
Reducing the Amount of Pivoting in Symmetric

Indefinite Systems

Dulceneia Becker1, Marc Baboulin4, and Jack Dongarra1,2,3

1 University of Tennessee, USA
[dbecker7,dongarra]@eecs.utk.edu

2 Oak Ridge National Laboratory, USA
3 University of Manchester, United Kingdom

4 INRIA / Université Paris-Sud, France
marc.baboulin@inria.fr

Abstract. This paper illustrates how the communication due to pivot-
ing in the solution of symmetric indefinite linear systems can be reduced
by considering innovative approaches that are different from pivoting
strategies implemented in current linear algebra libraries. First a tiled
algorithm where pivoting is performed within a tile is described and then
an alternative to pivoting is proposed. The latter considers a symmetric
randomization of the original matrix using the so-called recursive butter-
fly matrices. In numerical experiments, the accuracy of tile-wise pivoting
and of the randomization approach is compared with the accuracy of the
Bunch-Kaufman algorithm.

Keywords: dense linear algebra, symmetric indefinite systems, LDLT

factorization, pivoting, tiled algorithms, randomization.

1 Introduction

A symmetric matrix A is called indefinite when the quadratic form xTAx can
take on both positive and negative values. By extension, a linear system Ax = b
is called symmetric indefinite when A is symmetric indefinite. These types of
linear systems are commonly encountered in optimization problems coming from
physics of structures, acoustics, and electromagnetism, among others. Symmetric
indefinite systems also result from linear least squares problems when they are
solved via the augmented system method [7, p. 77].

To ensure stability in solving such linear systems, the classical method used
is called the diagonal pivoting method [9] where a block-LDLT factorization5 is
obtained such as

PAPT = LDLT (1)

where P is a permutation matrix, A is a symmetric square matrix, L is unit
lower triangular and D is block-diagonal, with blocks of size 1 × 1 or 2 × 2;

5 Another factorization method is for example the Aasen’s method [13, p.163]:
PAP T = LTLT where L is unit lower triangular and T is tridiagonal.

all matrices are of size n × n. If no pivoting is applied, i.e. P = I, D becomes
diagonal. The solution x can be computed by successively solving the triangular
or block-diagonal systems Lz = Pb, Dw = z, LT y = w, and ultimately we have
x = PT y.

There are several pivoting techniques that can be applied to determine P .
These methods involve different numbers of comparisons to find the pivot and
have various stability properties. As for the LU factorization, the complete pivot-
ing method (also called Bunch-Parlett algorithm [9]) is the most stable pivoting
strategy. It guarantees a satisfying growth factor bound [14, p. 216] but also re-
quires up to O(n3) comparisons. The well-known partial pivoting method, based
on the Bunch-Kaufman algorithm [8], is implemented in LAPACK [1] and re-
quires at each step of the factorization the exploration of two columns, resulting
in a total of O(n2) comparisons. This algorithm has good stability properties [14,
p. 219] but in certain cases ‖L‖ may be unbounded, which is a cause for possi-
ble instability [3], leading to a modified algorithm referred to as rook pivoting or
bounded Bunch-Kaufman pivoting. The latter involves between O(n2) and O(n3)
comparisons depending on the number of 2 × 2 pivots. Another pivoting strat-
egy, called Fast Bunch-Parlett strategy (see [3, p. 525] for a description of the
algorithm), searches for a local maximum in the current lower triangular part.
It is as stable as the rook pivoting but it also requires between O(n2) and O(n3)
comparisons.

With the advent of architectures such as multicore processors [19] and Graph-
ics Processing Unit (GPU), the growing gap between communication and compu-
tation efficiency made the communication overhead due to pivoting more critical.
These new architectures prompted the need for developing algorithms that lend
themselves to parallel execution. A class of such algorithms for shared memory
architectures, called Tiled Algorithms, has been developed for one-sided dense
factorizations6 [10, 11] and made available as part of the PLASMA library [12].

Tiled algorithms are based on decomposing the computation in small tasks
in order to overcome the intrinsically sequential nature of dense linear algebra
methods. These tasks can be executed out of order, as long as dependencies are
observed, rendering parallelism. Furthermore, tiled algorithms make use of a tile
data-layout where data is stored in contiguous blocks, which differs from the
column-wise layout used by LAPACK, for instance. The tile data-layout allows
the computation to be performed on small blocks of data that fit into cache, and
hence exploits cache locality and re-use. However, it does not lend itself straight-
forwardly for pivoting, as this requires a search for pivots and permutations over
full columns/rows. For symmetric matrices, the difficulties are even greater since
symmetric pivoting requires interchange of both rows and columns. The search
for pivots outside a given tile curtails memory locality and data dependence be-
tween tiles (or tasks). The former has a direct impact on the performance of serial
kernels and the latter on parallel performance (by increasing data dependence
among tiles, granularity is decreased and therefore scalability) [18].

6 LDLT is still under development and shall be available in the future [6].

In this paper, the possibility of eliminating the overhead due to pivoting
by considering randomization techniques is also investigated. These techniques
were initially proposed in [16] and modified approaches were studied in [4, 5]
for the LU factorization. In this context, they are applied to the case of sym-
metric indefinite systems. According to this random transformation, the original
matrix A is transformed into a matrix that would be sufficiently “random” so
that, with a probability close to 1, pivoting is not needed. This transformation
is a multiplicative preconditioning by means of random matrices called recursive
butterfly matrices. The LDLT factorization without pivoting is then applied to
the preconditioned matrix. One observes that two levels of recursion for butter-
fly matrices are enough to obtain an accuracy close to that of LDLT with either
partial (Bunch-Kaufman) or rook pivoting on a collection of matrices. The over-
head is reduced to ∼ 8n2 operations, which is negligible when compared to the
cost of pivoting.

2 Tile-wise Pivoting

Given Equation (1), the tiled algorithm starts by decomposing A in nt×nt tiles7

(blocks), where each Aij is a tile of size mb × nb. The same decomposition can
be applied to L and D. For instance, for nt = 3:

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

L11

L21 L22

L31 L32 L33

D11

D22

D33

LT
11 LT

21 LT
31

LT
22 LT

32

LT
33

Upon this decomposition and using the same principle as the Schur complement,
a series of tasks can be set to calculate each Lij and Dii:

[L11, D11] = LDL(A11) (2)

L21 = A12(D11L
T
11)

−1 (3)

L31 = A13(D11L
T
11)

−1 (4)

Ã22 = A22 − L21D11L
T
21 (5)

[L22, D22] = LDL(Ã22) (6)

Ã32 = A32 − L31D11L
T
21 (7)

L32 = Ã32(D22L
T
22)

−1 (8)

Ã33 = A33 − L31D11L
T
31 − L32D22L

T
32 (9)

[L33, D33] = LDL(Ã33) (10)

LDL(Xkk) at Equations (2), (6) and (10) means the actual LDLT factorization
of tile Xkk. These tasks can be executed out of order, as long as dependencies
are observed, rendering parallelism (see [6] for more details).

7 For rectangular matrices, A is decomposed into mt× nt tiles.

Following the same approach, for PAPT = LDLT , Equation (1), i.e. with
pivoting, the tasks for nt = 3 may be described as:

[L11, D11, P11] = LDL(A11) (11)

L21 = PT
22A21P11(D11L

T
11)

−1 (12)

L31 = PT
33A31P11(D11L

T
11)

−1 (13)

Ã22 = A22 − (P22L21)D11(P22L21)
T (14)

[L22, D22, P22] = LDL(Ã22) (15)

L32 = PT
33Ã32P22(D22L

T
22)

−1 (16)

Ã33 = A33 − (P33L31)D11(P33L31)
T − (P33L32)D22(P33L32)

T (17)

[L33, D33, P33] = LDL(Ã33) (18)

Equations (11) to (18) are similar to Equations (2) to (10), except that the
permutation matrix Pkk has been added. This permutation matrix Pkk generates
a cross-dependence between equations, which is not an issue when pivoting is
not used. For instance, in order to calculate

L21 = PT
22A21P11

(

D11L
T
11

)

−1
(19)

P22 is required. However, to calculate

[L22, D22, P22] = LDL
(

A22 − (P22L21)D11(P22L21)
T
)

(20)

L21 is required. To overcome this cross-dependence, instead of actually calcu-
lating L21, P22L21 is calculated instead, since the equations can be rearranged
such as P22L21 is always used and therefore L21 is not needed. Hence, Equations
(12), (13) and (16) become, in a general form,

PiiLij = AijPjj

(

DjjL
T
jj

)

−1
(21)

After Pii is known, Lij , for 1 ≥ j ≥ i− 1, can be calculated such as

Lij = PT
ii Lij (22)

This procedure may be described as in Algorithm 1, where A is a symmetric
matrix of size n× n split in nt× nt tiles Aij , each of size mb× nb.

The permutation matrices Pkk of Algorithm 1 are computed during the fac-
torization of tile Akk. If pivots were searched only inside tile Aii, the factor-
ization would depend only and exclusively on Akk. However, for most pivoting
techniques, pivots are searched throughout columns, which make the design of
efficient parallel algorithm very difficult [18].

The tile-wise pivoting restricts the search of pivots to the tile Akk when
factorizing it, i.e. if LAPACK [1] routine xSYTRF was chosen to perform the
factorization, it could be used as it is. In other words, the same procedure used to
factorize an entire matrix A is used to factorize the tile Akk. This approach does

Algorithm 1 Tiled LDLT Factorization with Tile-wise Pivoting

1: for k = 1 to nt do

2: [Lkk , Dkk , Pkk] = LDL(Akk)
3: for j = k + 1 to nt do

4: Ljk = AjkPjj(DkkL
T
kk)

−1

5: end for

6: for i = k + 1 to nt do

7: Aii = Aii − LikDkkL
T
ik

8: for j = k + 1 to i− i do

9: Aij = Aij − LikDkkL
T
jk

10: end for

11: end for

12: for i = 1 to j − 1 do

13: Lki = P T
kkLki

14: end for

15: end for

not guarantee the accuracy of the solution; it strongly depends on the matrix
to be factorized and how the pivots are distributed. However, it guarantees
numerical stability of the factorization of each tile Akk, as long as an appropriate
pivoting technique is applied. For instance, LDLT without pivoting fails as soon
as a zero is found on the diagonal, while the tile-wise pivoted LDLT does not, as
shown in Section 4. Note that pivoting is applied as part of a sequential kernel,
which means that the pivot search and hence the permutations are also serial.

3 An Alternative to Pivoting in Symmetric Indefinite

Systems

A randomization technique that allows pivoting to be avoided in the LDLT

factorization is described. This technique was initially proposed in [16] in the
context of general linear systems where the randomization is referred to as Ran-
dom Butterfly Transformation (RBT). Then a modified approach has been de-
scribed in [5] for the LU factorization of general dense matrices and we propose
here to adapt this technique specifically to symmetric indefinite systems. It con-
sists of a multiplicative preconditioning UTAU where the matrix U is chosen
among a particular class of random matrices called recursive butterfly matrices.
Then LDLT factorization without pivoting is performed on the symmetric ma-
trix UTAU and, to solve Ax = b, (UTAU)y = UT b is solved instead, followed by
x = Uy. We study the random transformation with recursive butterfly matrices,
and minimize the number of recursion steps required to get a satisfying accu-
racy. The resulting transformation will be called Symmetric Random Butterfly
Transformation (SRBT). We define two types of matrices that will be used in
the symmetric random transformation. These definitions are inspired from [16]
in the particular case of real-valued matrices.

Definition 1 A butterfly matrix is defined as any n-by-n matrix of the form:

B =
1√
2

(

R0 R1

R0 −R1

)

where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n/2-by-n/2
matrices.

Definition 2 A recursive butterfly matrix of size n and depth d is a product of
the form

W<n,d> =

B
<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B<n/2d−1>

2d−1

× · · · ×

B
<n/4>
1 0 0 0

0 B
<n/4>
2 0 0

0 0 B
<n/4>
3 0

0 0 0 B
<n/4>
4

×
(

B
<n/2>
1 0

0 B
<n/2>
2

)

×B<n>

where B
<n/2k−1>
i are butterfly matrices of size n/2k−1 with 1 ≤ k ≤ d.

Note that this definition requires that n is a multiple of 2d−1 which can always
be obtained by “augmenting” the matrix A with additional 1’s on the diagonal.
Note also that Definition 2 differs from the definition of a recursive butterfly
matrix given in [16], which corresponds to the special case where d = log2 n+1,
i.e. the first term of the product expressing W<n,d> is a diagonal matrix of size
n.

For instance, if n = 4 and d = 2, then the recursive butterfly matrix W<4,2>

is defined by

W<4,2> =

(

B<2>
1 0
0 B<2>

2

)

×B<4>

=
1

2

r<2>
1 r<2>

2 0 0
r<2>
1 −r<2>

2 0 0
0 0 r<2>

3 r<2>
4

0 0 r<2>
3 −r<2>

4

r<4>
1 0 r<4>

3 0
0 r<4>

2 0 r<4>
4

r<4>
1 0 −r<4>

3 0
0 r<4>

2 0 −r<4>
4

=
1

2

r<2>
1 r<4>

1 r<2>
2 r<4>

2 r<2>
1 r<4>

3 r<2>
2 r<4>

4

r<2>
1 r<4>

1 −r<2>
2 r<4>

2 r<2>
1 r<4>

3 −r<2>
2 r<4>

4

r<2>
3 r<4>

1 r<2>
4 r<4>

2 −r<2>
3 r<4>

3 −r<2>
4 r<4>

4

r<2>
3 r<4>

1 −r<2>
4 r<4>

2 −r<2>
3 r<4>

3 r<2>
4 r<4>

4

,

where r<j>
i are real random entries.

The objective here is to minimize the computational cost of the RBT defined
in [16] by considering a number of recursions d such that d ≪ n, resulting in the
transformation defined as follows.

Definition 3 A symmetric random butterfly transformation (SRBT) of depth
d of a square matrix A is the product:

Ar = UTAU

where U is a recursive butterfly matrix of depth d.

Remark 1 Let A be a square matrix of size n, the computational cost of a
multiplication BTAB with B butterfly of size n isM(n) = 4n2. Then the number
of operations involved in the computation of Ar by an SRBT of depth d is

C(n, d) =

d
∑

k=1

(

(2k−1)2 ×M(n/2k−1)
)

=

d
∑

k=1

(

(2k−1)2 × 4(n/2k−1)2
)

=

d
∑

k=1

(

4n2
)

= 4dn2

Note that the maximum cost in the case of an RBT as described in [16] is

C(n, log2 n+ 1) ≃ 4n2 log2 n.

We can find in [16] details on how RBT might affect the growth factor and
in [5] more information concerning the practical computation of Ar as well as a
packed storage description and a condition number analysis. Note that, since we
know that we do not pivot when using SRBT, the LDLT factorization without
pivoting can be performed with a very efficient tiled algorithm [6].

4 Numerical Experiments

Experiments to measure the accuracy of each procedure described in the previous
sections were carried out using Matlab version 7.12 (R2011a) on a machine
with a precision of 2.22 · 10−16. Table 1 presents accuracy comparisons of linear
systems solved using the factors of A calculated by LDLT with: no pivoting
(NP), partial pivoting (PP), tile-wise pivoting (TP), and no pivoting preceded
by the Symmetric Random Butterfly Transformation (SRBT).

The partial pivoting corresponds to the Bunch-Kaufman algorithm as it is im-
plemented in LAPACK. Note that for all experiments the rook pivoting method
achieves the same accuracy as the partial pivoting and therefore is not listed.

All matrices are of size 1024× 1024, either belonging to the Matlab gallery
or the Higham’s Matrix Computation Toolbox [14] or generated using Matlab
function rand. Matrices |i − j|, max(i, j) and Hadamard are defined in the ex-
periments performed in [16]. Matrices rand1 and rand2 correspond to random
matrices with entries uniformly distributed in [0, 1] with all and 1/4 of the diag-
onal elements set to 0, respectively. Matrices rand0 and rand4 are also random
matrices, where the latter has its diagonal elements scaled by 1/1000.

For all test matrices, we suppose that the exact solution is x = [1 1 . . . 1] and
we set the right-hand side b = Ax. In Table 1, the 2-norm condition number

Table 1. Component-wise backward error for LDLT solvers on a set of test matrices.

Matrix Cond A NP PP TP SRBT (IR)

condex 1 · 102 5.57 · 10−15 6.94 · 10−15 7.44 · 10−15 6.54 · 10−15 (0)

fiedler 7 · 105 Fail 2.99 · 10−15 7.43 · 10−15 9.37 · 10−15(0)

orthog 1 · 100 8.40 · 10−1 1.19 · 10−14 5.31 · 10−1 3.51 · 10−16 (1)

randcorr 3 · 103 4.33 · 10−16 3.45 · 10−16 4.40 · 10−16 5.10 · 10−16 (0)

augment 5 · 104 7.70 · 10−15 4.11 · 10−15 8.00 · 10−15 2.59 · 10−16 (1)

prolate 6 · 1018 8.18 · 10−15 8.11 · 10−16 2.62 · 10−15 2.67 · 10−15 (0)

toeppd 1 · 107 5.75 · 10−16 7.75 · 10−16 6.99 · 10−16 2.38 · 10−16 (0)

ris 4 · 100 Fail 3.25 · 10−15 8.81 · 10−1 6.05 · 10−1 (10)

|i− j| 7 · 105 2.99 · 10−15 2.99 · 10−15 7.43 · 10−15 1.15 · 10−14 (0)

max(i,j) 3 · 106 2.35 · 10−14 2.06 · 10−15 5.08 · 10−15 1.13 · 10−14 (0)

Hadamard 1 · 100 0 · 100 0 · 100 0 · 100 7.29 · 10−15 (0)

rand0 2 · 105 1.19 · 10−12 7.59 · 10−14 1.69 · 10−13 1.64 · 10−15 (1)

rand1 2 · 105 Fail 1.11 · 10−13 2.07 · 10−11 1.77 · 10−15 (1)

rand2 1 · 105 Fail 5.96 · 10−14 6.41 · 10−13 1.77 · 10−15 (1)

rand3 8 · 104 4.69 · 10−13 7.60 · 10−14 4.07 · 10−13 1.92 · 10−15 (1)
NP: LDLT with No Pivoting SRBT: Symmetric Random Butterfly Transformation

PP: LDLT with Partial Pivoting followed by LDLT without pivoting

TP: LDLT with Tile-wise Pivoting IR: Number of iterations for iterative refinement in SRBT

of each matrix is listed. Note that we also computed the condition number of
the randomized matrix which, similarly to [5], is of same order of magnitude as
cond A and therefore is not listed. For each LDLT solver, the component-wise
backward error is reported. The latter is defined in [15] and expressed as

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

where x̂ is the computed solution.
Similarly to [16], the random diagonal matrices used to generate the butter-

fly matrices described in Definition 1 have diagonal values exp(r
10
) where r is

randomly chosen in [− 1
2
, 1
2
] (matlab instruction rand). The number of recursions

used in the SRBT algorithm (parameter d in Definition 3) has been set to 2.
Hence, the resulting cost of SRBT is ∼ 8n2 operations (see Remark 1). To im-
prove the stability, iterative refinement (in the working precision) is added when
SRBT is used. Similarly to [2, 17], the iterative refinement algorithm is called
while ω > (n+ 1)u, where u is the machine precision. The number of iterations
(IR) in the iterative refinement process is also reported in Table 1.

For all matrices, except orthog and ris with TP and ris with SRBT, the
factorization with both tile-wise pivoting and randomization achieves satisfac-
tory results. Iterative refinement turns out to be necessary in a few cases when
using SRBT but with never more than one iteration (except for ris for which

neither TP nor SRBT have achieved accurate results). For matrix prolate, all
methods result in a small backward error. However, the solution cannot be ac-
curate at all due to the large condition number. Note that when matrices are
orthogonal (orthog) or proportional to an orthogonal matrix (Hadamard), LDLT

must not be used. Also, toeppd is positive definite and would normally be solved
by Cholesky and not LDLT. These three test cases have been used only for test-
ing purposes. In the case of the integer-valued matrix Hadamard , SRBT destroys
the integer structure and transforms the initial matrix into a real-valued one.
For the four random matrices, TP achieves results slightly less accurate than
SRBT. However, in these cases iterative refinement added to TP would enable
us to achieve an accuracy similar to SRBT.

TP and SRBT are always more accurate than NP but they both failed to
produce results as accurate as PP for at least one of the test matrices. Never-
theless, despite the reduced number of test cases, they cover a reasonable range
of matrices, including those with zeros on the diagonal. Test case rand1 has
only zeros on the diagonal and was accurately solved by both techniques. This
case fails at the very first step of the LDLT method without pivoting. Test case
orthog has been solved accurately with SRBT but not with TP. For this partic-
ular case, when the pivot search is applied on the full matrix, rows/columns 1
and n are permuted, then rows/columns 2 and n−1 are permuted, and so forth.
In others, the pivots are spread far apart and the tile-wise pivoting cannot reach
them, i.e. there are not good enough pivots within each tile.

5 Conclusion and Future Work

A tiled LDLT factorization with tile-wise pivoting and a randomization tech-
nique to avoid pivoting in the LDLT factorization have been presented. The tile-
wise pivoting consists of choosing a pivoting strategy and restraining the pivot
search to the tile being factored. The randomization technique, called Symmetric
Random Butterfly Transformation (SRBT), involves a multiplicative precondi-
tioning which is computationally very affordable and negligible compared to the
communication overhead due to classical pivoting algorithms.

Both techniques give accurate results on most test cases considered in this
paper, including pathological ones. However, further development of the tile-wise
pivoting is required in order to increase its robustness. In particular, techniques
such as search by pairs of tiles, also called incremental pivoting, have to be
investigated for symmetric indefinite factorizations. Also, to improve stability,
the solution obtained after randomization should be systematically followed by
iterative refinement in fixed precision (one iteration is sufficient in general). The
algorithms presented in this paper shall be integrated into PLASMA, which will
allow performance comparisons of the LDLT solvers and more extensive testing
using the matrices available as part of LAPACK.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s
Guide. SIAM, 1999. Third edition.

2. M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. and Appl., 10(2):165–190, 1989.

3. C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear
equation solvers. SIAM J. Matrix Anal. and Appl., 20(2):513–561, 1998.

4. M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear algebra for
multicore and special purpose architectures. In Proceedings of the 9th International
Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA’08).

5. M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. Accelerating linear system
solutions using randomization techniques. Lapack Working Note 246 and INRIA
Research Report 7616, May 2011.

6. D. Becker, M. Faverge, and J. Dongarra. Towards a Parallel Tile LDL Factor-
ization for Multicore Architectures. Technical Report ICL-UT-11-03, Innovative
Computing Laboratory, University of Tennessee, Knoxville, TN, USA, April 2011.

7. Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, 1996.

8. J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and
solving symmetric linear systems. Math. Comput., 31:163–179, 1977.

9. J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite
systems of linear equations. SIAM J. Numerical Analysis, 8:639–655, 1971.

10. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel tiled QR factorization
for multicore architectures. Concurrency Computat.: Pract. Exper., 20(13):1573–
1590, 2008.

11. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. Syst. Appl., 35:38–
53, 2009.

12. J. Dongarra, J. Kurzak, J. Langou, J. Langou, H. Ltaief, P. Luszczek, A. YarKhan,
W. Alvaro, M. Faverge, A. Haidar, J. Hoffman, E. Agullo, A. Buttari, and B. Hadri.
PLASMA Users’ Guide, Version 2.3. Technical Report, Electrical Engineering and
Computer Science Department, Univesity of Tennessee, Knoxville, TN, Sep 2010.

13. G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins
University Press, 1996. Third edition.

14. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
Second edition.

15. W. Oettli and W. Prager. Compatibility of approximate solution of linear equa-
tions with given error bounds for coefficients and right-hand sides. Numerische
Mathematik, 6:405–409, 1964.

16. D. S. Parker. Random butterfly transformations with applications in computa-
tional linear algebra. Technical Report CSD-950023, Computer Science Depart-
ment, UCLA, 1995.

17. R. D. Skeel. Iterative refinement implies numerical stability for Gaussian elimina-
tion. Math. Comput., 35:817–832, 1980.

18. P. E. Strazdins. Issues in the design of scalable out-of-core dense symmetric indef-
inite factorization algorithms. In Proceedings of the 2003 international conference
on computational science: PartIII, ICCS’03, pages 715–724, Springer-Verlag.

19. H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal, 30(3), 2005.

