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Abstract. In hardware-aware high performance computing, block- asynchronous
iteration and mixed precision iterative refinement are two techniques that are
applied to leverage the computing power of SIMD accelerators like GPUs. Al-
though they use a very different approach for this purpose, they share the basic
idea of compensating the convergence behaviour of an inferior numerical al-
gorithm by a more efficient usage of the provided computing power. In this
paper, we want to analyze the potential of combining both techniques. There-
fore, we implement a mixed precision iterative refinement algorithm using a
block-asynchronous iteration as an error correction solver, and compare its
performance with a pure implementation of a block-asynchronous iteration
and an iterative refinement method using double precision for the error cor-
rection solver. For matrices from the University of Florida Matrix collection, we
report the convergence behaviour and provide the total solver runtime using
different GPU architectures.

Keywords: mixed precision iterative refinement, block-asynchronous iteration,
GPU, linear system, relaxation

1 Introduction

Classical relaxation methods such as Gauss-Seidel and Jacobi require data transfer
between each iteration which constitutes a synchronization point. This implies a se-
vere restriction for parallel implementations. Block-asynchronous iteration removes
this synchronization barrier, updating components using the latest available values.
It allows a large freedom in the update order and the number of updates per com-
ponent, while every component update uses the latest available values for the other
components. In the end, the obtained algorithm is neither deterministic nor does
it imply convergence for all systems that can be solved by the classical Jacobi ap-
proach, in fact it requires the linear equation system to fulfill additional conditions.
While, due to the poor convergence rate, they may seem to be very unattractive from
the mathematical point of view, the block-asynchronous iteration is, in contrast to
most other iterative methods, able to exploit the high computational power of mod-
ern hardware platforms, often accelerated by GPUs. Another well-known technique



II

used to leverage the potential of accelerators is mixed precision iterative refinement.
The basic idea is to use a lower precision format for the error correction solver inside
an iterative refinement method at full precision. Without impacting the accuracy of
the final solution approximation, the acceleration of the solving process is possible
since the computations in the less complex floating point format can be conducted
faster on the respective device. While the time for computations in the usually im-
plemented single and double precision formats differs by a factor of two for most
devices, additional acceleration may be possible since using single precision reduces
the pressure on the memory bandwidth, that is often crucial in scientific computing
on hybrid hardware. An open question is how a combination of these two techniques
impacts the convergence and properties and the performance. On the one hand the
methods are similar: they both compensate their low complexity by leveraging the
high computational power of GPUs. But on the other hand, they are contradictory
since the iterative refinement artificially introduces synchronization points that we
try to avoid. The most suitable applications are linear systems with condition num-
bers which require high iteration counts of the error correction solver. The mixed
precision approach may suffer from these, since the error correction is impacted by
them. The paper is organized as follows. First, we provide some mathematical back-
ground by outlining the algorithms for iterative refinement and the mixed precision
variant, and block-asynchronous iteration. We then introduce the hardware plat-
forms used for the experiments and give details about the linear equation systems we
target. Additionally, we outline the GPU implementation we use for the tests. In the
numerical experiment section, we compare the convergence behaviour of iterative
refinement using a double-precision and a single-precision error correction solver.
We report the total solver runtimes and compare it with a plain implementation of
the block-asynchronous iteration for various GPUs. In the last section we conclude
and provide ideas for further optimization.

2 Mathematical Background

Block-Asynchronous Iteration. The motivation for an asynchronous iteration is mod-
ern hardware, which provides a large number of cores that achieve excellent perfor-
mance when running in parallel, but suffer when synchronizing or exchanging data.
Therefore, algorithms that lack any synchronization would achieve outstanding per-
formance on these devices, while most of the numerical algorithms are poorly par-
allel and require regular data exchange. For computing the next iteration in relax-
ation methods, one usually requires the latest values of all components. For some
algorithms, e.g., Gauss-Seidel [16], even the already computed values of the current
iteration step are used. This requires a strict order of the component updates, lim-
iting the parallelization potential to a stage, where a component cannot be updated
several times before all the other components are updated.

If this order is not adhered to, i.e., the individual components are updated inde-
pendently and without consideration of the current state of the other components,
the resulting algorithm is called a chaotic or asynchronous iteration method. In the
past, the convergence behaviour and performance of these methods were analyzed
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in several papers [13, 12, 4, 10]. Due to the superior convergence properties of syn-
chronized iteration methods, they came out of the main focus of high performance
computing, while research was put on investigating the convergence properties [20,
5]. Today, due to the complexity of heterogeneous hardware platforms and the large
number of computing units in parallel devices like GPUs, these schemes may be-
come interesting again for applications like multigrid methods, where highly paral-
lel smoothers are required on the distinct grid levels [9]. While traditional relaxation
methods like the sequential Gauss-Seidel obtain their efficiency from their fast con-
vergence, an asynchronous iteration scheme may compensate for its inferior conver-
gence behavior by superior scalability [3]. In [2] we proposed a block-asynchronous
iteration, that, in addition to the global iterations, iterates on the subdomains deter-
mined by the iteration components that are handled by the same stream in the GPU
implementation. The motivation for this is due to the design of graphics processing
units and the CUDA programming language. As the subdomains are relatively small
and the data needed largely fits into the multiprocessor’s cache, these additional it-
erations on the subdomains come for almost free. During these local iterations, the x
values used from outside the block are kept constant, equal to their values at the be-
ginning of the global iteration. After the local iterations, the updated values are com-
municated. This approach is inspired by the well known hybrid relaxation schemes
[9, 8]. The obtained algorithm, visualized in Figure 1, can be written as a component-
wise update of the solution approximation to form x (m+1)

k :
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where TS and TE denote the starting and the ending indexes of the matrix/vector
part in the thread block. Furthermore, for the local components, the antecedent val-
ues are always used, while for the global part, the values from the beginning of the
iteration are used. The shift function ν (m + 1, j ) denotes the iteration shift for the
component j – this can be positive or negative, depending on whether the respec-
tive other thread block has already conducted more or less iterations. Note that this
gives a block Gauss-Seidel flavor to the updates. It should also be mentioned that the
shift function may not be the same in different thread blocks. While the GPU hard-
ware encourages this approach, the idea is similar to a two-staged asynchronous it-
eration [7].

Mixed Precision Iterative Refinement. While error correction methods have been
known for more than 100 years, they finally became of interest with the rise of com-
puter systems in the middle of the last century. The core idea is to use the residual of
a computed solution as the right-hand side to solve a correction equation.

The motivation for the iterative refinement method can be obtained from New-
ton’s method. Newton developed a method for finding successively better approx-
imations to the zeros of a function f (·) by updating the solution approximation x i

through

x i+1 = x i − (∇ f (x i ))−1 f (x i ). (2)
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Fig. 1: Visualizing the asynchronous iteration in block description used for the GPU
implementation.

We may now apply Newton’s method (2) to the function f (x ) = b − Ax with
∇ f (x ) =−A. By defining the residual ri :=b −Ax i , we obtain

x i+1 = x i − (∇ f (x i ))−1 f (x i )

= x i +A−1(b −Ax i )

= x i +A−1ri .

Denoting the solution update with c i := A−1ri , we can obtain:

1: initial guess as starting vector: x0

2: compute initial residual: r0 =b −Ax0

3: while (‖ Ax i −b ‖2> ε ‖ r0 ‖) do
4: ri =b −Ax i

5: solve: Ac i = ri

6: update solution: x i+1 = x i + c i

7: end while

Algorithm 1: Error Correction Method

The underlying idea of mixed precision error correction methods is to use differ-
ent precision formats within the algorithm of the error correction method, updating
the solution approximation in high precision, but computing the error correction
term in lower precision which has been suggested before [15, 14, 6, 11].

Hence, one regards the inner correction solver as a black box, computing a solu-
tion update in lower precision. The term high precision refers to the precision format
that is necessary to display the accuracy of the final solution, and we can obtain the
following algorithm where .hi g h denotes the high precision value and .l ow denotes
the value in low precision. The conversion between the formats will be left abstract
throughout this paper. Because the conversion of the matrix A is especially expen-
sive, it should be stored in both precision formats, high and low precision. This leads
to the drawback of a higher memory need.
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Fig. 2: Visualizing the mixed precision approach to an iterative refinement method.

Using the displayed algorithm, we obtain a mixed precision solver. If the final ac-
curacy does not exceed the smallest number εlow that can be represented in the lower
precision, it may generate the same approximation quality as if the solver was per-
formed in the high precision format. It should be mentioned, that the solution up-
date of the error correction solver is usually not optimal for the outer system, since
the representation of the problem in the lower precision format contains rounding
errors, and it therefore solves a perturbed problem. When comparing the algorithm
of an error correction solver to a plain solver, it is obvious, that the error correction
method has more computations to execute. Each outer loop consists of the compu-
tation of the residual error term, a typecast, a vector update, the scaling process, the
inner solver for the correction term, the reconversion of the data and the solution
update. The computation of the residual error itself consists of a matrix-vector mul-
tiplication, a vector addition and a scalar product. The mixed precision refinement
approach to a certain solver is superior to the plain solver in high precision, if the
additional computations and typecasts are overcompensated by the cheaper inner
correction solver using a lower precision format [1, 11].

3 Experiment Setup

Linear Equation Systems. In our experiments, we search for the approximate solu-
tions of linear systems of equations, where the respective matrices are taken from the
University of Florida Matrix Collection (UFMC; see http://www.cise.ufl.edu/
research/sparse/matrices/).

Due to the convergence properties of the iterative methods we analyze, the ex-
periment matrices have to be chosen properly, fulfilling the necessary and sufficient
convergence condition [12].

The matrix properties and sparsity plots are in Table 1. and Figure 3.
The first matrix, CHEM97ZTZ, comes from statistics 5. Matrices FV1 and FV3 are

finite element discretizations of the Laplace equation on a 2D mesh. Therefore, they

5 For more details see http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt
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Matrix name #n #nnz cond(A) cond(D−1A) ρ(M )

CHEM97ZTZ 2,541 7,361 1.3e+03 7.2e+03 0.7889
FV1 9,604 85,264 9.3e+04 12.76 0.8541
FV3 9,801 87,025 3.6e+07 4.4e+03 0.9993
TREFETHEN_2000 2,000 41,906 5.1e+04 6.1579 0.8601

Table 1: Dimension and characteristics of the SPD test matrices and the correspond-
ing iteration matrices.

share a common sparsity structure, but differ in dimension and condition num-
ber due to the different finite element choice. The matrix TREFETHEN_2000 [21] is
a 2000× 2000 matrix where all entries are zero except for the ones at the positions
(i , j ) where |i − j | = 2, 4, 8, 16 . . . . Furthermore, the main diagonal is filled with the
primes 2, 3, 5, 7, 11 . . . 17389. Hence, this matrix has many off-diagonal entries dis-
tributed over the diagonals that are by a power of 2 distant to the main diagonal.

Implementation Issues. The GPU implementations of the block-asynchronous
iteration is based on CUDA [18], while the respective libraries used are from CUDA
2.3 for the C1060 and the GTX280, and CUDA 4.0.17 [19] for the C2070 and GTX580
implementation. The kernels updating the respective components, launched through
different streams, use thread blocks of size 512. The thread block size, the number of
streams, along with other parameters, were determined through empirically based
tuning. For the iterative refinement implementation we use a first outer iteration to
analyze the residual improvement and then adapt the number of inner iterations
such that the residual improvement equals the accuracy of floating point precision
in every outer update. Hence, while the first error correction loop may provide differ-
ent improvement for the distinct test cases, the further loops all decrease the residual
by 6 to 8 digits.

In case of the mixed precision implementations, the error correction solver is
implemented using single precision. Hence, due to the low precision representation
of the linear equation system, additional rounding errors may be expected, slowing
down the convergence of the iterative refinement. To analyze this issue, we compare

(a) CHEM97ZTZ (b) FV, FV3 (c) TREFETHEN_2000

Fig. 3: Sparsity plots of test matrices.
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Name Tesla C2070 Tesla C1060 GTX 580 GTX280a

Chip T20 T10 GF110 GT200
Transistors 3 ·109 1.4 ·109 3 ·109 1, 4 ·109

Core frequency 1.15 GHz 1.3 GHz 1.5 GHz 1.3 GHz
Thread Processors 448 240 512 240
GFLOPS (single) 1030 933 1580 933
GFLOPS (double) 515 78 790 78
Shared Memory/L1 64 KB 16 K 64 K 16 KB
L2 Cache 768 KB - 768 KB -
Memory 6 GB GDDR5 4 GB GDDR3 1.5 GB GDDR5 1 GB GDDR3
Memory Frequency 1.5 GHz 0.8 GHz 2 GHz 1.1 GHz
Memory Bandwidth 144 GB/s 102 GB/s 192.4 GB/s 141 GB/s
ECC Memory yes no yes no
Power Consumption 190 W 200 W 244 W 236 W
IEEE double/single yes/yes yes/partial yes/yes yes/partial

Table 2: Key system characteristics of the four GPUs used. Computation rate and
memory bandwidth are theoretical peak values [17].

in a first experiment the convergence behaviour of the iterative refinement method
using a double- and a single- precision error correction solver, respectively. Using
different precision formats, the vectors and the linear system have to be converted
from double to single precision. This typecast, handled by the GPU, triggers some
overhead and may be crucial for problems where only very few iterations of the error
correction solver are executed.

To analyze the impact of the overhead of iterative refinement and the use of dif-
ferent precision formats we provide the solver runtimes for the different linear equa-
tion systems for the plain block-asynchronous iteration in double precision, the it-
erative refinement in double precision and the mixed precision iterative refinement,
whereas the latter ones use the block-asynchronous iteration as an error correction
solver.

Hardware Platforms. We target four GPU architectures located at the Engineer-
ing Mathematics and Computing Lab (EMCL)6 at the Karlsruhe Institute of Technol-
ogy, Germany, to analyze the potential of mixed precision block-asynchronous iter-
ation. They are taken from the Fermi and the Tesla line of Nvidia. The C2070 and the
C1060 are the server versions of the line, the GTX580 and the GTX280 are the con-
sumer version, respectively. While the chip and on-board memory specifications are
given in table 2, the host system may have minor influence on the performance, since
all computations are exclusively handled by the graphics. Note that the price for the
larger (ECC protected) memory in the server versions is a lower memory bandwidth.

6 Supported by NVIDIA as Cuda Research Center
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Fig. 4: Iterative refinement convergence, solid lines are double-precision error cor-
rection, dashed lines are single-precision error correction.

4 Numerical Experiments

In the first experiment, we analyze how using lower precision for the block-asynchronous
iteration error correction solver impacts the iterative refinement convergence rate.
Therefore, we report the relative residual depending on the iteration number for the
different linear equation systems introduced in Section 3. Note that due to the imple-
mentation, the first outer loop is used to determine the residual improvement, while
the further iterations improve the approximation iterate by 6 to 8 digits, depending
on the rounding error.

The results show that for the test matrices CHEM97ZTZ, FV1, and
TREFETHEN_2000, using single precision for the error correction solver has a nearly
negligible impact on the convergence of the iterative refinement. Only for the FV3
test case, does the convergence rate suffer. This was expected since the high condi-
tion number triggers representation errors in the low precision format that make the
approximation updates less beneficial.

But while the convergence behaviour is interesting from the theoretical point of
view, the next experiment is dedicated to analyzing how handling the error correc-
tion equation in single precision impacts the performance. The motivation is that
using single instead of double as working precision, triggers at least a speedup of
two, and may potentially overcompensate for the overhead associated with the type-
cast between the formats.

While the convergence, with respect to iteration number, is independent of the
hardware used, the performance depends on the architecture. We use the C2070 for
this experiment, as this ’Fermi’ generation is the state of the art from the Nvidia GPU
manufacturer. In addition to the convergence performance of the iterative refine-
ment, using a double or single precision error correction solver, we report the results
for the plain block-asynchronous iteration in double precision.
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Fig. 5: Iterative refinement performance, time-dependent relative residual.

We observe, that for all test cases, the overhead is negligible when embedding
the block-asynchronous iteration in double precision into the iterative refinement
framework.

For the small test cases CHEM97ZTZ and TREFETHEN_2000, switching to the mixed
precision iterative refinement approach gives no improvement. For the larger matri-
ces e.g. FV1, the improvement by using low precision for the error correction solver is
relevant. The mixed precision implementation converges almost twice as fast. Even
for the test case FV3, where we observed a slower convergence rate for the mixed
precision approach in Figure 4, we benefit in terms of performance.

For the test cases FV1 and FV3, despite the performance difference between sin-
gle and double precision of around 10 on the Tesla line, the mixed precision iterative
refinement performs inferior to the plain double implementation of async-(5). The
reason is, that for these systems, the memory bandwidth is the limiting factor and the
overhead, due to the iterative refinement framework, can not be compensated for by
the single precision performance. For the small matrices, things are different. Since
the size of CHEM97ZTZ and TREFETHEN_2000 allows for the caching of the iteration
vector as well as the right-hand side, the C1060 and the GTX280 are able to lever-



X

0

0.2

0.4

0.6

0.8

1

C
2070

C
1060

G
TX280

G
TX580

ti
m

e
 t

o
 c

o
n

v
e

rg
e

n
c
e

 [
s
e

c
]

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(a) CHEM97ZTZ

0

0.5

1

1.5

2

C
2070

C
1060

G
TX580

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(b) FV1

0

50

100

150

200

250

300

350

400

C
2070

C
1060

G
TX580

tim
e

 t
o

 c
o

n
ve

rg
e

n
ce

 [
s
e

c]

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(c) FV3

0

0.05

0.1

0.15

0.2

0.25

C
2070

C
1060

G
TX280

G
TX580

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(d) TREFETHEN_2000

Fig. 6: Total solver runtime.

age the single precision performance more efficiently. Still, the bandwidth remains
the limiting factor, since the complete matrix cannot be loaded into cache, and the
higher memory bandwidth of the consumer version explains the better performance
for the mixed precision approach. Using double precision, the server version is su-
perior, probably due to the more sophisticated memory structure. Unfortunately, the
very limited main memory on the GTX280 does not allow for the handling of the large
systems.

Note that the total solver runtime for TREFETHEN_2000 is on the GTX280 even
smaller than on the server version of the Fermi line. An explanation may be that the
overall runtime also includes the initialization process, which has to be taken into
account for this system, and is longer for systems using CUDA in version 4.0 and
equipped with more memory.

Targeting the Fermi generation, we observe that, especially for the large systems,
we benefit from the mixed precision framework. Although we may only expect a fac-
tor of two concerning the floating point performance, the sophisticated memory hi-
erarchy enables even higher speedups. This speedup stems from the fact that, not
only are we able to keep the iteration vector and the right-hand side local due to the
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larger L1 cache, but also because the L2 cache allows for the efficient data access of
the iteration matrix.

Note that for the test case FV3, the iterative refinement in double precision fulfills
the critical stopping criterion after 4 iterations, while we could observe in Figure 4
that it is already very close after 3 iterations. Hence, the double precision iterative re-
finement runtime would benefit from choosing a smaller number of inner iterations
for the last global iteration.

5 Conclusions

We were able to show that embedding block-asynchronous iteration into a mixed
precision iterative refinement method not only retains its convergence properties,
but may even be beneficial to the performance. Depending on the GPU architec-
ture, we were able to achieve a performance increase of up to a factor of two for
linear equation systems taken from the University of Florida Matrix Collection. The
potential lies within Hardware systems that have large differences in the double–
single precision performance, and a sophisticated memory hierarchy enabling them
to transfer this performance factor to speedups of the asynchronous iteration solver.
While our analysis focused on the typically used single- and double precision for-
mats, especially when targeting artificially created extended formats, the mixed pre-
cision iterative refinement approach is inevitable. Asde from this, further research
should focus on determining a priori, whether embedding the block-asynchronous
iteration into the mixed precision iterative refinement framework is beneficial for a
certain problem. This may depend not only on the problem characteristics, i.e. the
condition number, but also on the hardware platform used.
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