
A Parallel Implementation of the Nonsymmetric QR

Algorithm for Distributed Memory Architectures

Greg Henry� David Watkinsy Jack Dongarraz

December 27, 1999

Abstract

One approach to solving the nonsymmetric eigenvalue problem in parallel is to parallelize the

QR algorithm. Not long ago, this was widely considered to be a hopeless task. Recent e�orts

have led to signi�cant advances, although the methods proposed up to now have su�ered from

scalability problems. This paper discusses an approach to parallelizing the QR algorithm that

greatly improves scalability. A theoretical analysis indicates that the algorithm is ultimately not

scalable, but the nonscalability does not become evident until the matrix dimension is enormous.

Experiments on the Intel ParagonTM system, the IBM SP2 supercomputer, the SGI Origin 2000,

and the Intel ASCI Option Red Supercomputer are reported.

Key Words: Parallel computing, eigenvalue, Schur decomposition, QR algorithm
AMS (MOS) Subject Classi�cation: 65F15, 15A18

1 Introduction

Over the years many methods for solving the unsymmetric eigenvalue problem in parallel have
been suggested. Most of these methods have serious drawbacks, either in terms of stability,
accuracy, scalability, or requiring extra work. This paper describes a version of the QR algorithm
[24] that has signi�cantly better scaling properties than earlier versions, as well as being stable,
accurate, and e�cient in terms of
op count or iteration count.
Most implementations of the QR algorithm perform QR iterations implicitly by chasing bulges

down the subdiagonal of an upper Hessenberg matrix [28, 50]. The original version due to J. G.
F. Francis [24], which has long been the standard serial algorithm, is of this type. It begins each

�Computer Science, 111 Ayres Hall, University of TN, Knoxville, TN 37996-1301, ghenry@cs.utk.edu
yPure and Applied Mathematics, Washington State University, WA 99164-3113, watkins@wsu.edu, Mailing

address: 6835 24th Ave. NE, Seattle, WA 98115-7037. Supported by the National Science Foundation under
grant DMS-9403569

zComputer Science, 111 Ayres Hall, University of TN, Knoxville, TN 37996-1301, dongarra@cs.utk.edu,
also Oak Ridge National Laboratory. Research supported in part by the O�ce of Scienti�c Computing, U.S.
Department of Energy, under Contract DE-AC05-96OR22464

1

iteration by choosing two shifts (for convergence acceleration) and using them to form a bulge of
degree 2. This bulge is then chased from top to bottom of the matrix to complete the iteration.
The shifts are normally taken to be the eigenvalues of the 2 � 2 submatrix in the lower right
hand corner of the matrix. Since two shifts are used, we call this a double step. The algorithm is
the implicit, double-shift QR algorithm. One can equally well get some larger number, say M , of
shifts by computing the eigenvalues of the lower right hand submatrix of orderM and using those
shifts to form a larger bulge, a bulge of degree M . This leads to the multishift QR algorithm,
which will be discussed below. The approach taken in this paper is to getM shifts, where M is a
fairly large even number (say 40) and use them to form S =M=2 bulges of degree two and chase
them one after the other down the subdiagonal in parallel. In principle this procedure should
give the same result as a multishift iteration, but in practice (in the face of roundo� errors), our
procedure performs much better [51].
Of the various parallel algorithms that have been proposed, the ones that have received most

attention recently have been based on matrix multiplication. The reason is clear: large matrix
multiplication is highly parallel. Auslander and Tsao [2] and Lederman, Tsao, and Turnbull [42]
use multiply-based parallel algorithms based on matrix polynomials to split the spectrum. Bai
and Demmel [4] use similar matrix multiply techniques using the matrix sign function to split
the spectrum (see also [6, 11, 5, 7].) These methods are similar to what we propose in that
their focus is on scalability. On the other hand, they have higher
op counts and su�er accuracy
concerns.
Dongarra and Sidani [18] introduced tearing methods based on doing rank one updates to an

unsymmetric Hessenberg matrix, resulting in two smaller problems, which are solved indepen-
dently and then glued back together with a Newton iteration. This tends to su�er from stability
problems since the two smaller problems can have arbitrarily worse condition than the parent
problem [39].
In situations where more than just a few of the eigenvalues (and perhaps eigenvectors as well)

are needed, the most competitive serial algorithm is the QR algorithm [24, 1]. Matrix multiply
methods tend to require many more
ops, as well as sometimes encountering accuracy problems
[4]. Although matrix tearing methods may have lower
ops counts, they require �nding all the
eigenvectors and hence are only useful when all the eigenvectors are required. Furthermore,
there are instances where they simply fail [39]. Jacobi methods [28] have notoriously high
op
counts. There are also methods by Dongarra, Geist, and Romine based on initial reductions to
tridiagonal form [15, 55]. These might require fewer
ops but they are plagued by instability.
Against this competition, blocked versions of the implicit double shift QR algorithm [33, 36, 1]
appear promising.
One serious drawback of the double implicit shift QR algorithm is that its core computation

is based on Householder re
ections of size 3. This is a drawback for several reasons: it lacks the
vendor supported performance tuning of the BLAS (basic linear algebra subroutines [14, 40]),
and it has data re-use similar to level-1 operations (it does O(n)
ops on O(n) data [28].) This
imposes an upper limit to how fast it can run on the high performance computers with a memory
hierarchy. One attempt to rectify this problem was the multishift QR algorithm of Bai and
Demmel [3], which we mentioned earlier. The idea was to generate a large number M of shifts
and use them to chase a large bulge. This allowed the use of a GEMM-based (a level-3 BLAS:

2

GEneral Matrix-matrix Multiply) algorithm [3]. Unfortunately, this requires too many more

ops and the GEMM itself has two of the three required dimensions very small [36]. The lesson
is that adding an additional matrix multiply to an algorithm only helps when there is enough
work taken out of the algorithm and replaced by the multiply. However, even if a multishift QR
algorithm is used without the additional matrix multiply (which is the better strategy and how
it is implemented in LAPACK [1]), the algorithm has convergence problems caused by roundo�
errors if the value of M is too large. This was discussed by Dubrulle [22] and Watkins [51, 52].
Because of this, a multishift size of M = 6 was implemented in LAPACK. It is not clear that
this is faster than the double implicit shift QR when the latter is blocked [36].
Because of the di�culties in chasing large bulges, we restrict our analysis in this paper to

bulges of degree two. Most of the results we present, with a few minor modi�cations to the
modeling, would also hold true for slightly larger bulges (e.g. degree six).
The �rst attempts at parallelizing the implicit double shift QR algorithm were unsuccessful.

See Boley et. al. [12], Geist et. al. [26, 27], Eberlein [23], and Stewart [45]. More successful
methods came from vector implementations [17]. Usually, the key problem is to distribute the
work evenly given its sequential nature.
A major step forward in work distribution was made by van de Geijn [47] in 1988. There, and

in van de Geijn and Hudson [49], a wrap Hankel mapping was used to distribute the work evenly.
A simple case of this, anti-diagonal mappings, was exploited in the paper by Henry and van de
Geijn [37]. One di�culty these algorithms faced is that they all used non-Cartesian mappings. In
these mappings, it is impossible to go across both a row and a column with a single �xed o�set.
Losing this important feature forces an implementation to incur greater indexing overheads and,
in some cases, have shorter loops. However, in Cartesian mappings, both rows and columns of
the global matrix correspond to rows and columns of a local submatrix. If a node owns the
relevant pieces, it can access both A(i + 1; j) and A(i; j + 1) as some �xed o�set from A(i; j)
(usually 1 and the local leading dimension respectively.) This is impossible for Hankel mappings
on multiple nodes. In addition to this problem, the algorithms resulting from all these works
were only iso-e�cient [30]. That is, you could get 100 percent e�ciency, but only if the problem
size was allowed to scale faster than memory does. Nevertheless, these were the �rst algorithms
ever to achieve theoretically perfect speed-up.
In [37] it was also proved that the standard double implicit shift QR algorithm (not just the

one with anti-diagonal mappings) cannot be scalable. The same work also showed that if M
shifts are employed to chase M/2 bulges of degree two, then the algorithm might be scalable as
long as M was at least O(

p
p), where p is the number of processors.

Here we pursue the idea of using M shifts to form and chase M/2 bulges in parallel. The
idea of chasing multiple bulges in parallel is not new [31, 45, 46, 48, 41]. However, it was long
thought that this practice would require the use of out-of-date shifts, resulting in degradation
of convergence [48]. What is new [51] (having seen [22]) is the idea of generating many shifts
at once rather than two at a time, thereby allowing all bulges to carry up-to-date shifts. The
details of the algorithm will be given in the next section, but the important insight is that one
can then use standard Cartesian mappings and still involve all the processors if the bulge chasing
is divided evenly among them.

3

2 Serial QR Algorithm

We start this section with a brief overview of the sequential double implicit shift QR algorithm.
Before we detail the parallel algorithm in x3 it is necessary to review the di�culties in parallelizing
the algorithm. This is done in x2.2. In x2.3 we make some modi�cations to overcome these
di�culties. Finally, in x2.4 we give some experimental results to indicate the impact of the
changes.

2.1 Single Bulge

The double implicit Francis step [24] enables an iterative algorithm that goes from H (real upper
Hessenberg) to H = QTQT (real Schur decomposition [28, 55]). Here, Q is the orthogonal matrix
of Schur vectors, and T is an upper quasi-triangular matrix (1 � 1 and 2 � 2 blocks along the
main diagonal). We can assume that H is upper Hessenberg because the reduction to Hessenberg
form is well understood and can be parallelized [8, 16, 19].
The implicit Francis iteration assumes that H is unreduced (subdiagonals nonzero). As the

iterates progress, wise choices of shifts allow the subdiagonals to converge to zero. As in [28], at
some stage of the algorithm H might be in the following form:

H =

2
64
H11 H12 H13

H22 H23

H33

3
75 :

We assume thatH22 is the largest unreduced Hessenberg matrix above H33 (which has converged)
in the current iteration. The algorithm proceeds on the rows and columns de�ned by H22.
One step of the Francis double shift QR algorithm is given in Figure 1. A single bulge of degree

two is chased from top to bottom. Here, the Householder matrices are symmetric orthogonal
transforms of the form:

Pi = I � 2
vvT

vTv
;

where v 2 <N and

vj =

(
0 if j < i + 1 or j > i+ 3
1 if j = i + 1

)
:

Suppose the largest unreduced submatrix of H (H22 above) is in H(k : l; k : l). We then apply
the Francis HQR Step (We use the term \HQR" to mean a practical Hessenberg QR iteration,
for example, EISPACK's HQR code [43] or LAPACK's HSEQR or LAHQR code [1].) to the
rows and columns of H corresponding to the submatrix; that is,

H(k : l; :) PiH(k : l; :)

H(:; k : l) H(:; k : l)Pi:

Naturally, if we are not seeking a complete Schur decomposition, but instead only desire the
eigenvalues, then the updating of H23 and H12 above can be skipped. The two shifts are chosen
to be

e = eig(H(l � 1 : l; l � 1 : l)):

4

Francis HQR Step
e = eig(H(N � 1 : N;N � 1 : N))
Let x = (H � e(1)IN) � (H � e(2)IN)e1
Let P0 2 <N�N be a Householder matrix such that

P0x is a multiple of e1.
H P0HP0

for i = 1; : : : ; N � 2
Compute Pi so that

PiH has zero (i+ 2; i) and
(i+ 3; i) (for i < N � 2) entries.

Update H PiHPi

Update Q QPi

endfor

Figure 1: Sequential Single Bulge Francis HQR Step

In practice, after every few iterations, some of the subdiagonals of H will become numerically
zero, and at this point the problem de
ates into smaller problems.

2.2 Di�culties in Parallelizing the Algorithm

Consider the following upper Hessenberg matrix with a bulge in columns 5 and 6:

H =

2
6666666666666666664

X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X
X X X X X X X X

X X X X X X X
X X X X X X
+7;5 X X X X X
+8;5 +8;6 X X X X

X X X
X X

3
7777777777777777775

:

Here, the Xs represent elements of the matrix, and the +s represent some bulge created by the
bulge chasing step in Figure 1. A Householder re
ection must be applied to rows 6, 7, and 8 to
zero out H(7 : 8; 5). To maintain a similarity transformation, the same re
ection must be then
applied to columns 6, 7, and 8, thus creating �ll-in in H(9; 6) and H(9; 7). In this way, the bulge
moves one step down and the algorithm in Figure 1 proceeds.
Suppose one used a one dimensional column wrapped mapping of the data. Then the applica-

tion of the re
ection to rows 6, 7, and 8 would be perfectly distributed amongst all the processors.

5

Unfortunately, this would be unacceptable because applying all the column re
ections, half the
total work, would involve at most 3 processors, thus implying the maximum speed-up obtainable
would be 6 [27]. Tricks to delay the application of the row and/or column re
ections appear to
only delay the inevitable load imbalance. The same argument holds for using a one dimensional
row wrapped mapping of the data, in which the row transforms are unevenly distributed.
For scalability reasons, distributed memory linear algebra computations often require a two

dimensional block wrap torus mapping [32, 20]. To maximize the distribution of this computation,
we could wrap our 2D block wrap mapping as tightly as possible with a block size of one (this
would create other problems which we will ignore for now). Let us assume the two dimensional
logical grid is R � C where their product is P (the total number of processors). Then any row
must be distributed amongst C processors and the row re
ections can be distributed amongst
no more than 3C processors. Similarly, column re
ections can use at most 3R processors. The
maximum speed-up obtainable is then 3(R + C), where in practice one might expect no more
than two times the minimum of R and C.
If one used an anti-diagonal mapping of the data [37], then element H(i; j) or (if one uses a

block mapping as one should) submatrix Hij is assigned to processor

(i+ j � 2)mod P;

where P is the number of processors. That is, the distribution amongst the processors is as
follows [49]: 2

666666664

H
(0)
1;1 H

(1)
1;2 H

(2)
1;3 � � � H

(p�2)
1;p�1 H

(p�1)
1;p

H
(1)
2;1 H

(2)
2;2 H

(3)
2;3 � � � H

(p�1)
2;p�1 H

(0)
2;p

H
(2)
3;1 H

(3)
3;2 H

(4)
3;3 � � � H

(0)
3;p�1 H

(1)
3;p

...
. . .

...
...

H
(p�1)
p;1 : : : H

(p�3)
p;p�1 H(p�2)

p;p

3
777777775

where the superscript indicates the processor assignment. Clearly, any mapping where (if the
matrix is large enough) any row and any column is distributed roughly evenly among all the
processors would su�ce. Unfortunately, no Cartesian mappings satisfy this criterion. There are
reasons to believe that the anti-diagonal distribution is ideal. Block diagonal mappings have
been suggested [56], but these su�er from load imbalances that are avoided in the anti-diagonal
case.
By making a slight modi�cation to the algorithm, one could chase several bulges at once and

continue to use a two dimensional Cartesian mapping. That is, if our grid is R�R and we chase
R bulges, separated appropriately, then instead of only involving 3 rows and 3 columns, we would
involve 3R rows and columns. This allows the work to be distributed evenly. Furthermore, we
maintain this even distribution when we use any multiple of R bulges- a mechanism useful for
decreasing the signi�cance of pipeline start-up and wind-down.

2.3 Multiple Bulges

The usual strategy for computing shifts is the Wilkinson strategy [55], in which the shifts are
taken to be the eigenvalues of the lower 2 � 2 submatrix. This is inexpensive and works well

6

as long as only one bulge at a time is being chased. The convergence rate is usually quadratic
[55, 53]. However, this strategy has the following shortcoming for parallel computing. The correct
shifts for the next iteration cannot be calculated until the bulge for the current iteration has been
chased all the way to the bottom of the matrix. This means that if we want to chase several
bulges at once and use the Wilkinson strategy, we must use out-of-date shifts. This practice
results in subquadratic (although still superlinear) convergence [46, 48].
If we wish to chase many bulges at once without sacri�cing quadratic convergence, we must

change the shifting strategy. One of the strategies proposed in [3] was a generalization of the
Wilkinson shift. Instead of choosing the two shifts to be the eigenvalues of the lower 2�2 matrix,
one calculates the eigenvalues of the lower M �M matrix, where M is an even number that is
signi�cantly greater than two (e.g. M = 32). Then one has enough shifts to chase M=2 bulges in
either serial or parallel fashion before having to go back for more shifts. This strategy also results
(usually) in quadratic convergence, as was proved in [53] and has been observed in practice. We
refer to each cycle of computing M shifts and chasing M=2 bulges as a super-iteration.
The question of how to determine the number of bulges S = M=2 per super-iteration is

important. If one chooses S = 1, we have the standard double shift QR algorithm|but this has
the scalability problems. If we choose S large enough, and the bulges are spaced appropriately,
and we address these issues in the next section, then there are su�cient bulges to distribute the
workload evenly. In fact, we later (x 4.2.5) discuss the motivations for choosing S larger than
the minimum number required for achieving an even distribution of work. Of course, choosing S
too large might result in greater
ops overall or other general imbalances (since the computation
of the shifts is usually serial and grows as O(S3)).
The general algorithm proceeds as described in Figure 2.
In Figure 2, the i index refers to the same i index as the previous algorithm in Figure 1.

Because there are multiple bulges, M=2 of them, there is a certain start-up and wind-down, in
which case some of the bulges might have already completed or not started yet (when i < 0 or
i > n� 2).
Here, we are spacing the bulges 4 columns apart, however it is clear that this spacing can be

anything 4 or larger, and for the parallel algorithm we will give a rationale for choosing this
spacing very carefully. In Figure 3, we see a Hessenberg matrix with four bulges going at once.
The shifts are the eigenvalues of a trailing submatrix. Notice that the bottom shifts are applied

�rst (j =M;M � 2; : : : ; 2). These are the ones that emerged �rst in the shift computation, and
these are the shifts that are closest to the eigenvalues that are due to de
ate next. Applying
them �rst enhances the de
ation process.
Complex shifts are applied in conjugate pairs. One �ne point that has been left out of Figure 2

is that whenever a lone real shift appears in the list, it must be paired with another real shift.
This is done by going up the list, �nding the next real shift (and there will certainly be one),
and launching a bulge with the two real shifts.
One critical observation is that whenever a subdiagonal element becomes e�ectively zero, it

should be set to zero immediately, rather than at the end of the super-iteration. This saves time
because the information is in cache, but, more importantly, it reduces the number of iterations
and total work. An entry that has become negligible early in a super-iteration might no longer
meet the de
ation criterion at the end of the super-iteration.

7

Multiple Bulge HQR Super-iteration
e = eig(H(N �M + 1 : N;N �M + 1 : N))
for k = 0; : : : ; N � 6 + 2 �M

for j =M;M � 2;M � 4; : : : ; 2
i = k � 2j + 4
if i < 0 then Pi = I
if i = 0

Let x = (H � e(j � 1)IN) � (H � e(j)IN)e1
Let Pi 2 <N�N be a Householder matrix

such that Pix is a multiple of e1.
if 1 � i < N � 2

Compute Pi so that
PiH has zero (i+ 2; i) and
(i+ 3; i) entries

if i = N � 2
Compute Pi so that

PiH is zero at (i + 2; i)
if i > N � 2 then Pi = I
H PiHPi, Q QPi

endfor
endfor

Figure 2: Sequential Multiple Bulge HQR Super-iteration

8

@@

@@

@@

@@

@
@@

Figure 3: Pipelined QR steps

Another critical observation is that consecutive small subdiagonal elements may negatively
impact convergence by washing out the e�ects of some of the shifts. Robust implementations of
QR usually search for a pair of small subdiagonal elements along the unreduced submatrix and
attempt to start the bulge chasing from there. In the multishift and multi-bulge case, if any shifts
could be started in the middle of the submatrix at some small subdiagonal elements, it might save

ops to do so. However, the subdiagonals change with each bulge; it could easily happen that 10
bulges were precomputed, and after the second bulge went through, it creates two consecutive
small subdiagonal elements somewhere, and the third bulge then encounters accuracy di�culties
and makes no additional progress towards convergence. We found it necessary to maximize the
number of shifts that can go through. Sometimes, using the same type of tests in the single
double shift QR, if the third double shift is found unable to sweep the length of the submatrix
without encountering this "washing out" e�ect, we found that it is possible the fourth double
shift might still work instead.
Finally, when we need M shifts, there is no reason to require that these be the eigenvalues

of only the lower M � M submatrix. For example, we could take W > M and choose M
eigenvalues from the lower W �W submatrix. This strategy tends to give better shifts, but it is
more expensive.

2.4 Experimental Comparisons

We now have two di�erent HQR algorithms: the standard one based on the iteration given in
Figure 1, and the multiple bulge algorithm based on the iteration given in Figure 2. We treat
convergence criteria the same, and use the same outsides of the code to generate the largest
unreduced submatrix and to determine de
ation.
We are now ready to ask what is a reasonable way to compare the two algorithms in terms

of work load. At this stage, we are not interested in execution time, because that is dependent
on other factors such as the logical mapping and blocking sizes. The clearest method is a
op
count. That is, run the two algorithms to completion in the exact same way, monitoring the

ops as they proceed (including extra
ops required in generating the shifts).
Since both algorithms normally converge quadratically, it is not unreasonable to expect them

9

0 500 1000 1500 2000 2500 3000 3500 4000
13

14

15

16

17

18

19

20

21

22

M
ul

tip
le

 o
f N

^3
 fl

op
s

Matrix Size

HQR Flops as a Function of Matrix Size (1x1,4x4)

4x4

1x1

Figure 4: The Decreasing Average Flops for a 1x1 and 4x4 Grid

to have similar
op counts; if M is not made too large, the extra cost of the shift computation
will be negligible.
Our practical experience has been that the
op count for the multiple bulge algorithm is

usually somewhat less than for the standard algorithm. For example, in Figure 4 the
op counts
for two versions of QR applied to random upper Hessenberg matrices with entries between -2
and 2 are given. The curve labeled 1 � 1 is the standard algorithm. The curve labeled 4 � 4
gives
op counts for a multiple bulge algorithm run on a 4� 4 processor grid. The way the code
is written, the number of bulges per super-iteration varies in the course of a given computation,
but in these cases it was typically 4, i.e. M = 8.
The
op count of the Hessenberg QR algorithm is normally reckoned to be O(N3), based on

the following considerations: Each iteration requires O(N2) work, at least one iteration will be
needed for each eigenvalue or pair of eigenvalues, and there are N eigenvalues. Golub and Van
Loan [28] report the �gure 25N3.
All of the numbers in Figure 4 are less than 25N3. More importantly there is a clear tendency,

especially in the 1 � 1 case, for the multiple of N3 to decrease as N increases. Let us take a
closer look at the
op counts.
Consider �rst the standard algorithm. Experience with matrices of modest size suggests that

approximately four iterations (double steps) su�ce to de
ate a pair of eigenvalues. This number
should not be taken too seriously; it depends on the class of matrices under consideration. If
we want to be conservative, we might say �ve or six instead of four. Whatever number we pick
should be viewed only as a rough average. In practice there is a great deal of variation. Thus
one reckons that it takes about two iterations to calculate each eigenvalue. For each eigenvalue
we de
ate, we reduce the size of the active submatrix by one. A double QR iteration applied to

10

a k � k submatrix of an N �N matrix costs about 20Nk
ops. This is for the computation of
the complete Schur form. If only the eigenvalues are wanted, the cost is 10k2
ops. This �gure is
derived as follows. The bulge chase is e�ected by application of k�1 Householder transformations
of size 3� 3. Suppose we apply a Householder transform to the rows and columns of H at step
i = 10 � N of Figure 2 (prior to the transform, there is a bulge that starts in column 10 with
nonzeros in H(12; 10) and H(13; 10).) The columns impacted are 10 through N and the rows
impacted are 1 through 14 (the bulge slips down to H(14; 11).) In general, each Householder
transformation is applied to N + 4 rows/columns of the Hessenberg matrix H and N columns
of the transforming matrix Q. The cost of applying a Householder transformation of size 3 to a
single row/column vector of size 3� 1 or 1� 3 is 10
ops. We must multiply this by the number
of columns and rows involved (N +4 for the Hessenberg matrix and N for Q.) Thus the total is

10� (2N + 4)� (k � 1) � 20Nk:

If we assume there are two iterations for each submatrix size k, we get a total
op count of
approximately

2� 20N
NX
k=1

k � 20N3:

We could have obtained the count 25N3 reported by Golub and Van Loan by assuming �ve
iterations per pair instead of four. The �gure 20N3 is closer to what we see in Figure 4. It is a
particularly good estimate when N is small.
This count applies to the standard single bulge algorithm. The multiple bulge algorithm of

Figure 2, which goes after the eigenvalues M at a time rather than two at a time, has very
di�erent de
ation patterns. We can arrive at the �gure 20N3 for this algorithm by assuming
that M=4 eigenvalues are de
ated per superiteration (with M shifts carried by M=2 bulges).
This is approximately what is seen in practice, although there is a great deal of variation.
As N gets large, the �gure 20N3 looks more and more like an overestimate. The discrepancy

can be explained as follows. Our
op count takes de
ations into account, but it ignores the
fact that the matrix can split apart in the middle due to some Hi+1;i (1 � i � N) becoming
e�ectively zero. Many of the subdiagonal entries Hi+1;i drift linearly toward zero [55] in the
course of the computation, so it is to be expected that such splittings will sometimes occur. It
is reasonable to expect splittings to occur more frequently in large problems than in small ones.
Whenever such a split occurs, the
op count is decreased. As an extreme example, suppose that
on an early iteration we get Hi+1;i � 0, where i � N=2. Then all subsequent operations are
applied to submatrices of order � N=2 or less. Even assuming no subsequent splittings, the total

op count is about

2� 2� 20N
N=2X
k=1

k � 10N3;

which is half what it would have been without the split.
Figure 5 gives further support for the view that splittings are signi�cant for large N . Because

of de
ations and splittings, all but the �rst few iterations are applied to submatrices of size
k < N . The size of the submatrices decreases as the computation progresses. In Figure 5 we are
looking at each iteration, computing the size of the submatrix we are working on divided by the

11

0 500 1000 1500 2000 2500 3000 3500
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

A
ve

ra
ge

 (
re

la
tiv

e
to

 N
)

su
bm

at
rix

 s
iz

e

Matrix Size

Average Submatrix Sizes as the Problem Size Changes for HQR(1)

Figure 5: The Decreasing Average Submatrix Size

original problem size, and then averaging these fractions of the course of the problem. Several
di�erent problems were done with random Hessenberg matrices consisting of elements from -2
to 2, and the average fraction is given in the Figure. If a pair of eigenvalues is de
ated every
four (or whatever number) of iterations, as in our model, the average submatrix size will be :5N .
In fact one might expect a somewhat larger average, based on the observation [55] that more
iterations per eigenvalue are required in the earlier iterations (large matrices) than in the later
iterations (small matrices). On the other hand, splittings will have the e�ect of decreasing the
average. The fact that the average size is in fact less than :5N and decreases as N is increased,
is evidence that splittings eventually have a signi�cant e�ect.

3 Parallel QR Algorithm

The most critical di�erence between serial and parallel implementations of HQR is that the number
of bulges must be chosen to keep the processors busy. Assume that the processors are arranged
logically as a grid of R rows and C columns. Thus there are P = R � C processors. Clearly, the
number of bulges will optimally be a multiple of the least common multiple of R and C; that
way all nodes will have equal work. As we shall see, there are tradeo�s involved in using more
bulges than necessary. The matrix is decomposed into L � L blocks, which are parceled out to
the processors by a two dimensional (block cyclic) torus wrap mapping [9, 10]. The block size
of the cyclic mapping we refer to as L. The bulges in our algorithm must be separated by at
least a block, and remain synchronized, to ensure that each row/column of processors remains
busy. Usually the block size L must be large, since otherwise there will be too much border

12

communication.
We try to keep the overall logic as similar to the well-tested standard QR algorithm as possible.

For this reason each super-iteration is completed entirely before new shifts are determined and
another superiteration is begun. Information about the \current" unreduced submatrix must
remain global to all nodes.
We now brie
y describe the communication patterns necessary in the parallel implementation

of a single superiteration of Figure 2. As just mentioned, the information on the size and start
and stop of the largest unreduced Hessenberg matrix used for the superiteration must be made
global to all nodes. This can be done either by broadcasting the diagonal information to all nodes
and letting each node reach the same result, or by having one or more of the nodes determine
the result and broadcast (via a tree broadcast) the results to everyone. We prefer the latter
strategy. There are three forms of communication necessary in this algorithm. The �rst is the
global communication just described at the start and end of each superiteration. The second is
the broadcasts of the Householder transforms. The broadcasts of the Householder transforms
are only for the rows and columns that each transform is to be applied to. Therefore, usually
another tree broadcast from on the subset of nodes consisting of a single a row or column of
nodes su�ces. Finally, the last form of communication is a nearest neighbor communication.
When a bulge moves from one block to another, there may be a neighbor communication of the
border between the blocks that the two neighbors share; a broadcast is not necessary.
The Householder transforms are of size 3, which means they are speci�ed by sending 3 data

items. The latency associated with sending such small messages would be ruinous, so we bundle
the information from several (e.g. 30) Householder transformations in each message. Let B
denote the number of Householder transforms in each bundle. Since the processors own L � L
blocks of the matrix, we must have B � L. Another factor that limits the size of B is that
processors must sometimes sit idle while waiting for the Householder information. In order to
minimize this e�ect, the processors that are generating the information should do so as quickly
as possible. This means that while pushing the bulge ahead B positions, they should operate
only on the (B + 2)� (B + 2) subblock through which the bulge is currently being pushed. The
Householder transforms can be applied to the rest of the block after they have been broadcast
to the processors that are waiting.
If many bulges are being chased simultaneously, there may be several bulges per row or column

of processors. In that case, we can reduce latency further by combining the information from all
bulges in a given row or column into a single message.
The broadcasts must be handled with care. Consider the situation depicted in Figure 6. Here,

we have two bulges. Suppose while the bottom bulge is doing a vertical broadcast, the top bulge
starts a horizontal broadcast. This results in a collision that prevents these two broadcasts from
happening in parallel. Our solution is to do all the vertical broadcasts at once, followed by all
the horizontal broadcasts.
With this in mind, we brie
y given a pseudo-code for the parallel algorithm, similar along the

lines of Figure 2. At this point, many details are lost to the pseudo-code, and in particular, much
of the details of the remainder of this section cannot be captured.
The general parallel algorithm proceeds as described in Figure 7.

13

@
@

@
@
@

@
@
@
@

@
@
@

@
@
@
@

@
@
@

@
@
@

@
@

@
@

@
@
@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@ @
@

@
@
@

@
@
@
@

@
@
@

@
@
@
@

@
@
@

@
@
@

@
@

@
@

@
@
@

@
@

@
@

-
6

Figure 6: Multiple Bulge Broadcasts Colliding

3.1 Block Householder Transforms

Since Householder information arrives in bundles, we might as well apply the transformation in
blocks to increase data reuse. (Unfortunately, there is no BLAS for the application of a series of
Householder transforms.) Normally B Householder transforms of size 3 are received at once. If
we apply them to B+2 columns of size N, we perform 10NB
ops, and we must access (B+2)N
data. The data re-use fraction [36] is at best 10
ops per data element accessed in the limit. If B
is one, which is the worst case, then only 3
ops are done per data element accessed. So, roughly
one can improve the data re-use by a factor of 3 by applying these transforms simultaneously.
Due to diminishing returns, the data re-use is not signi�cantly better when going from ten

applications at a time to twenty. In fact, things are worse because one accesses almost twice the
data for only a marginal improvement in data reuse. Because data will be pushed out of cache,
it is clear that one needs to �nd a compromise between data reuse and data volume.
Fortunately, the number of transforms applied at once is independent of anything we later

determine for B. The only reasonable restriction we suggest is that the number of transforms
applied at once in a block fashion be no greater than B. In practice, one might apply these
transforms in sets of two, three, or four.

14

Parallel Multiple Bulge HQR Super-iteration
(All broadcasts are to a single row or column subset of the nodes unless
at a border, in which case it is to two rows or columns, or unless it is
stated otherwise.)
(B is the bundle Householder blocking size)
Determine M based on node grid and submatrix size
e = eig(H(N �M + 1 : N;N �M + 1 : N))
e is globally broadcast to all nodes.
Sort e so that they are in pairs (real pairs together)
k = 0
while k < N � 6 + 2 �M

for j =M;M � 2;M � 4; : : : ; 2
i0 = k � 2j + 4
if MOD(k � 2j + 4; L) < L� 2 (the middle of a block)

Do the min amount of work nesc. to compute each Pi:
for i = i0;MIN(i0 +B � 1; N � 2)

Compute Pi as in Figure 2
endfor
Broadcast Pi vertically.
Broadcast Pi horizontally.

else (at a border)
Communicate border info nesc. to compute Pi above.
Compute Pi as above, treating B as 1.
Broadcast the results.

endif
endfor
for j =M;M � 2;M � 4; : : : ; 2

i0 = k � 2j + 4
if MOD(k � 2j + 4; L) < L� 2 (the middle of a block)

for i = i0;MIN(i0 +B � 1; N � 2)
H HPi, Q QPi

endfor
for i = i0;MIN(i0 +B � 1; N � 2)

H PiH
endfor

else (at a border)
Communicate border info nesc. to apply the transforms
Apply Pi as described above, treating B as 1.

endif
endfor
Increment k by the number of B bundles just computed.

endwhile

Figure 7: Parallel Multiple Bulge HQR Super-iteration

15

3.2 E�cient Border Communications

When a bulge reaches a border between two processors or columns, some communication is
necessary for the bulge to proceed. These \border communications" should be done in parallel
if possible. That is, if we have 36 nodes logically mapped into 6 processor rows and 6 processor
columns, and we have 6 bulges spaced a block apart, then we have 6 border communications that
should happen at the same time. A border communication typically consists of a node sending
data to another node, and then waiting for its return while the other node updates the data.
If they are handled one at a time, then this sequentializes a good portion of the computation.
Nevertheless, it is clear that if there are only 2 rows and/or columns, the overhead costs of
loading up all the bulge information to send it out, only to later re-load up all the information
to receive it back in, might not justify the e�ort to parallelize the border communications.
This implies an entirely di�erent approach to border communication should be used when there

are a small number of rows or columns, and we give our �ndings below for our implementation,
compared to a larger number of rows or columns. The method currently implemented in our
code is a hybrid approach attempting to perform optimally for both a small and a large number
of rows or columns. For a small number of rows or columns (three or less in our implementation),
each bulge has its border communication resolved at once. That is, a node sends the data out
and does nothing until that data has been returned and a new bulge can be worked on. For
a larger number of rows or columns (four or more), each bulge has its border communication
resolved in parallel. All the rows (or columns) try to send the information out, all the recipients
try to update the information at once and send it back, and then all the original senders try to
receive the data.

4 Modeling

The variable names used in this section are summarized in Table 1.

4.1 Serial Cost Analysis

Consider �rst the serial cost of one super-iteration of Figure 2. The shift computation costs
O(W 3), where W is the size of the shift determination matrix. Once the shifts have been
determined, all bulge chases are independent and have the same amount of work. Thus it
su�ces to compute the cost of one iteration of Figure 1 and multiply it by S, the number of
bulges. Within the loop indexed by i in Figure 1, each Householder transform of size 3 is applied
to N � i+1 triplets of rows and i+3 triplets of columns. Since each transform applied to a row
or column of size j requires 10j
ops, there are approximately 10(N + 4)
ops required on the
Hessenberg matrix, and 10N
ops required on the Schur matrix Q. In addition, it takes time
V to generate each Householder transform. There are N � 1 Householder transforms per bulge
chase, so the cost of one bulge chase is (10(2N + 4)
 + V)(N � 1). Thus the serial cost of one
super-iteration of Figure 2 is

(10(2N + 4)
 + V)(N � 1)S +O(W 3) = 20N2S
 +O(N)

if W � N .

16

Variable De�nition
� Message latency
� Time to send one double precision element

Sending a message of length n takes � + n� time units

 Time to implement a single
oating point operation used in a

Householder application.
N The matrix order/size
R Number of rows of processors.
C Number of columns of processors.
P Number of nodes, P = R � C
B Number of Householder transforms per bundle
L Blocking size of the matrix data on the 2D block torus wrap mapping.
V Time to compute a single Householder transform of size three.
M Number of shifts.
S Number of bulges. S =M=2
W Size of the generalized Wilkinson shift determination submatrix at

the bottom. Note that N �W � 2S =M

Table 1: Model De�nitions

4.2 Parallel Cost Analysis

The processors are arranged logically in a grid of R rows and C columns. We assume that the
block distribution size L is small enough, compared to N , that each row (column) of processors
has about as much work as any other row (column). We divide the work into two categories:
horizontal and vertical.

4.2.1 Computational Cost

The amount of computational work associated with each super-iteration is roughly 10N2S
ops
for the Hessenberg matrix and 10N2S
ops for the Schur vectors. The work on the Hessenberg
matrix is initially half row transforms and half column transforms The work on the Schur vectors
is all column transforms. Thus the amount of horizontal work is 5N2S
ops. Each row is
distributed evenly over C processors, so the execution time is about (5N2=C)
 per bulge. If
there are four bulges (S = 4) and two rows (R = 2), one might expect this time to double, hence
we multiply by the ceiling of S=R to obtain (5N2=C)d(S=R)e
 for the horizontal work. Similarly,
the time to do the vertical work is ((15N2)=R)d(S=C)e
. Thus the total time for horizontal plus
vertical computational work is

5N2

C
dS
R
e+ 15N2

R
dS
C
e
!

 (1)

For the special case of S = R = C, Equation 1 reduces to (20N2S=P)
 where the factor P in the
denominator indicates perfect speedup. However, this expression and Equation 1 ignore many

17

overheads, all of which will be considered in the following subsections.

4.2.2 Broadcast Communication

For each bulge chase, there are N � 1 Householder transforms. They are bundled together in
groups of B, so there will be about (N � 1)=B bundles, each of which needs to be broadcast
both horizontally and vertically. Since each bundle contains 3B data items, the communication
overhead associated with each bundle is �+3B�. For horizontal messages, each message must be
broadcast to a logical row of processors. Using a minimum spanning tree broadcast, this requires
log(C) messages. When there is only one bulge (S = 1), the total horizontal broadcast overhead
is therefore

N � 1

B
log(C)(� + 3B�); (2)

and the total vertical broadcast overhead is

N � 1

B
log(R)(� + 3B�):

When there are S > 1 bulges, the amount of horizontal data to be broadcast gets multiplied
by S. If there are no more bulges than rows (S � R), the horizontal broadcast overhead will
be the same as if there were only one bulge, because the messages are broadcast in parallel. If
S > R, we assume the broadcasts are combined so that there are at most R messages, or a single
message per row. The amount of horizontal data that must be broadcast on the most burdened
row is 3BdS=Re. Similar remarks apply to the vertical broadcasts. Therefore the total time for
horizontal and vertical transform broadcasts is

N � 1

B

�
log(C)(� + 3BdS

R
e�) + log(R)(� + 3BdS

C
e�)

�
: (3)

4.2.3 Border Communication

In addition to Householder broadcasts, there is border communication whenever a bulge hits
the boundary between two rows or columns of processors. At this point, it is necessary to send
boundary data back and forth in order to push the bulge past this point.
Let us begin by considering border communication in the Schur matrix Q. This is easier to

discuss than border communication in H, because it involves only columns. At each border
encounter, two columns of the matrix have to be passed from one processor to the next. This is
a total of 2N numbers, which are split over R processor rows. Each message thus contains 2N=R
numbers, and the time to pass R such messages in parallel is � + 2N

R
�. It takes the same time

to pass 2N numbers back. During a single bulge chase, there are about N=L border encounters,
whose total overhead is thus

2N

L

�
� +

2N

R
�
�
:

If S > 1 bulges are chased, up to C border crossings can be accomplished in parallel. If S > C,
the most burdened processors will have to handle

l
S
C

m
border crossings at a time. Each batch

18

of
l
S
C

m
messages can be combined into a single large message to reduce latency. Thus the total

overhead for border communication in the Schur matrix Q is

2N

L

�
� +

2N

R

�
S

C

�
�
�
: (4)

The analysis of the border communication in the Hessenberg matrix H is more complicated,
because both rows and columns need to passed, and they are not all the same length. However,
the total amount of data that has to be passed is the same as for the Schur matrix, and it is
distributed roughly half and half between column and row communication. Because of the split
between row and column communication, the average message is only half as long, so the latency
is doubled. Thus the overhead for border communication in H is

2N

L

�
� +N=C

�
dS
R
e
�
�
�
+
2N

L

�
� +N=R

�
dS
C
e
�
�
�
: (5)

We can remove the entire latency term in (4) by combining the vertical communication of Q
with the vertical communication of H.

4.2.4 Bundling and Other Overheads

Before a bundled horizontal transform broadcast can take place, one processor must compute the
next B Householder transforms. Once these are computed, they are broadcast horizontally and
vertically so that processor's row and column can all participate in the subsequent computation.
This means that the computation of these transforms is on the critical path.
Each bulge must be advanced B steps, which requires doing the entire Francis iteration on a

(B + 2)� (B + 2) submatrix. This requires time approximately

h
BV + 10B2

i

:

This is what forces B to remain small since it is done by only one node. It happens N=B times
per bulge chase. Notice, however, that if R and C are relatively prime, and S is their least
common multiple (that is, S = P = R � C) that all the nodes can be doing this step in parallel.
Let lcm(R;C) denote the least common multiple of R and C. Since diagonal blocks will repeat

every lcm(R;C), we see that the overall overhead must look something like

d S

lcm(R;C)
eN [V + 10B]
: (6)

4.2.5 Pipeline Start-up and Wind Down

In Figure 8, we suppose there are three processor rows and columns (R = C = 3) and three
bulges (S = 3). Normally, it is not until the third bulge starts that all nine processors are
occupied. Until then, there are pipeline start up costs. Similarly, at the end of the iteration,
there will be wind down costs.
To one familiar with parallel linear algebra, the �rst instinct is to dismiss this overhead, or to

include a small \fudge factor" in some modeling. In cases like doing a parallel LU decomposition

19

@
@

@
@
@

@
@
@
@

@
@
@

@
@
@

@
@

@
@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

Figure 8: Delaying Transforms to Reduce the Pipeline Fill

[9, 10], for example, there is a pipeline start-up when doing the horizontal broadcast of the
multipliers around a ring. The key di�erence, however, is that in that case all the nodes are busy
while the pipe is beginning to grow. In this case, there are nodes completely idle until enough
bulges have been created.
The key observation to make in Figure 8 is that the boxed area does not need to be updated

until all three bulges are going. This blocking can be used to reduce drastically the pipeline
start-up and wind-down. Since our current implementation does not do this, for the remainder
of this section we will assume this is not done.
Another observation to make is that if one uses more bulges S than are required to keep

everyone busy, the pipeline start-ups become less important. Furthermore, any blocking done as
suggested by Figure 8 reduces pipeline start-up but not wind down.
Since we have already modeled the total horizontal and vertical contribution time in x4.2.2,

we would like to examine now the wasted time of nodes going idle if the code is unblocked. We
start by examining the horizontal impact of pipeline start-up.
There are N=L block rows of the matrix. Assuming N is much larger than L, the number

of horizontal
ops for the �rst R transforms will be roughly 10NL=C. As one marches down
the submatrix, the horizontal work decreases, but it is initially at its largest. Although it is not
required in the equations below, we assume for simplicity of introducing them that S = R = C.
The total horizontal work has already been shown to be 5N2S
ops. The total horizontal time
was assumed previously to be (5N2=C)
 when S = R. The total speed-up then is R�C, which
is perfect.
It is clear that the �rst bulge cannot have this ideal speed-up and hence we now introduce

additional time terms to re
ect wasted time. The �rst bulge, for example, working on the �rst

20

row, can only be done by one row of processors. The time spent is 10NL=C
. The ideal formula
suggests the time should have been 10NL=(RC)
. We must therefore consider the wasted time
given by the real time minus the ideal time. This is

10L

RC
(NR �N)
:

When the �rst bulge reaches the second row, the second bulge can start. The two bulges
require 10NL and 10N(N � L)
ops to do the horizontal work. The ideal time for this would
be (20NL � 10L2)=(RC)
. The real time it takes however is the time it takes to do the most
work on one row of processors (namely the �rst row again). This time is again 10NL=C
. The
wasted time is then

10L

RC
(NR � 2N � L)
:

When we continue this analysis for three bulges, we see that the
ops required are 10NL,
10N(N � L) and 10N(N � 2L). The ideal time would be (30NL � 30L2)=(RC)
. The wasted
time is then

10L

RC
(NR� 3N � 3L)
:

Continuing as such we see the wasted time for when there are four bulges to be

10L

RC
(NR� 4N � 6L)
:

This continues (R� 1) steps until there are enough bulges to keep all the nodes busy. In general
then, the wasted horizontal time for starting bulge j is

10L

RC
(NR� 3

2
j +

j2

2
)
:

The total horizontal start-up wasted time over all the above equations is

10LR

C

�
N � 3

4
� 1

6
R
�

: (7)

For simplicity, we ignore horizontal wind-down time as well as vertical start-up time. The only
remaining item is the vertical wind-down time. This looks a lot like the horizontal Equation 7,
except that timings are approximately (20NL=R)
: We then express the �nal vertical equivalent
of Equation 7 as

20LC

R

�
N � 3

4
� 1

6
C
�

:

The total overhead is for this section is therefore

10L

RC

�
R2N � 3

4
R2 � 1

6
R3 + 2C2N � 3

2
C2 � 1

3
C3
�

: (8)

21

4.3 Overall Model

Because the algorithm is iterative, analysis of its overall performance is di�cult. We can only
guess at how many total iterations will be needed; faster convergence will be achieved for some
matrices than for others. Furthermore, di�erent matrices have di�erent de
ation patterns, mak-
ing it hard to model the reduction in size of the active matrix as the algorithm proceeds. For
these reasons, we take a very crude approach to modeling overall performance. We shall assume
that it takes about four double iterations (bulge chases) to de
ate a pair of eigenvalues. At
this rate, the entire job will take 2N bulge chases. Results in x2.4 suggest that this may be an
overestimate. Let us assume that these bulge chases are arranged into 2N=S super-iterations of
S bulges each. We assume further that each super-iteration acts on the whole matrix. That is,
we ignore de
ations. This extremely pessimistic assumption assures that we will not overstate
the performance of the algorithm. It also excuses us from considering the load imbalances that
arise as the size of the active matrix is decreased by de
ations. Each de
ation causes a portion
of the arrays holding H and Q to become inactive. As large portions of the arrays become inac-
tive, processors begin to fall idle. Our model compensates for this e�ect by pretending that the
computations are all carried out on the entire matrix, i.e. no portion of the matrix ever becomes
inactive.
This approach gives us no information about the e�ciency of the algorithm in terms of pro-

cessor use relative to the actual
op count, but we believe it gives a reasonable estimate of the
execution time of the algorithm.
The total time to execute one super-iteration is obtained by summing (1), (3), (4), (5), (6),

and (8). In terms of load balance, there are some clear advantages to taking C 6= R (e.g.
lcm(R;C) = 1). However, in order to make the expressions tractable, we will now make the
assumption C = R. We will also assume that S = kR, where k is an integer. This is a
good choice for e�cient operation. Summing all of the expressions, we obtain the time for one
superiteration,

20N2k

R
+
2N

B
log(R)(� + 3Bk�) +

2N

L

3� +

4Nk�

R

!
+ kN(V + 10B)
 + 30NL
: (9)

These terms correspond to
op count, broadcast overhead, border communication, bundling
overhead, and pipeline startup/wind-down, respectively. We have simpli�ed the last term by
ignoring two small negative terms in (8).
The expression (9) re
ects the tradeo�s that we have already noted. B needs to be big enough

that broadcast communication is not dominated by latency but not so big that it causes serious
bundling overhead. L needs to be big enough that border communication is not too expensive,
but not so big that the pipeline startup costs become excessive.

4.4 Scalability

Let us investigate how well the algorithm scales as N !1. For simplicity we consider here the
task of computing eigenvalues only. Similar (but better) results hold for the task of computing
the complete Schur form. As we shall see, the algorithm is ultimately not scalable, but it is
nearly scalable for practical values of N .

22

Since the amount of data is O(N2), the number of processors must be O(N2). Assuming the
run time on a single processor is O(N3), the parallel run time should ideally be O(N).
The processors are logically organized into R rows and C columns. We shall continue to

assume that R = C. Thus we must have R = O(N). Let us say R = �N , where � is some �xed
constant satisfying 0 < �� 1. (For example, in the runs shown in Table 2 we have � = 1=1800.)
As before, let S = kR be the number of double steps per super-iteration. We have S = �N ,

where � = k�. Assuming 2N iterations su�ce, the number of super-iterations will be about
2N=(�N) = 2=� = O(1). Thus we shall assume that the total number of super-iterations is
O(1). Since the �gure 2N is only a rough estimate of the number of iterations, let us not commit
to the �gure 2=� quite yet. For now we shall let q denote the number of super-iterations required
and assume that it is independent of N .
Let �(N) denote the time to do one super-iteration, assuming that one can get the shifts for

free. This is about the same as (9), except that now we are just considering the time to calculate
the eigenvalues. Thus we cut the
op count and the border communication in half. Let us assume
that B and L are large enough that we can ignore the latency terms. Then

�(N) = K1N log �N +K2N +O(1);

where K1 = 6k� and

K2 =

"
k

�
+ 3L+ 10B

#
10
 +

4k

L�
�:

Since � is tiny, we normally have K1 � K2. Thus the N logN term does not dominate �(N) until
N is enormous. The assumption that the shifts are free is also reasonable unless N is enormous.
For example, the largest run listed in Table 2 (below) required computation of the eigenvalues of
a 32� 32 submatrix as shifts. This is a relatively trivial subtask when considered independently
of the overall problem, considering that the dimension of the matrix is N = 14400.
We conclude that even for quite large N the execution time will be well approximated by

q�(N) and will appear to scale like O(N). That is, the algorithm will appear to be scalable.
Only when N becomes really huge must the cost of computing shifts be taken into account.

Eventually the submatrix whose eigenvalues are needed as shifts will be large enough that its
eigenvalues should also be computed in parallel. Let us assume that the algorithm performs
this computation by calling itself. Let T (N) denote the time to compute the eigenvalues of a
matrix of order N , including the cost of computing shifts. The shift computation for each super-
iteration consists of computing the eigenvalues of a matrix of order W = 2�N , so it takes time
T (2�N). Thus, making the simpli�cation �(N) = K3N logN (K3 = K1 +K2), we see that each
superiteration takes time K3N logN + T (2�N), so

T (N) = qK3N logN + qT (2�N):

We can calculate T (N) by unrolling this recurrence. We have

T (N) � qK3N logN(1 + 2�q + (2�q)2 + : : :+ (2�q)j) = qK3N logN

(2�q)j+1 � 1

2�q � 1

!
;

23

where j is the depth of the recursion. Notice that if we had 2�q < 1, we could say that the
geometric progression is bounded by

1

1� 2�q
:

This would make T (N) = O(N logN), and the algorithm would be scalable, except for the
insigni�cant factor logN . Unfortunately 2�q seems to be greater than 1, so this argument is not
valid. If we assume q = 2�, as suggested above, we have 2�q = 4. We are saved by the fact that
the recursion is not very deep. An upper bound on j is given by (2�)jN � 1 or j � � logN

log 2�
.

Making this substitution for j, we �nd that

T (N) � qK3

2�q � 1
N1+� logN;

where

� = � log 2�q
log 2�

> 0:

This shows that the algorithm is ultimately not scalable, but it is not a bad result if � is small. If
we assume 2�q = 4 and take � = 1=900 (as in Table 2), we have T (N) = O(N1:23 logN), which
is not too much worse than O(N). The assumption 2�q = 4 is actually a bit pessimistic. If we
assume that the total number of iterations to convergence is 4N=3, as suggested by (4), we have
q = 4=(3�), and 2�q = 8=3. Then we get T (N) = O(N1:16) logN . As long as we assume that
2�q is constant, the power of N approaches 1 as � ! 0. In this sense the algorithm is nearly
scalable if � is kept small.

5 Accuracy Results

Our implementation of the parallel multi-shift QR algorithm can be found in the current version
of the general purpose parallel linear algebra package ScaLAPACK [9, 10]. ScaLAPACK is
built on top of a portable communications layer called the BLACS [54, 21]. BLACS have been
implemented under PVM [25] and MPI [44], among many other communication standards.
As far as accuracy is concerned, this method has the same advantages as the standard QR

implementations. Each iteration involves the application of an orthogonal similarity transforma-
tion. Thus the algorithm is normwise backward stable.
Figure 9 provides computational a�rmation of stability. ScaLAPACK runs were done on

various matrices of size 50 to 1800. In all cases, the matrix was �lled in by the random number
generator PDMATGEN found in ScaLAPACK, and then set to upper Hessenberg form. Two
residual quantities are computed:

kH �QSQTk=(kHk � eps �N)

and
kI �QTQk=(eps �N):

Here S is the quasi-triangular Schur matrix, H is the original Hessenberg matrix, and Q is
the orthogonal transform matrix computed by PDLAHQR in ScaLAPACK. The in�nity matrix

24

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

+ ||H−QSQT||/(||H||*eps*N)

. ||I−QTQ||/(eps*N)
R

es
id

ua
l

Matrix Size

PDLAHQR scaled residuals by problem size

Figure 9: Accuracy Plots for Sample Problem Sizes

norm is used. Results in Figure 9 include single and parallel runs from 1 to 8 nodes, in all
combinations of row and column distributions (R and C), with block sizes L varying from 1 to
50. The accuracy results did not vary with L, R, C, and if anything, the results became more
desirable for larger N .

6 Performance Results

For most of the results in this section, only a single superiteration was performed. We have found
that doing a single iteration tends to represent overall performance when we have run problems
to completion. The number of bulges was set at twice the least common multiple of R and C
(lcm(R;C).) For square number of nodes, R = C. In all cases, the same amount of memory per
node was used (including the temporary scratch space). We provide the problem size, and the
e�ciency as compared to LAHQR from LAPACK [1].
In Table 2, we see the results for doing the �rst superiteration of a complete Schur decom-

position on an Intel ParagonTM Supercomputer running OSF R1.4. The serial performance of
DLAHQR in this case was 8.5 M
ops (compiled with -Knoieee -O4 -Mnoperfmon on the R5.0
compilers). Note that these results, currently found in ScaLAPACK version 1.6, are better than
those previously released in ScaLAPACK version 1.2 ALPHA (which corresponded to the tech-
nical note [38].) The serial performance of this code is around 10 M
ops, and e�ciency results
are reported against this and not DLAHQR. Had they been reported against DLAHQR, the
64-node job would have shown a speed-up of 66.6. The reason for the enhanced performance
is the block application of Householder vectors in groups of 2 or 3. The reason for the blip in

25

Nodes N L B E�ciency

1 1800 100 30 1.00
4 3600 100 30 0.92
9 5400 100 30 0.88
16 7200 100 30 0.90
25 9000 100 30 0.89
36 10800 100 30 0.89
49 12600 100 30 0.89
64 14400 100 30 0.88

Table 2: PDLAHQR Schur Decomposition Performance on the Intel Paragon Supercomputer

performance between 9 nodes and 16 nodes was that this was the arbitrary cut o� for doing the
border communications in parallel (see x3.2).
We consider the results in Table 2 encouraging. E�ciencies remained basically the same

throughout all the runs, and the overall performance was in excess of the serial code it was
modeled after.
We brie
y compare this algorithm to the �rst successful parallel QR algorithm in [37]. That

algorithm achieved maximum performance when using 96 nodes, after which the nonscalability
caused performance degradation. The new algorithm achieves faster performance on 49 nodes
and appears to scale on the Intel Paragon supercomputer.
In Table 3, we see the analogous results to Table 2, but running just an eigenvalue only

version of the code. In this case, serial performance on the Intel Paragon system was around 8.2
M
ops (for roughly half the
ops.) These positive results may lead to even better methods in
future, since combining using HQR for �nding eigenvalues and new GEMM-based inverse iteration
methods for �nding eigenvectors [35] might lead to completing the spectrum signi�cantly faster
than results in Table 2.
Furthermore, there are better load balancing properties to the eigenvalue only code on a

Cartesian mapping. Some runs taken to completion on this version of the code have better
e�ciencies on the overall problem than any of their analogous timings given in the rest of these
tables. The only reason why we do not include these timings here is that we currently have no
means of testing the accuracy of the solution, whereas all the other runs in the rest of the tables
are tested by applying the computed Schur vectors QTQT on the Schur matrix T and ensuring
that the result is close to the original Hessenberg matrix H.
The code also works with comparable e�ciency for a wide range of choices of R 6= C. We do

not wish it to be misunderstood that simply because we have simpli�ed many equations with
R = C that the code only works, or even only works well, under the condition that the number of
nodes is square. In fact, the code performs within the same ranges and e�ciencies for any number
of nodes less than 64 (with the possible minor - around 10% - performance hits to odd-balls like
17, 19, etc.).

26

Nodes N L B E�ciency
4 3600 100 30 0.96
9 5400 100 30 0.90
16 7200 100 30 0.93
25 9000 100 30 0.92
36 10800 100 30 0.91
49 12600 100 30 0.91
64 14400 100 30 0.90

Table 3: PDLAHQR Eigenvalue Only Performance on the Intel Paragon Supercomputer

Nodes N L B M
ops E�ciency

1 1000 1000 500 47 1.00
2 1600 200 100 73 0.78
4 2000 250 100 147 0.78
6 3600 300 150 176 0.62
9 3600 200 100 283 0.67
12 3600 300 150 345 0.61

Table 4: PDLAHQR Schur Decomposition Performance on the IBM SP2 Supercomputer

In Table 4 we ran on a portion of Cornell's IBM SP2 Supercomputer. On this machine,
e�ciencies did tend to drop as we increased the number of nodes. We found some of the timings
erratic, and believe part of the problem was lack of dedicated time on the machine since these
numbers were generated in an interactive pool with others running other programs at the same
time. These were done on thin nodes.
In Table 5 we ran on a portion of Intel's new ASCI Option Red Tera
ops technology supercom-

puter. We ran problems to completion on this machine. Despite running problems to completion,
the M
ops reported corresponds to actual
ops computed. All problems except the problem run
on 1 node used the exact same amount of memory per node. We also did a N = 18000 node
run on 96 nodes (in an 8 � 12 con�guration) that completed, with the right answer, in 34299
seconds. For all the parallel runs, L was 100, and B was 25. The number of
ops in these runs
tended to drop from 16N3 or so to around 12N3 where it leveled o�. Because of dropping
ops,
the time to solution scales better than the parallel e�ciency suggests.
In Table 6 we ran on an SGI Origin 2000 Supercomputer using 195 Mhz IP27 Processors with

an instruction and data cache of 32Kbytes. We also ran problems to completion, and still report
the true M
ops for the actual work done. In addition, we have added a column to represent the
number of N3
ops each problem required, as well as a column reporting speed-up. We varied L
slightly, as so we also reported that. B was around 30 to 50, depending on L. The performance

27

Nodes N M
ops Seconds E�ciency

1 600 56 1.00
4 2200 156 1098 0.69
9 3300 316 1679 0.63
16 4400 542 2109 0.60
25 5500 815 2726 0.58
36 6600 1104 3381 0.55
49 7700 1392 3983 0.51
64 8800 1714 4886 0.48
81 9900 2052 5966 0.45
100 11000 2390 6954 0.43
121 12100 2757 7884 0.41
144 13200 3137 9290 0.39
169 14300 3464 10858 0.37
196 15400 3865 11894 0.35
225 16500 4180 13698 0.33

Table 5: PDLAHQR Schur Decomposition on the Intel ASCI Option Red Supercomputer

of the code on this machine was impressive even though we made no e�ort for optimization, and
no compiler optimization
ags were speci�ed.

7 Conclusions

In this paper, we present new results for the parallel nonsymmetric QR eigenvalue problem.
These new results demonstrate that this method is competitive and has a reasonable e�ciency.
This code is available in ScaLAPACK version 1.6 as pdlahqr.f (double precision) or pslahqr.f

(single precision).

Nodes N L M
ops N3 Seconds E�ciency Speed-up

ops

1 1000 100 91 16.7 182 1.00 1.0
4 2000 125 277 14.9 431 0.77 3.0
9 3000 100 556 14.0 681 0.68 6.1
16 4000 125 841 13.6 1037 0.58 9.2
25 5000 100 1252 13.5 1352 0.55 13.8

Table 6: PDLAHQR Schur Decomposition on the SGI Origin 2000

28

Acknowledgments

This work was initiated when Greg Henry was visiting the University of Tennessee at Knoxville,
working with the ScaLAPACK project. We thank everyone involved in that project. Parallel
runs were made on an Intel ParagonTM XP/S Model 140 Supercomputer, the IBM SP2 at Cornell
University and the IBM SP2 at Oak Ridge National Laboratory, and the SGI Origin 2000 at Los
Alamos National Lab. The SGI runs were made with the wonderful assistance of Patrick Fay. We
thank Intel, IBM, SGI, LANL, ORNL, and Cornell University. The work of David S. Watkins
was supported by the National Science Foundation under grant DMS-9403569. The work of
Jack Dongarra was supported in part by the O�ce of Scienti�c Computing, U.S. Department of
Energy, under Contract DE-AC05-96OR22464.

References

[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., Sorenson, D., LAPACK Users' Guide, SIAM Publications, Philadelphia, PA, 1992

[2] Auslander, L., Tsao, A., On Parallelizable Eigensolvers, Advanced Appl. Math. (1992), Vol. 13, pp. 253{261

[3] Bai, Z., Demmel, J., On a Block Implementation of Hessenberg Multishift QR Iteration Argonne National
Laboratory Technical Report ANL-MCS-TM-127, 1989, and International Journal of High Speed Comput-
ing, Vol. 1, 1989, p. 97{112

[4] Bai, Z., Demmel, J., Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I,
Parallel Processing for Scienti�c Computing, Editors R. Sincovec, D. Keyes, M. Leuze, L. Petzold, and
D. Reed, pp. 391{398, SIAM Publications, Philadelphia, PA, 1993

[5] Bai, Z., Demmel J., Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part II, University of Cali-
fornia at Berkeley Technical Report in Progress: 1/96

[6] Bai, Z., Demmel, J., Dongarra, J., Petitet, A., Robinson, H., Stanley, K., The Spectral Decomposition of
Nonsymmetric Matrices on Distributed Memory Parallel Computers, LAPACK working note 91, University
of Tennessee at Knoxville, Jan. 1995 To appear in SIAM Scienti�c Computing.

[7] Bai, Z., Demmel, J., Gu, M., An Inverse Free Parallel Spectral Divide and Conquer Algorithm for Nonsym-
metric Eigenproblems, Draft appearing somewhere.

[8] Berry, M. W., Dongarra, J.J., Kim, Y., A Highly Parallel Algorithm for the Reduction of a Nonsymmetric
Matrix to Block Upper-Hessenberg Form, Parallel Computing, Vol 21, No.8, August, 1995, pp 1189-1212.

[9] Blackford, S., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G.,
Petitet, A., Stanley, K., Walker, D., Whaley, R.C., ScaLAPACK: A Portable Linear Algebra Library for
Distributed Memory Computers - Design Issues and Performance, University of Tennessee at Knoxville
Technical Report CS-95-283, LAPACK Working Note 95, 1995, Also: Proceedings of Supercomputing '96,
1996, ISBN 0-89791-851-1

[10] Blackford, L.S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling,
S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C., ScaLAPACK Users' Guide, 1997, SIAM
Publications, Philadelphia, PA, ISBN 0-89871-397-8

29

[11] Byers, R., Numerical Stability and Instability in Matrix Sign Function Based Algorithms, Computational
and Combinatorial Methods in Systems Theory, C. Byrnes and A. Lindquist, editors, pp. 185{200, North-
Holland, 1986.

[12] Boley., D., Maier, R., A Parallel QR Algorithm for the Nonsymmetric Eigenvalue Problem, Univ. of Minn.
at Minneapolis, Dept. of Computer Science, Technical Report TR-88-12, 1988

[13] Chakrabarti, S., Demmel, J., Yelick, K., Modeling the Bene�ts of Mixed Data and Task Parallelism, Seventh
Annual ACM Symposium on Parallel Algorithms and Architectures, July 17-19, 1995, UC Santa Barbara,
CA.

[14] Dongarra, J. J., Du Croz, J., Hammarling, and Du�, I. S., 1988, A set of Level 3 basic linear algebra
subprograms, ACM TOMS, 16(1):1{17, March 1990.

[15] Dongarra, J. J., Geist, G.A., Romine, C.H., Fortran Subroutines for Computing the Eigenvalues and Eigen-
vectors of a General Matrix By Reduction to General Tridiagonal Form, ACM Trans. Math. Software, Vol.
18, 1992, p. 392-400

[16] Dongarra, J. J., Hammarling, S., J., Sorensen, D. C., Block Reduction of Matrices to Condensed Forms for
Eigenvalue Computations, Journal of Computational and Applied Mathematics, 27:215{227, 1989.

[17] Dongarra, J. J., Kaufman, L., Hammarling, S., Squeezing the Most out of Eigenvalue Solvers on High-
Performance Computers Linear Algebra and Its Applications, Vol. 77, 1986, pp. 113-136

[18] Dongarra, J. J., and Sidani, M., A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem, SIAM J.
Sci. Stat. Comput., Vol. 14, No. 3, pp. 542{569, May 1993. Also: Technical Report Number ORNL/TM-
12003, ORNL, Oak Ridge Tennessee, 1991

[19] Dongarra, J. J., van de Geijn, R. A., Reduction to Condensed Form on Distributed Memory Architectures,
Parallel Computing, 18, pp. 973{982, 1992.

[20] Dongarra, J. J., van de Geijn, R. A., Walker, D., A Look at Scalable Dense Linear Algebra Libraries, Scalable
High-Performance Computing Conference, April 1992, IEEE Press.

[21] Dongarra, J. J., Whaley, R., BLACS User's Guid V1.0, UT Technical Report CS-95-281, March 1995.

[22] Dubrulle, A., The Multishift QR Algorithm{ Is it Worth the Trouble?, IBM Scienti�c Center Technical
Report Draft, 1992, Palo Alto, CA

[23] Eberlein, P. J., On the Schur Decomposition of a Matrix for Parallel Computation, IEEE Transactions on
Computers, Vol. C-36, pp. 167{174, 1987

[24] Francis, J. G. F., The QR Transformation: A unitary analogue to the LR Transformation, Parts 1 and 2,
Comp. J. 4, 1961, pp. 265-272, 332-45

[25] Geist, G.A., Beguelin, A., Dongarra, J., Jiang W., Manchek, R., Sunderam, V., PVM: Parallel Virtual
Machine. A Users' Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA,
1994

[26] Geist, G.A., Davis, G.J., Finding Eigenvalues and Eigenvectors of Unsymmetric matrices using a Distributed
Memory Multiprocessor, Parallel Computing, Vol 13, No. 2, pp. 199{209, 1990.

[27] Geist, G.A., Ward, R.C., Davis, G.J., Funderlic, R.E., Finding Eigenvalues and Eigenvectors of Unsym-
metric Matrices using a Hypercube Multiprocessor, Monterey, CA, Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, Editor G. Fox, pp. 1577{1582, 1988

30

[28] Golub, G., Van Loan, C., Matrix Computations, 3rd Ed., 1996, The John Hopkins University Press.

[29] Greenbaum, A., Dongarra, J., LAPACK working note 17: Experiments with QR/QL methods for the sym-
metric tridiagonal eigenvalue problem, Tech. Rep. CS-89-92, Computer Science Department, The University
of Tennessee, 1989

[30] Gupta, A., Kumar, V., On the Scalability of FFT on
Parallel Computers, Proceedings of the Frontiers 90 Conference on Massively Parallel Computation, IEEE
Computer Society Press, 1990

[31] D. E. Heller and I. C. F. Ipsen, Systolic networks for orthogonal equivalence transformations and their
applications, Conference on Advanced Research in VLSI, M.I.T., 1982.

[32] Hendrickson, B.A., Womble, D.E., The torus-wrap mapping for dense matrix calculations on massively
parallel computers., SIAM J. Sci. Stat. Comput., Vol. 15, No. 5, pp.1201{1226, Sept. 1994

[33] Henry, G., Improving the Unsymmetric Parallel QR Algorithm on Vector Machines, 6th SIAM Parallel
Conference Proceedings, March 1993

[34] Henry, G., The Shifted Hessenberg System Solve Computation, Cornell Theory Center Technical Report,
CTC94TR163, 1/94

[35] Henry, G., A Parallel Unsymmetric Inverse Iteration Solver, 7th SIAM Parallel Conference Proceedings,
1994

[36] Henry, G., Improving Data Re-Use in Eigenvalue-Related Computations, Ph.D. Thesis, Cornell University,
January 1994

[37] Henry, G., van de Geijn, R., Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue
Problem: Myths and Reality SIAM Journal of Scienti�c Computing, July 1996, Vol. 17, No. 4, pp. 870{883.

[38] Henry, G., Watkins, D., Dongarra, J., A Parallel Implementation of the Nonsymmetric QR Algorithm
for Distributed Memory Architectures, Computer Science Dept. Technical Report CS-97-352, University of
Tennessee, Knoxville, TN, March 1997 (Also: LAPACK Working Note 121).

[39] Jessup, E.R., A Case Against a Divide and Conquer Approach to the Nonsymmetric Eigenvalue Problem,
Journal of Applied Numerical Mathematics, Vol. 12, pp. 403{420, 1993

[40] K�agstr�om, B., Van Loan, C.F., GEMM-Based Level-3 BLAS, Cornell Theory Center Technical Report,
CTC91TR47, 1/91.

[41] L. Kaufman, A parallel QR algorithm for the symmetric tridiagonal eigenvalue problem, J. Parallel and
Distributed Computing, 1994, Vol. 23, pp. 429{434

[42] Lederman, S., Tsao, A., Turnbull, T., A parallelizable eigensolver for real diagonalizable matrices with real
eigenvalues, Technical Report TR-91-042, Supercomputing Research Center, 1991

[43] Smith, B., Boyle, J., Dongarra, J., Garbow, B., Ikebe, Y., Klema, V., Moler, C.Matrix Eigensystem Routines
- EISPACK guide, 2nd Ed. Lecture Notes in Computer Science 6 Springer-Verlag, 1976

[44] Snir, M., Otto, S., Huss-Lederman, S., Walker D., Dongarra, J., MPI: The Complete Reference, MIT Press,
Boston, 1996

[45] Stewart, G. W., A Parallel Implementation of the QR Algorithm, Parallel Computing 5, pp. 187{196, 1987

31

[46] van de Geijn, R., A., Implementing the QR-Algorithm on an Array of Processors, Ph.D. Thesis, Department
of Computer Science, Univ. of MD, TR-1897, 1987

[47] van de Geijn, R., A., Storage Schemes for Parallel Eigenvalue Algorithms, Numerical Linear Algebra,
Digital Signal Processing and Parallel Algorithms, pp. 639{648, Editors G. Golub and P. Van Dooren,
Springer Verlag, 1988

[48] R. A. van de Geijn, Deferred shifting schemes for parallel QR methods, SIAM J. Matrix Anal. Appl., 14
(1993) pp. 180{194.

[49] van de Geijn, R.,A., Hudson, D.G., An E�cient Parallel Implementation of the Nonsymmetric QR Algo-
rithm, Proceedings of the 4th Conference on Hypercube Concurrent Computers and Applications, pp. 697{
700, 1989

[50] Watkins, D.S., Fundamentals of Matrix Computations, John Wiley and Sons, New York, 1991

[51] Watkins, D.S., Shifting Strategies for the Parallel QR Algorithm, SIAM J. Sci. Comput., 15 (1994), pp.
953{958.

[52] Watkins, D.S., The Transmission of Shifts and Shift Blurring in the QR Algorithm, Linear Algebra Appl.,
241{243 (1996), pp. 877{896.

[53] Watkins, D.S., Elsner L., Convergence of Algorithms of Decomposition Type for the Eigenvalue Problem,
Linear Algebra Appl. 143, 1991, p. 19{47.

[54] Whaley, R.C., Basic Linear Algebra Communication Subpprograms: Analysis and Implementation across
Multiple Parallel Architectures, Computer Science Dept. Technical Report CS-94-234, University of Ten-
nessee, Knoxville, TN, May 1994. Also: LAPACK Working Note 73.

[55] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965

[56] Wu, L., Chu, E., New Distributed-memory Parallel Algorithms for Solving Nonsymmetric Eigenvalue Prob-
lems, Proceedings of the 7th SIAM Parallel Conference on Parallel Processing for Scienti�c Computing,
Ed. Bailey, et. al., SIAM Publications, Feb. 1995

32

