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Abstract

The Computational Grid [1] is a promising platform
for running large scale scientific applications. It pro-
vides a base software infrastructure that allows for
the development of “middleware” aimed at deploy-
ing applications on Grid resources. The Network-
Enabled Server (NES) paradigm is a good candidate
as a viable Grid middleware that offers a simple yet
powerful programming model (RPC-style program-
ming for the Grid). This paradigm is amenable to
many large-scale applications and especially to sci-
entific simulations. This paper builds on the expe-
rience acquired while building two well-known NES
systems (Ninf [2] and NetSolve [3]). Our goal is to
clarify major NES design issues as well as to define a
common set of services and concepts that are neces-
sary for implementing and deploying NES systems
on the Computational Grid. This paper also de-
scribes current work with scientific and engineering
simulations that are enabled by NES systems in the
Grid context.

1 Introduction

Several projects [2, 3, 4, 5, 6, 7] aim at providing
simple ways (APIs, GUIs) to execute software re-
motely on the Computational Grid. Typically the
software executed by servers consists of scientific li-
braries or programs. In what follows, we use the
term module to denote that software, whether it is
part of a library, a stand-alone executable, a set of
executables, or any combination of the above.

This paradigm has commonly been labelled
Network-Enabled Server (or NES) and each afore-
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mentioned project offers variations on the popular
Remote Procedure Call (RPC) theme. For instance,
an intelligent scheduling agent that makes decisions
about task/resource assignment can intercept the
RPC call, or the output data can be left in place so
that it can be retrieved at a later time, etc. The com-
mon concern of all currently available NES systems
is easy-of-use. Indeed, target users are not computer
scientists but domain scientists and the NES system
is supposed to hide most of the logistical details and
present the set of available remote resources as a
cohesive multi-purpose machine where a wealth of
scientific software is available. Furthermore, differ-
ent users have different needs and NES systems often
strive to provide multiple interfaces and APIs (e.g.
C, Java, Matlab, Fortran, Web, e-mail, MS EXcel,
etc.).

Even though recent developments in Ninf [2] and
NetSolve [3] provide promising extensions to the pro-
gramming model (e.g. run-time RPC calls data-
dependencies analysis), this is kept somewhat re-
stricted as it is key to providing straightforward
user interfaces and to making the systems ready to
use out-of-the-box. Fortunately, many scientific ap-
plications are amenable to the RPC-style program-
ming model, particularly scientific simulations (e.g.
Monte-Carlo simulations), engineering design prob-
lems, and in general parameter search/sweep prob-
lems. Thus, we deem the NES paradigm as one
of the important abstractions to be layered on top
of lower-level Grid services such as Globus [8], Le-
gion [9], or Condor [10].

The Computational Grid as it was envisioned
in [1] and as it is being standardized in the current
Grid Forum activity [11] seems like an ideal platform
for building, deploying, and using NES systems. It
offers the considerable amount of compute and stor-
age resources that are needed by large-scale scientific
applications. Even though large network latencies
might impact tightly coupled distributed applica-
tions, typical NES applications should be much more



tolerant to latency. Fault-tolerance is an important
issue in a complex federated environment such as
the Grid. Fortunately, the simple NES program-
ming model make it straightforward to implement
simple recovery mechanisms. Finally, from a soft-
ware stand-point the Grid infrastructure provides
many basic mechanisms needed to effectively imple-
ment NES systems.

We do not advocate building a single Grid-enabled
NES system. Indeed, there are several compelling
reasons for allowing multiple NES systems to co-
exist on the Grid. First, different systems serve dif-
ferent user communities. A large part of the work
involved in deploying a NES systems is to iden-
tify and package suitable scientific software to make
them available as software modules. Given the sheer
amount of available scientific software, some NES
systems restrict themselves to particular domains
and provides domain-specific Uls (e.g. NEOS [7]).
It is not realistic to think that a single group or or-
ganization could try to meet the needs of all users.
Second, different NES systems provide different user
interfaces. This gives users and application develop-
ers more choice and it makes it possible for a small
group of individual to develop an additional inter-
face when needed (e.g. the Mathematica interface
to NetSolve was developed by one individual out-
side the NetSolve group). Third, and most impor-
tantly, the groups that develop them generally use
NES systems as vehicles for computer science re-
search. For instance, an active research thrust is
“scheduling”. Each NES system implements differ-
ent scheduling strategies in different contexts (min-
imum turn-around time, Grid economy model, with
respect to storage constraints, etc.). It is vital to
allow these research efforts to proceed freely within
distinct but related research projects.

Nevertheless, all NES systems could benefit from
a concerted effort that provides an intermediate ser-
vice layer on top of the Grid. At this stage, the term
“layer” means actual software, API specifications,
wire protocol specifications, and concepts. The pur-
pose of this layer is twofold. First, it will provide
basic design concepts and mechanisms (built upon
available Grid software infrastructure) that can be
shared by NES systems on the Grid. This is to avoid
duplication of effort and core development among
NES systems and allow them to focus solely on the
relevant research issues and on the end-user’s needs.
Second, having a common basis will allow NES sys-
tems to interoperate more easily. This is required in
order to deploy a large number of software modules.
For instance, if NetSolve contains software module

specifications for a given set of general-purpose nu-
merical routines, it should be possible for Ninf users
to access these routines from Ninf, thereby benefit-
ing from possible Ninf-specific features (e.g. specific
UI, scheduling algorithms, automated interfaces to
databases, etc.). One of the focuses of this paper
is to define the functionalities and identify the soft-
ware requirements for a common layer that can be
used by NES systems to run on the Grid.

This paper is organized as follows. Section 2 lists
and justifies current design choices in Ninf [2] and
NetSolve [3]. Section 3 describes current applica-
tion work based on NES systems. Section 4 iden-
tifies common services that should be layered on
top of the Grid infrastructure for the implementa-
tion/deployment of NES systems and Section 5 con-
cludes the paper.

2 NES Systems

2.1 Overview

One can distinguish five different fundamental com-
ponents in an NES system:

e Client: provides multiple user interfaces and
submit request for computations to servers.

e Server: receives requests from clients and exe-
cutes required software modules on their behalf.

e Database: contains static and dynamic infor-
mation about available computational resources
(hardware and software).

e Scheduler: intercepts client requests and
makes decision for mapping tasks to servers
based on information located in the database.

e Monitor: dynamically monitors the status of
computational resource and stores that infor-
mation in the database.

These components can be implemented in various
ways. In NetSolve for instance, the Scheduler and
the Database are part of a single process (called the
NetSolve agent), and the Monitors are embedded
within the Servers. Some of these components can
also be distributed in a distributed fashion (e.g. the
Database). Based on the NetSolve and Ninf expe-
riences, the following section highlights some basic
design issues as well as current approaches in both
projects.



2.2 Some Design Issues
2.2.1 RPC implementation

NES systems must provide an implementation of Re-
mote Procedure Calls. In both Ninf’s and NetSolve’s
first implementations the systems maintained a TCP
connections between client and servers for the whole
duration of each RPC. The main advantage of that
approach is that server failure detection is straight-
forward on the client side. However, there are two
major drawbacks. First, there is a scalability is-
sue as the number of simultaneous connections from
a single (client) process is limited by the O/S. We
mentioned in Section 1 that an important class of
target applications for NES systems on the computa-
tional Grid are scientific simulations and parameter
searches. Typically, those applications can consist of
tens to hundreds of thousands of tasks, raising the
question of scalability. Second, and perhaps most
importantly, maintaining connections assumes that
the client is constantly on-line. This becomes less
and less practical given that applications may run
for days at a time, and that a number of users will
probably use mobile resources to submit computa-
tion to the NES systems. Both Ninf and NetSolve, in
their latest version, use protocols where no connec-
tion is maintained (Connection-by-Necessity). The
client initially connects to a server to send input data
and then disconnects. When the server completes,
it tries to connect back to the client to send back
output data. We believe that the added flexibility is
well worth the added complexity of the protocol.
Both project also use a client proxy, that is a sepa-
rate process that performs interactions between the
client and the other components of the NES system
as listed in the previous section. The use of a proxy
adds flexibility in two ways. First, it makes it easy
to write multiple user interfaces. Indeed, it suffices
to define an interface-to-proxy protocol and all in-
terfaces can re-use the same proxy. The expectation
is that the interface-to-proxy protocol is much more
simple than the protocol between the proxy and the
rest of the NES components. Moreover, when de-
sign changes occur in the system, only the proxy’s
implementation needs to be upgraded. Second, us-
ing a proxy furthers interoperability as it is possible
for one interface to use multiple proxies to use dif-
ferent types of resources. For instance, NetSolve’s
latest version provides two implementations of the
proxy: one for interacting NetSolve servers; the other
to interact with Globus resources. A few years ago,
the Ninf and NetSolve teams had collaborated to
develop a set of adapters [12] that made both sys-

tems interoperate. At the time, NetSolve did not
use a client-proxy, and it became increasingly dif-
ficult to maintain the adapters. The proxy-based
design would make it easy to convert the adapters
into two new proxies: a NetSolve Ninf-proxy and a
Ninf NetSolve-proxy. However, the purpose of this
document is to advocate for even more advanced in-
teroperability, as detailed in Section 4. Let us note
that using a proxy leads to some overhead as all
communication goes from the user interface to the
proxy, and then onto other NES components. This
is especially the case if all input/output application
data were to transit through the proxy. NetSolve
(and Ninf in its latest version) bypasses the proxy
for application data transfers.

Another important part of the RPC implemen-
tation is the IDL that is used by both client and
server to marshal input and output data/arguments
and place actual calls to appropriate software mod-
ules. A main concern in NES systems is to keep the
clients as thin as possible. In that sense, no IDL
information is actually kept on the client, but in-
stead downloaded from servers on demand. This is
mandatory for viable NES deployment on the Grid.
Indeed, one cannot expect users to upgrade their
NES client each time a new IDL becomes available
or is upgraded. The usage scenario is as follows.
The NES system provides a way for users to find
out what software modules are currently available
and the syntax of RPC calls to those modules (or-
der and types of arguments). For example, NetSolve
provides a Web/CGI tool that users can query for in-
formation concerning all available software modules
within a NetSolve system. That tool obtains real-
time information from NetSolve agents and displays
instructions for placing calls from various NetSolve
client interfaces. The user then places the RPC call,
the IDL is dynamically obtained by the NES client
over the network and is used to marshal the argu-
ments. Users do not need to actively download any
software in order to be able to use a newly added
software module on a server. The nature of the IDL
itself is discussed in Section 4.2.1.

Finally, NES systems must define the wire-
protocol that is going to be used among the different
modules. NetSolve and Ninf used to employ binary
formats for the protocol, making it lightweight and
easy to parse. However, that also makes the protocol
difficult to debug and extend, and well as precluded
easy interoperability. By contrast, text-based for-
mats are well-structures, easy to understand and ex-
tend, but are less efficient and require more of a pars-
ing effort. There is a recent trend to use the XML



syntax as a de-facto standard in the Grid commu-
nity, and we believe that it is a viable option for NES
systems as well given the proliferation of XML-based
tools and parsers. The expectation is that the over-
head of using a more structured text-based protocol
will be amortized over application data transfers. In
this regard, NES developers must be careful to ob-
serve and possibly integrate with proposed Internet
standards for XML-based RPCs, such as SOAP [13].

2.2.2 Deployment

Many issues pertain to the effective deployment of
NES systems on the Grid. In this section we address
four of these issues: security, information services,
server management, and remote storage.

Security is by all means an important aspect
of any widely deployed Grid system and authenti-
cation based on encryption is mandatory for any
production-like usage. NetSolve provides Kerberos
support with access-control lists on the server side.
Ninf on the other hand has opted for an SSL-based
authentication and authorization layer that is simi-
lar to the GSI in Globus. Let us describe the Net-
Solve implementation in more details. The latest
NetSolve [14] version introduces the ability to gen-
erate access control lists, which are used to grant
and deny access to the NetSolve servers. The Net-
Solve developers opted for using Kerberos V5 [15]
services, as it is one of the most trusted and popular
infrastructures for authentication services.

The server implements access control via a simple
list of Kerberos principal names which usually con-
sist of a name (often a UNIX username) and a realm,
which defines the Kerberos ”domain.” This list of
principals is maintained by the NetSolve server ad-
ministrator and is kept in a private text file, which
is consulted by the server. A request to a NetSolve
server must be made on behalf of one of those prin-
cipal names. If the principal name associated with
the Kerberos credentials in the request appears in
the list, and the credentials are otherwise valid, the
request will be honored. Otherwise, the request will
be denied.

A user first authenticates himself to Kerberos us-
ing a Kerberos utility like kinit. Through this utility,
he talks to the Authentication Service on the Key
Distribution Center (KDC) to get a Ticket Grant-
ing Ticket (TGT). This ticket is encrypted with the
user’s password. When the user wants to talk to
a Kerberized NetSolve server, he uses the TGT to
talk to the Ticket Granting Service (TGS) (which
also runs on the KDC). The TGS verifies his identity

using the TGT and issues a ticket for the NetSolve
service. The user can then pass this service ticket
to the Server who will verify his/her credentials and
check to see if he/she is an authorized user. If the
TGT is compromised, an attacker can only masquer-
ade as a user until the ticket expires.

The NetSolve system supports the interoperation
of Kerberized and non-Kerberized components. In
either case the client sends a request to the server,
and the established protocol dictates that, if re-
quired, the server must send an explicit request for
authentication. At this point, the client can either
abort the transaction (knowing it does not have the
proper credentials) or attempt to authenticate itself
to receive proper servicing. Currently there is no
mechanism to allow the client to insist on authenti-
cation of the server - a Kerberized client will hap-
pily talk with either Kerberized or non-Kerberized
servers. This Kerberized version of NetSolve per-
forms no encryption of the data exchanged among
NetSolve clients, servers, or agents, nor is there any
integrity protection for the data stream.

Information services are used by users as well
as by NES components to find out information about
available resources and components. The Database
introduced in Section 2.1 is an obvious place-holder
for where the information must be stored, but there
are many possibility for implementing the informa-
tion services. NetSolve uses a custom protocol to
store and retrieve information from that database.
That protocol is used by NetSolve servers and agents
as well as user-level tools (e.g. the Web/CGI tool
mentioned in Section 2.2.1). The latest Ninf ver-
sion uses a Database Manager that is in charge of
interacting with possibly multiple databases. All
database queries from Ninf Components go through
the manager. At the moment, the Database in
Ninf is LDAP-based and the database manager uses
the LDAP protocol. Other protocols can be added
when new databases of interest become available
(e.g. Globus MDS). As Grid software infrastruc-
ture becomes widely deployed, it is most important
to use existing Grid information services and the re-
cent Ninf developments are going in that direction.

An issue related to information services is server
management. NES servers provide access to soft-
ware modules. The default Ninf and NetSolve strat-
egy is to have these modules compiled and installed
on a host before starting a server on that host. This
approach, if simple to implement, is rather limit-
ing and makes server management and software de-
ployment difficult. A more flexible approach would
be to allow servers to download pre-compiled soft-



ware modules on-the-fly from authorized software
repositories or from other servers. Those modules
could then be cached on the server for some limited
amount of time until discarded. This is a very at-
tractive approach from the user’s perspective. As
the demand for a given module increases, that mod-
ule gets disseminated among an increasingly large
number of servers. NetSolve provides a first at-
tempt at a more flexible module management: pre-
compiled software modules can be downloaded from
the Netlib [16] repository and dynamically linked
into the server. Security concerns are not taken into
account because the assumption is that Netlib is an
authoritative source of software. This “proof of con-
cept” prototype performs only simplistic checks for
binary and O/S compatibility that are sufficient for
testing purposes. There are obvious difficulties in
making such a model safe and effective in a pro-
duction environment. However it would be rela-
tively easy to build into the system an authenti-
cation mechanism to insure a user was getting an
up to date version of what desired. It is expected
that the Grid will provide standard ways to manage
executables and match them to hosts.

Finally, as more real-world applications are ported
to NES systems, it becomes increasingly clear that
there is a need for distributed/remote stor-
age support. One of the drawbacks of the pure
RPC model is that input and output data keep be-
ing transferred back and forth between client and
servers. We mentioned that both NetSolve and
Ninf provide extensions that allow for some data-
dependency analysis and thereby save on unneces-
sary data transfers. The underlying issue here is
that current NES implementations do not provide
ways of naming and storing application data in re-
mote/distributed storage. Several efforts are aim-
ing at providing infrastructure for Grid-wide dis-
tributed storage [17, 18]. Building on these efforts
and given the added flexibility, it should be possi-
ble to implement the NES Scheduler so that it per-
forms intelligent data movements. Our purpose here
is not to design sophisticated scheduling algorithms,
but rather to make sure that the required mecha-
nisms for implementing such algorithms are avail-
able. Current work in progress within NetSolve aims
at using IBP [17] for holding crucial application data
(e.g. data that is shared among multiple tasks, or
intermediary data that need not be returned to the
user).

2.2.3 Interoperability

A major concern when implementing NES systems
over the Grid is to ensure maximum interoperabil-
ity with extent Grid services as well as among dif-
ferent NES systems. Interoperability with Grid
services is already on its way with projects such
as NetSolve and Ninf. Services under considera-
tions are for instance those available in the Globus
toolkit, but also other services such as the Network
Weather Service [19]. Even though there have been
some preliminary experiments (e.g. NetSolve/Ninf
adapters [12]), interoperability among different NES
systems is still far from being achieved. This is due
to the fact that there has been little discussion or
consensus concerning NES design issues. This doc-
ument, aims at taking a first step towards such a
consensus in the context of the Grid. We have ex-
posed some important design and deployment issues
for NES systems. In the following section we de-
scribe NES applications and current experiences.

3 Current NES Applications

3.1 Scientific Simulations and

Parameter-Space Searches

An important class of applications that lead them-
selves to RPC-style programming is that of scien-
tific simulations, such as Monte-Carlo simulations,
and parameter-space searches. Indeed, these appli-
cations are structured as a large number of inde-
pendent tasks, that is with no task precedences. In
what follows, we call these applications Parameter
Sweep Applications or PSAs for short. Albeit their
simple structure, deploying PSAs on the Computa-
tional Grid presents several challenges. In addition
to the difficulties associated with deploying large-
scale distributed applications, these applications of-
ten manipulate large amounts of data that must be
shared/combined. This leads to a need for schedul-
ing techniques that put an emphasis on co-locating
data and computational tasks, and for a suitable
distributed storage infrastructure in order to imple-
ment scheduling decisions. NES Systems have the
opportunity to provide the most adequate mean of
deploying PSAs on the Computational Grid.

PSAs arise in almost all fields of science and en-
gineering [20, 21, 22, 23, 24, 25, 26, 27, 28] and
we highlight here a few examples. MCell [20]
is a micro-physiology application that uses 3-D
Monte-Carlo simulation techniques to study molec-
ular bio-chemical interactions within living cells.



MCell can be used to model neuro-transmition in
the 3-D space between two cell membranes for dif-
ferent deformations of those membranes. INS2D [28]
developed at NASA Ames Research Center is a
fluid dynamics application that aims at solving
the incompressible Navier-Stokes equations in two-
dimensional generalized coordinates for both steady-
state and time varying flow. NeuralObjects [29] in
a neuro-science application which aims at simu-
lating large-scale neuronal network models. It can
be used to model a broad range of cellular popula-
tion interactions from cellular automata, slime mold
aggregation and heart tissue to visual cortex orien-
tation selectivity, auditory nerve dynamics and com-
plex thalamocortical brain circuitry. SNP [24] is a
package for Semi-Non-Parametric time series analy-
sis with many application in economics and general
forecasting problems. TPHOT [22] is a particle
physics application that simulates photon trans-
port within high-density, high-temperature plasma.

3.2 A Case Study: APST

The AppLeS Parameter Sweep
Template (APST) [30] project focuses on schedul-
ing issues for PSAs in Grid environments. APST
is a user-level middleware in the sense that it is not
targeted on any particular application, but can be
used by end-users to deploy their PSAs on the Grid.
However, if it is to be usable, the APST software
needs to perform application deployment as well as
application scheduling. The goal of the APST im-
plementors is then to deploy applications with min-
imum effort, and NES systems provide the appro-
priate mechanisms and level of abstraction. In its
current version, APST can use NetSolve as a back-
end and a Ninf back-end is being developed. APST
by-passes the scheduling algorithm implemented in
the NetSolve agent. The rationale behind this choice
is two-fold. First, APST has access to very detailed
application-level information that can be used for
efficient scheduling. The current NetSolve API does
not allow for that information to be conveyed to the
NetSolve scheduler. Furthermore, the internal Net-
Solve scheduler does not implement the scheduling
algorithms that are under investigation with APST
and does not provide ways to “plug in” new schedul-
ing algorithms. Second, APST aims at using mul-
tiple back-ends simultaneously so that it can access
the largest possible number of resources available to-
day. This is a compelling reason for letting APST
do its own scheduling. The purpose of this section is
not to provide a description of APST as all details

on that software can be found in [30, 31]. However,
we use the current APST design choices to high-
light shortcomings of NES systems currently avail-
able. This will lead us to the next section in which
we identify a set of NES-specific Grid services that
address most of these shortcomings.

APST provides a Globus back-end. This may
seem surprising since the programming model pro-
vided by the various Globus component APIs is
much more complex than the NES programming
model which has been identified in Section 1 as ideal
for PSAs deployment. As a result, implementing
APST on top of Globus required much more effort
than on top of NetSolve. However, the reasons for
providing a Globus back-end are compelling. Globus
is widely deployed and maintained at many institu-
tions and has been selected as the key Grid soft-
ware infrastructure by key research centers (e.g. the
NASA/IPG effort). NES systems such as NetSolve
and Ninf have not reached this degree of deploy-
ment and commitment. We believe that this is due
to the fact that there has not be any consensus or ef-
fort for standardizing the different NES projects. A
goal of this paper is to set the bases for a discussion
among NES developers that will further standard-
ization and integration (see Section 4). Note that
a Globus back-end to NetSolve is being developed.
When available, APST will be able to use Globus
resource via its NetSolve back-end.

APST does not provide a Ninf back-end at the
moment. Once again, this is surprising since both
NetSolve and Ninf are NES systems that share sim-
ilar goals and general design decision. However, due
to the lack of agreement between the IDL descrip-
tions and the APIs of the two, the APST imple-
mentation on top of NetSolve cannot be easily con-
verted to Ninf. Furthermore, APST implements ad-
hoc mechanisms to allow NetSolve to use distributed
storage software infrastructures (e.g. GASS [18]
or IBP [17]). Using such infrastructures is neces-
sary for good scheduling [32]. Note that the same
mechanisms must be implemented separately for a
Ninf back-end. The lack of standardized interac-
tion between NES systems and distributed stor-
age systems prevents easy implementation of APST
over (multiple) NES systems. Lastly, the fact that
each currently available NES system implements its
own information services (different protocols and
databases) makes it even more difficult to convert
APST’s NetSolve back-end to a Ninf back-end. Dif-
ferent mechanisms need to be used to access resource
information. Using agreed-upon Grid information
services for NES implementations (e.g. the Globus
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Figure 1: Software hierarchy

MDS with the LDAP protocol) would address this
problem. Nevertheless, a Ninf back-end is currently
being developed for APST in order to access Ninf
resources available today.

It now appears clearly that if NES systems are to
provide a viable way to access Grid resources, there
needs to be agreement on common core functional-
ities, some of which build directly on the available
Grid infrastructure. The set of NES Grid services
suggested in the following section are a first step
towards that consensus.

4 NES Grid Services

4.1 Scope

Our purpose is not to provide the specification for
a Grid-enabled NES system but rather to identify
common middle-level services (at the level of or
above basic Grid services) that can be used effec-
tively to build, deploy, and use NES systems in the
Grid context. Figure 1 depicts the resulting software
hierarchy.

The following section proposes and discusses an
initial set of Grid services for NES systems. Many
of these services and their possible implementations
are inspired by some of the recent developments in
NetSolve and Ninf described in Section 2.2. Note
that we use the term service rather loosely and a
better term might be building block. Indeed, some
of our “services” do not entail actual implementa-
tions, but rather consensus on a standard (e.g. IDL
scheme).

4.2 Services
4.2.1 IDL

Designing an appropriate IDL for NES systems has
proven to be quite a difficult task. Difficulties arise

for two reasons. First, the target applications come
from different domains and are really diverse in
terms of implementation. Second those applications
use legacy code that often contains many idiosyn-
crasies. The IDL must then be general enough to
be amenable to many different applications, while
allowing for very specific and detailed features to
accommodate legacy code. NetSolve and Ninf ap-
proaches at defining an IDL are different and both
effective in their own way. Ninf’s IDL scheme makes
it easy to write interface descriptions (they look
like enhanced C function prototypes). However, it
lacks features to accommodate a number of behav-
iors of legacy code. By comparison, NetSolve’s IDL
scheme is lower-level and less elegant, but is more
flexible. In fact, part of the interface description
can be a actual fragment of C code with special
IDL-related macros. Although CORBA does al-
ready define a industry-standard IDL for distributed
computing, and that there have been several work
that attempted to exploit CORBA for Grid efforts,
CORBA IDL largely is designed for wrapping busi-
ness applications, and a number of otherwise nec-
essary features for high-performance scientific com-
puting [33] are not available.

Agreeing on and specifying an IDL for NES sys-
tems on the Grid is key to making such systems truly
usable. The experience already gained by the Net-
Solve and the Ninf team should prove valuable to
achieve that goal.

4.2.2 Protocol

The goal of the NetSolve/Ninf adapters that we
mentioned in Section 2.2.3 was to perform protocol
translation between the two systems. That transla-
tion was needed because of a lack of consensus re-
garding which protocol should be used, and it was
difficult because both projects used binary-based
protocols. The latest Ninf version moved to a text-
based protocol that uses the XML syntax and it
seems like a good first step towards setting the bases
of a common NES protocol on the Grid. The next
version of NetSolve will also have this attractive fea-
ture. The challenge will be to keep core functionali-
ties of the protocol general while allowing customiza-
tions for different NES systems. The expectation is
that the use of XML will make it possible to imple-
ment those customization in a parsable form and will
therefore make what protocol-translation is needed
(for interoperability) straightforward.



4.2.3 Information and User Services

The Grid aims at providing a general information
service (e.g. the Globus MDS) that can be used to
store information. It is clear that the NES Database
(see Section 2.1) should leverage that service to store
and retrieve information concerning hardware and
software resources. Part of that information will
be used by NES components (e.g. the Scheduler)
whereas part of it should be viewable/searchable by
the NES user. The current trend for managing dis-
tributed information on the Grid is to use LDAP
(the latest Ninf version uses it). Like for the proto-
col described in the previous section, the goal is to
define a common core for the kind of NES-related in-
formation that needs to be stored in the information
system (to further interoperability), while allowing
for customizations for different NES systems.

There are also a number of efforts for making non-
programmable interfaces, typically GUI/Web based,
to the Grid. These are now coined as “scientific por-
tals” or “Grid portals”. For NES systems, there is
work to present the users with what are effectively
portal front-ends to access the servers on the back-
end. A good example is the Punch system [5], which
defines a web-based access framework to canned
packages, and has been in active use. Nimrod, Net-
Solve, and Ninf already provides some form of web-
based access to their respective infrastructure. More
recent work by the Ninf group attempts to unify the
portals technology amongst different NES as well
as other Grid systems based on Java Jini technol-
ogy [34].

Still, there is little consensus on what kind of
standard GUI interface should be provided to the
user, what kind/type of information under what
format, what are the protocols/APIs for accessing
the information residing within a NES system, etc.
Standardizing on at least some of these, in accor-
dance with the standards set by Grid Forum work-
ing groups, would be a strong step in making NES
services widely accessible over the Grid.

4.2.4 Server Management

NES systems would benefit from using a common
scheme for managing the software modules whose
interfaces are described with the IDL. The hope is
to use deployed executable management Grid ser-
vices to identify and match software modules with
candidate hosts. Such a mechanism would make it
possible to perform software/hardware binding on
demand for incoming client requests as described in

Section 2.2.2. The first step is then to specify a for-
mal definition of a software module (IDL + binaries)
and to provide a simple API that manipulates those
modules (for searching, downloading, caching, etc.).

4.2.5 Distributed Storage

As explained in Section 2.2.2, interacting with Grid
distributed storage systems is a way to improve per-
formance for applications for which input/output
data transfers are critical. Even though it may be
that NES developers can directly use Grid storage
services, a more general scheme is needed. Indeed,
the use of remote storage is not imposed but op-
tional. Furthermore, multiple storage systems can
be used by a single user (e.g. GASS, Web server,
local disk, local NFS). The idea is to provide an ad-
ditional level of abstraction for naming and locating
data stored on disk under diverse Grid storage sys-
tems. That abstraction must be supported by the
IDL and it will be the responsibility of the NES de-
veloper to retrieve and store data according to IDL
descriptions. The work in [30] is taking steps in that
direction as an adequate distributed storage system
is vital to efficient scheduling of certain applications
(see Section 3.2).

5 Conclusion

In this paper we have made a case for the Network-
Enable Server (NES) paradigm as a promising way
to efficiently deploy large-scale scientific applications
on the Computational Grid. Based on the expe-
rience gained while developing the NetSolve and
Ninf systems, we have identified relevant design is-
sues that must be addressed to deploy NES sys-
tems. Taking the example of the APST software,
we made a case for better interoperability between
NES systems and the Grid infrastructure as well as
among each other. To this end, we proposed a set of
core services that provide a middle layer on top of
the Grid infrastructure. Realistically, many specific
features of NES systems (high-level user interfaces,
scheduling strategies, policies, etc.) are not specified
as core services. This paper sets the bases for the
standardization efforts that must take place among
NES systems if they are to be used in the Compu-
tational Grid context successfully.
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