining load 
balance on all levels of a hierarchy of al-
gorithms and platforms will be the key 
to efficient execution. This will likely 
require dynamic, adaptive runtime 
mechanisms4 and self-aware resource 
allocation to tolerate not only algorith-
mic imbalances but also variability in 
hardware performance and reliability. 

In turn, the energy costs and laten-
cies for communication will place an 
even greater premium on computation 
locality than today. Inverting long-held 
models, arithmetic operations will be 
far less energy intensive and more ef-
ficient than communication. Algorith-
mic complexity is usually expressed 
in terms of number of operations per-
formed rather than quantity of data 
movement to memory. This is directly 
opposed to the expected costs of com-
putation at large scale, where memory 
movement will be very expensive and 
operations will be nearly free, an issue 
of importance to both floating-point-
intensive and data-analysis algorithms. 

The temporal cost of data move-
ment will challenge traditional al-
gorithmic design approaches and 
comparative optimizations, making 
redundant computation sometimes 
preferable to data sharing and elevat-
ing communication complexity to 
parity with computation. It is there-
fore important for all of computer 
science to design algorithms that 
communicate as little as possible, 
ideally attaining lower bounds on the 
amount of communication required. 
It will also require models and meth-
ods to minimize and tolerate (hide) 
latency, optimize data motion, and 
remove global synchronization. 

Adaptive system software. Resource 
management for today’s high-perfor-
mance computing systems remains 
rooted in a deus ex machina model, 
with coordinated scheduling and 
tightly synchronized communication. 
However, extreme scale, hardware het-
erogeneity, system power, and heat-
dissipation constraints and increased 
component failure rates influence not 
only the design and implementation 
of applications, they also influence 
the design of system software in areas 
as diverse as energy management and 
I/O. Similarly, as the volume of scien-
tific data grows, it is unclear if the tra-
ditional file abstractions and parallel 
file systems used by technical comput-
ing will scale to trans-petascale data 
analysis. 

Instead, new system-software and 
operating-system designs will need 
to support management of heteroge-
neous resources and non-cache-coher-
ent memory hierarchies, provide appli-
cations and runtime with more control 
of task scheduling policies, and man-
age global namespaces. They must also 
expose mechanisms for finer measure-
ment, prediction, and control of power 
management, allowing schedulers to 
map computations to function-specif-
ic accelerators and manage thermal 
envelopes and application energy pro-
files. Commercial cloud providers have 
already faced many of these problems, 
and their experience in large-scale re-
source management has much to offer 
the scientific computing ecosystem. 

Parallel programming support. As 
the diversity, complexity, and scale of 
advanced computing hardware has in-
creased, the complexity and difficulty of 

Programming 
models and tools 
are perhaps  
the biggest point  
of divergence 
between the 
scientific-computing  
and big-data 
ecosystems. 
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have already benefited through recent 
extensions for, say, task parallelism, 
accelerators, and thread affinity. 

Domain-specific languages (DSLs) 
are languages that specialize to a par-
ticular application domain, represent-
ing a means of extending the existing 
base-language by hosting DSL exten-
sions. Embedded DSLs are a pragmatic 
way to exploit the sophisticated analy-
sis and transformation capabilities of 
the compilers for standard languages. 
The developer writes the application 
using high-level primitives a compiler 
will transform into efficient low-level 
code to optimize the performance on 
the underlying platform. 

Algorithmic and mathematics chal-
lenges. Exascale computing will put 
greater demand on algorithms in at 
least two areas: the need for increas-
ing amounts of data locality to per-
form computations efficiently and the 
need to obtain much higher levels of 
fine-grain parallelism, as high-end sys-
tems support increasing numbers of 
compute threads. As a consequence, 
parallel algorithms must adapt to this 
environment, and new algorithms and 
implementations must be developed 
to exploit the computational capabili-
ties of the new hardware. 

Significant model development, al-
gorithm redesign, and science-appli-
cation reimplementation, supported 
by (an) exascale-appropriate program-
ming model(s), will be required to 
exploit the power of exascale archi-
tectures. The transition from current 
sub-petascale and petascale computing 
to exascale computing will be at least as 
disruptive as the transition from vector 
to parallel computing in the 1990s. 

Economic and Political Challenges 
The technical challenges of advanced 
computing and big-data analytics are 
shaped by other elements of the broad-
er computing landscape. In particular, 
powerful smartphones and cloud com-
puting services are rapidly displacing 
the PC and local servers as the comput-
ing standard. This shift has also trig-
gered international competition for in-
dustrial and business advantage, with 
countries and regions investing in new 
technologies and system deployments. 

Computing ecosystem shifts. The 
Internet and Web-services revolution 
is global, and U.S. influence, though 

developing applications has increased 
as well, with many operating functions 
now subsumed by applications. Ap-
plication complexity has been further 
exacerbated by the increasingly multi-
disciplinary nature of applications that 
combine algorithms and models span-
ning a range of spatiotemporal scales 
and algorithmic approaches. 

Consider the typical single-program 
multiple-data parallel-programming 
or bulk-synchronous parallel model, 
where application data is partitioned 
and distributed across the individual 
memories or disks of the computation 
nodes, and the nodes share data via net-
work message passing. In turn, the appli-
cation code on each node manages the 
local, multilevel computation hierarchy—
typically multiple, multithreaded, possibly 
heterogeneous cores, and (often) a GPU 
accelerator—and coordinates I/O, man-
ages application checkpointing, and over-
sees power budgets and thermal dissipa-
tion. This daunting level of complexity 
and detailed configuration and tuning 
makes developing robust applications 
an arcane art accessible to only a dedi-
cated and capable few. 

Ideally, future software design, de-
velopment, and deployment will raise 
the abstraction level and include perfor-
mance and correctness in mind at the 
outset rather than ex situ. Beyond more 

performance-aware design and devel-
opment of applications based on inte-
grated performance and correctness 
models, these tools must be integrated 
with compilers and runtime systems, 
provide more support for heteroge-
neous hardware and mixed program-
ming models, and provide more sophis-
ticated data processing and analysis. 

Programming models and tools 
are perhaps the biggest point of di-
vergence between the scientific-com-
puting and big-data ecosystems. The 
latter emphasizes simple abstractions 
(such as key-value stores and MapRe-
duce), along with semantics-rich data 
formats and high-level specifications. 
This has allowed many developers to 
create complex machine-learning ap-
plications with little knowledge of the 
underlying hardware or system soft-
ware. In contrast, scientific computing 
has continued to rely largely on tradi-
tional languages and libraries. 

New programming languages and 
models, beyond C and FORTRAN, will 
help. Given the applications software 
already in place for technical comput-
ing, a radical departure is not realistic. 
Programming features found in new 
languages (such as Chapel and X10) 
have already had an indirect effect on 
existing program models. Existing pro-
gramming models (such as OpenMP) I
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substantial, is waning. Notwithstand-
ing Apple’s phenomenal success, most 
smartphones and tablets are now de-
signed, built, and purchased globally, 
and the annual sales volume of smart-
phones and tablets exceeds that of PCs 
and servers. 

This ongoing shift in consumer 
preferences and markets is accom-
panied by another technology shift. 
Smartphones and tablets are based on 
energy-efficient microprocessors—a 
key component of proposed exascale 
computing designs—and systems-on-
a-chip (SoCs) using the ARM archi-
tecture. Unlike Intel and AMD, which 
design and manufacture the x86 chips 
found in today’s PCs and most leading-
edge servers and HPC systems, ARM 
does not manufacture its own chips. 
Rather, it licenses its designs to others, 
who incorporate the ARM architecture 
into custom SoCs that are manufac-
tured by global semiconductor found-
ries like Taiwan’s TSMC. 

International exascale projects. The 
international competition surrounding 
advanced computing mixes concern 
about economic competitiveness, shift-
ing technology ecosystems (such as 
ARM and x86), business and technical 
computing (such as cloud computing 
services and data centers), and scien-
tific and engineering research. The Eu-
ropean Union, Japan, China, and U.S. 
have all launched exascale computing 
projects, each with differing emphasis 
on hardware technologies, system soft-
ware, algorithms, and applications. 

European Union. The European 
Union (EU) announced the start of its 
exascale research program in October 
2011 with €25 million in funding for 
three complementary research proj-
ects in its Framework 7 effort. The 
Collaborative Research into Exascale 
Systemware, Tools and Applications 
(CRESTA), Dynamical Exascale En-
try Platform (DEEP), and Mont-Blanc 
projects will each investigate different 
exascale challenges using a co-design 
model spanning hardware, system 
software, and software applications. 
This initiative represents Europe’s first 
sustained investment in exascale re-
search. 

CRESTA brings together four Eu-
ropean high-performance computing 
centers: Edinburgh Parallel Comput-
ing Centre (project lead), the High Per-

formance Computing Center Stuttgart, 
Finland’s IT Center for Science Ltd., 
and Partner Development Center Swe-
den, as well as the Dresden University 
of Technology, which will lend exper-
tise in performance optimization. In 
addition, the CRESTA team also in-
cludes application professionals from 
European science and industry, as 
well as HPC vendors, including HPC 
tool developer Allinea and HPC ven-
dor Cray. CRESTA focuses on the use 
of applications as co-design drivers for 
software development environments, 
algorithms and libraries, user tools, 
and underpinning and crosscutting 
technologies. 

The Mont-Blanc project, led by the 
Barcelona Supercomputing Center, 
brings together European technol-
ogy providers ARM, Bull, Gnodal, and 
major supercomputing organizations 
involved with the Partnership for Ad-
vanced Computing in Europe (PRACE) 
project, including Juelich, Leibniz-
Rechenzentrum, or LRZ, GENCI, and 
CINECA. The project intends to deploy 
a first-generation HPC system built 
from energy-efficient embedded tech-
nologies and conduct the research nec-
essary to achieve exascale performance 
with energy-efficient designs. 

DEEP, led by Forschungszentrum 
Juelich, seeks to develop an exascale-
enabling platform and optimization 
of a set of grand-challenge codes. The 
system is based on a commodity cluster 
and accelerator design—Cluster Boost-
er Architecture—as a proof-of-concept 
for a 100 petaflop/s PRACE production 
system. In addition to the lead partner, 
Juelich, project partners include Intel, 
ParTec, LRZ, Universität Heidelberg, 
German Research School for Simula-
tion Sciences, Eurotech, Barcelona 
Supercomputing Center, Mellanox, 
École Polytechnique Fédérale de Laus-
anne, Katholieke Universiteit Leuven, 
Centre Européen de Recherche et de 
Formation Avancée en Calcul Scienti-
fique, the Cyprus Institute, Universität 
Regensburg, CINECA, a consortium of 
70 universities in Italy, and Compagnie 
Générale de Géophysique-Veritas. 

Japan. In December 2013, the 
Japanese Ministry of Education, Cul-
ture, Sports, Science and Technol-
ogy (MEXT) selected RIKEN to devel-
op and deploy an exascale system by 
2020. Selection was based on its expe-

rience developing and operating the 
K computer, which, at 10 petaflop/s, 
was ranked the fastest supercomput-
er in the world in 2011. Estimated to 
cost ¥140 billion ($1.38 billion), the 
exascale system design will be based 
on a combination of general-purpose 
processors and accelerators and in-
volve three key Japanese computer 
vendors—Fujitsu, Hitachi, and NEC—
as well as technical support from the 
University of Tokyo, University of Tsu-
kuba, Tokyo Institute of Technology, 
Tohoku University, and RIKEN. 

China. China’s Tianhe-2 system 
is the world’s fastest supercomputer 
today. It contains 16,000 nodes, each 
with two Intel Xeon processors and 
three Intel Xeon Phi coprocessors. It 
also contains a proprietary high-speed 
interconnect, called TH Express-2, de-
signed by the National University for 
Defense Technology (NUDT). NUDT 
conducts research on processors, 
compilers, parallel algorithms, and 
systems. Based on this work, China is 
expected to produce a 100-petaflop/s 
systems in 2016 built entirely from Chi-
nese-made chips, specifically the Shen-
Wei processor, and interconnects. 
Tianhe-2 was to be upgraded from a 
peak of 55 petaflop/s to 100 petaflop/s 
in 2015, but the U.S. Department of 
Commerce has restricted exports of 
Intel processors to NUDT, the National 
Supercomputing Center in Changsha, 
National Supercomputing Center in 
Guangzhou, and the National Super-
computing Center in Tianjin due to 
national-security concerns. 

U.S. Historically, the U.S. Network-
ing and Information Technology Re-
search and Development program has 
spanned several research missions 
and agencies, with primary leadership 
by the Department of Energy (DOE), 
Department of Defense (DoD), and 
National Science Foundation (NSF). 
DOE is today the most active deployer 
of high-performance computing sys-
tems and developer of plans for exas-
cale computing. In contrast, NSF and 
DoD have focused more on broad cy-
berinfrastructure and enabling-tech-
nologies research, including research 
cloud services and big-data analytics. 
Although planning continues, the U.S. 
has not yet mounted an advanced com-
puting initiative similar to those under 
way in Europe and Japan. 
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International collaboration. Although 
global competition for advanced com-
puting and data-analytics leadership 
continues, there is active international 
collaboration. The International Ex-
ascale Software Project (IESP) is one 
such example in advanced comput-
ing. With seed funding from govern-
ments in Japan, the E.U., and the U.S., 
as well as supplemental contributions 
from industry stakeholders, IESP was 
formed to empower ultra-high-resolu-
tion and data-intensive science and en-
gineering research through 2020. 

In a series of meetings, the interna-
tional IESP team developed a plan for a 
common, high-quality computational 
environment for petascale/exascale 
systems. The associated roadmap for 
software development would take the 
community from its current position 
to exascale computing.7 

Conclusion 
Computing is at a profound inflection 
point, economically and technically. 
The end of Dennard scaling and its 
implications for continuing semicon-
ductor-design advances, the shift to 
mobile and cloud computing, the ex-
plosive growth of scientific, business, 
government, and consumer data and 
opportunities for data analytics and 
machine learning, and the continuing 
need for more-powerful computing 
systems to advance science and engi-
neering are the context for the debate 
over the future of exascale computing 
and big data analysis. However, cer-
tain things are clear: 

Big data and exascale. High-end data 
analytics (big data) and high-end com-
puting (exascale) are both essential 
elements of an integrated computing 
research-and-development agenda; 
neither should be sacrificed or mini-
mized to advance the other; 

Algorithms, software, applications. 
Research and development of next-
generation algorithms, software, and 
applications is as crucial as investment 
in semiconductor devices and hard-
ware; historically the research commu-
nity has underinvested in these areas; 

Information technology ecosystem. 
The global information technology 
ecosystem is in flux, with the transition 
to a new generation of low-power mo-
bile devices, cloud services, and rich 
data analytics; and 

Private and global research. Private-
sector competition and global-re-
search collaboration are both neces-
sary to address design, test, and deploy 
exascale-class computing and data-
analysis capabilities. 

There are great opportunities and 
great challenges in advanced comput-
ing, in both computation and data 
analysis. Scientific discovery via com-
putational science and data analytics 
is truly the “endless frontier” about 
which Vannevar Bush spoke so elo-
quently in 1945. The challenges are 
for all of computer science to sustain 
the research, development, and de-
ployment of the high-performance 
computing infrastructure needed to 
enable those discoveries. 
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