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Computationally driven solutions in nuclear and radiochemistry heavily depend
on efficient modeling of Rare Earth Elements (REEs) and actinides. Accurate
modeling of REEs and actinides faces challenges stemming from limitations from
an imbalanced hardware-software ecosystem and its implications on inefficient
use of High Performance Computing (HPC). This chapter provides a historical
perspective on the evolution of HPC hardware, its intersectionality with domain
sciences, the importance of benchmarks for performance, and an overview of
challenges and advances in modeling REEs and actinides. This chapter intends to
provide an introduction for researchers at the intersection of scientific computing,
software development for HPC, and applied computational modeling of REEs and
actinides. The chapter is structured in five sections. First, the Introduction includes
subsections focusing on the Importance of REEs and Actinides (1.1), Hardware,
Software, and the HPC Ecosystem (1.2), and Electronic Structure Modeling of REEs
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and Actinides (1.3). Second, a section in High Performance Computing focuses on
the TOP500 (2.1), HPC Performance (2.2), HPC Benchmarks: Processing,
Bandwidth, and Latency (2.3), and HPC Benchmarks and their Relationship to
Chemical Modeling (2.4). Third, the Software Challenges and Advances focus on
NWChem/NWChemEx (3.1), MADNESS (3.2), and MPQC (3.3). The fourth
section provides a short overview of Artificial Intelligence in HPC applications
relevant to nuclear and radiochemistry. The fifth section illustrates A Protocol to
Evaluate Complexation Preferences in Separations of REEs and Actinides through
Computational Modeling.

1. Introduction

High Performance Computing (HPC) has enabled advances in science and technology with
direct benefit to society. Since the creation of the first supercomputers, the ability to apply
computational models has increased dramatically. It has allowed discoveries and design of new
medical treatments, more efficient engines, design of airplanes and rockets, development of
telecommunication devices and infrastructure, and population and climate models. HPC has also
facilitated advances in data science and artificial intelligence applications, which is setting a fast-
paced trajectory to new findings and advances with global impact. HPC can significantly accelerate
finding solutions for modeling Rare Earth Elements (REEs) and actinides; however, even with recent
advances in supercomputing resources, the HPC hardware-software ecosystem still needs
multidisciplinary synergy to provide robust and practical solutions for the specific challenges in
modeling REEs and actinides. [Note: Rare Earth Elements (REEs) is the name given to a set of 17
chemical elements, which include scandium, yttrium, and the lanthanide series (lanthanum, cerium,
praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium,
holmium, erbium, thulium, ytterbium, and lutetium). Actinides is the name given to a set of 15 chemical
elements, which includes actinium, thorium, protactinium, uranium, neptunium, plutonium, americium,
curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and lawrencium.]

This chapter explores the importance of REEs and actinides, discusses challenges modeling
REEs and actinides utilizing electronic structure descriptions, and provides an overview of the
hardware, software, and the HPC ecosystem. It also includes an introduction to HPC, its metrics,
and evaluations. The challenges and advances in modeling REEs and actinides discussed in this
chapter focus mainly on applications relevant to molecular systems in gas and solvated phases. HPC
modeling of extended phases relevant in areas including materials science, catalysis, and various
energy applications are not specifically addressed in the chapter.

1.1. Importance of REEs and Actinides

REEs and actinides are essential to the growth and health of the U.S. economy and directly
impact national security. REEs are critical in a variety of needs, including advanced technological
applications such as electronics, cell phones, computers, satellites, lasers, energy production and
storage, classical and quantum information processing, military applications, screens, wastewater
treatment, radiation monitoring, clean energy, catalysis, and medical applications (1–6). The
actinides are crucial in defense and energy applications and medical treatments (7–12).
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Several reports to Congress (2, 3) and other legislative materials (13–39) have highlighted the
criticality of finding long-term solutions for the shortage of REEs and the implications of insufficient
national reserves and stockpiles on society, the economy, and national defense (40). In 2011, the
U.S. Department of Energy (DOE) built a criticality matrix in which 16 elements essential to clean
energy were classified as critical, near-critical, and not critical with respect to availability until 2025
(41). From the 16 elements crucial to clean energy, nine are REEs, with five being declared as
critical (41). Since 2010, the Department of Defense has provided several reports (42–47) from
Congressional mandates focusing on REEs, highlighting the need to address REE shortages as a
national security risk. According to the 2020 U.S. Geological Survey, the U.S. only possesses cerium,
lanthanum, and REE magnet feedstock as potential acquisitions in its stockpile (48). At present,
many countries, including the U.S., are mainly dependent on China for REEs (49). The U.S. imports
80% of its REEs from China, 6% from Estonia, 3% from Japan and Malaysia, and 8% from other
parts of the world (48). High dependence on foreign sources for REEs can create socioeconomic
and national security instability. In particular, importing most REE resources from China presents
concerns due to China’s ability for sudden restrictions of exports (50–52).

Optimization of separations of REEs and actinides is critical to guarantee a supply of REEs
and actinides, and for purification processes needed for radiological waste management and
environmental concerns. Selective separation of lanthanides is difficult due to the similar chemistries
presented by these elements, the need for expert facilities to handle radiation, and safety concerns
(53). The need for novel solutions to this challenge is clear. It can be addressed by accelerating the
understanding and development of selective extracting processes for efficient separation from ores
and recycling.

Trial-and-error experimental approaches to advance solutions for REEs and actinides present
challenges due to limitations in the availability of materials and the need for expert facilities to
handle radioactive elements. Therefore, computational modeling is essential to advance solutions for
REEs and actinides. HPC-enabling capabilities are critical to provide application-ready tools to the
community.

1.2. Hardware, Software, and the HPC Ecosystem

Advances in supercomputing often highlight hardware. There is much excitement waiting for
reports such as the biannual TOP500 (54–57) to reveal the world’s fastest supercomputers.
Computational scientists often seek to utilize the fastest and newest supercomputers; however,
computational modeling and simulation progress depends on a complex software ecosystem (58).
Even though advances in hardware provide possibilities of massive scalability, the software needs to
be efficiently parallelized and optimized for the simulation to take full advantage of powerful new
hardware. Physical descriptions of systems of interest in applied scientific research are described
algorithmically and further encoded in software packages. These packages not only require
development, but they also need to be maintained, ported, and enhanced to be able to be utilized
in varying architectures as new hardware is available (i.e., more recent “supercomputers”). The
software often outlasts the hardware for which they were initially designed by years or decades (58).
In addition, new theoretical and computational models are just as important as the hardware to
advance the scientific and technological enterprise.

Software development commonly utilized to model REEs and actinides has not advanced at the
same speed as hardware, which causes computational scientists in the community to be unable to
take advantage of newer supercomputers’ power. This causes computational scientists focusing on
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nuclear- and radio-chemical modeling often to have to choose between qualitative and quantitative
descriptions. A dynamic develops in which choosing methods to predict properties of choice is
usually decided based on the system’s size (such as the number of atoms in a molecular compound).
Even when the hardware allows for hundreds of thousands of cores to be available to the user, if the
software cannot effectively take advantage of the available hardware, the limiting factor for the user
becomes the molecular or material system and not the supercomputing resources. When modeling
REEs and actinides, intrinsic chemical challenges in accurate descriptions of the electronic structure
is further complicated by the increasing number of electrons and relativistic considerations. For the
specific need of utilizing HPC to optimize separations of REEs and actinides, the analysis often
requires evaluating dozens to hundreds of chemical reactions including large molecular compounds
and complex environments including varying solvents, temperatures, acidity, and interactions with
extracting agents (such as in ion exchanges or solvent extractions).

Next-generation computational simulation and modeling demand creating and promulgating a
new paradigm in software development in a highly multidisciplinary ecosystem (58). Recent efforts
by the DOE in the Exascale Computing Project (DOE-ECP) (59) highlight the need for focusing
on hardware design, software development, and hardware-software integration to provide
computational scientists the ability to efficiently utilize resources at the exascale level. The DOE-ECP
is based on a holistic approach that includes co-design and integration of application development,
software technologies, and hardware technologies to achieve exascale capabilities. This is a $3.6
billion effort to help DOE advance needs in national, energy and economic security, scientific
discoveries, and healthcare.

1.3. Electronic Structure Modeling of REEs and Actinides

The applications of REEs and actinides previously described underscores the critical need for
understanding and controlling the electrons in REE- and actinide-containing compounds and
materials. The emergence of practical and robust first-principles (beyond density functional theory)
models of correlated electrons are starting to transform the role of computation across light-element
chemistry and materials science, from rationalization to prediction (60–62).

Several attributes are essential to achieve chemically-predictive electronic structure simulation
for REEs and actinides. These include:

• fully relativistic (Dirac) treatment of all electrons interacting via the classical relativistic
electromagnetic field,

• infinite-order treatment of dynamical electron correlation, exemplified by the nonlinear
ansatz of the coupled-cluster (CC) method,

• frequent need to use multideterminant references when describing even ground states, and
• robust control of the numerical (basis set) errors despite the high angular momenta of the

occupied (bi)spinors, the vast range of energy/length-scales involved, and the inefficient
modeling of dynamical correlation effects using spinor products (particularly, in the
relativistic regime).

While the challenges of the first three items on this list are formidable, but well understood, the
last item is relatively less explored, yet is as critical as the others. The understanding of the Gaussian
atomic orbital (AO) basis set technology – namely, how to design systematically convergent families
of basis sets and how to evaluate quantum operators in them efficiently and precisely – is less mature
for the relativistic all-electron computations compared to the non-relativistic counterparts. This is
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especially so for the many-body methods, where relativistic effects impart even slower convergence
to the basis set limit than the already painfully-slow rate of the non-relativistic correlation energy.

However, recent work hints that the numerical challenges of the relativistic electronic structure
can be finally addressed robustly by abandoning the Gaussian AO technology altogether:

• Harrison and co-workers demonstrated for the first time how Dirac-Hartree-Fock-
Coulomb (DHFC) equations can be solved for general molecules by using an adaptively-
refined real-space numerical representation of spinors, without any need for ad hoc
numerical safety measures (i.e., the kinetic balance) and with the level of precision control
unmatched by Gaussians (63).

• Valeev and co-workers demonstrated for the first time how many-body electronic structure
methods can be efficiently formulated in real space for general molecules with dozens of
atoms and with precision superior to Gaussians, by combining ideas of explicit correlation
(F12) and pair-natural orbitals (PNO) (64).

These breakthroughs suggest that it should be possible to formulate accurate relativistic many-
body methods with numerical errors robustly controlled. Such ability could, first, provide crucial
reference benchmarks for molecular relativistic computations. Second, these advances hint that real-
space numerical representations can provide a practical alternative to the Gaussian AO numerical
technology that rectifies its known failings for computing highly-precise energies and properties.

Quantitatively accurate all-electron relativistic descriptions of electronic structure in REEs and
actinides are going to be significantly more expensive than the non-relativistic and/or light-element
counterparts, in part due to the physics and in part due to the sheer number of electrons that need to
be described explicitly in such systems. To ensure practicality, it is therefore imperative to be able to
deploy these proposed relativistic methods to the modern HPC platforms.

For relativistic all-electron theory, the motivation for efficiently exploiting modern HPC
hardware (characterized by emphasis on data and operation parallelism and pervasive heterogeneity)
goes beyond making optimal use of the available resources. It boils down to reducing time-to-
solution to tighten the feedback loop of the computational experiments.

Modern HPC platforms nowadays are almost universally:

(1) heterogeneous, accelerated by inclusion of general purpose graphical processing units
(GPGPUs) or custom-purpose hardware (e.g., tensor processing units), and

(2) massively-parallel, architected as clusters of nodes with one or more accelerators in them.

Such platforms have become synonymous with HPC, yet very few electronic structure codes can
take advantage of them, primarily due to the low level of abstraction of the non-standard and non-
portable programming models (CUDA and its close cousins) targeting the disjoint-address-space
accelerated hardware.

2. High Performance Computing

Since 1993, trends in HPC have been reported by the TOP500 (54–57) project. The TOP500
provides a list of the 500 fastest supercomputers globally, and it is published twice a year. The order
of the supercomputers on this list is determined by their performance when applying the LINPACK
benchmark (57).
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2.1. TOP500

The 56th edition of the TOP500 (54–57) list, published in November 2020 indicated the Fugaku
supercomputer continues to top the chart. The list observed a flattening in performance over the top
supercomputers globally. The list included the least number of new entries on the chart since it was
initiated in 1993 (54).

The LINPACK benchmark revealed that the list’s entry level increased from 1.23 petaflops in
the 55th edition to 1.32 petaflops. Overall, the 500 supercomputers on the list increased from 2.22
exaflops in the previous list to 2.43 exaflops in the current list. The performance of the top (N=1) and
bottom (N=500) system on the list and the aggregate (SUM) is shown in Figure 1 (54).

Figure 1. Performance development and projection of HPC between 1993 and 2020 from the TOP500.
Data from references (54–57).

The 56th TOP500 list shows the first record of performance above one exaflop. The number
one system on the list, Fugaku, increased its performance to 2.0 exaflops (calculated with the HPC-
AI benchmark) (54). The top 10 systems on the list represent 42% of the total performance of the
TOP500, and they are listed in Table 1.

Figure 2. Treemap showing the total performance per country of the TOP500 list. Reproduced with
permission from reference (54). Copyright 2020 Top500.
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Table 1. Top 10 Systems in the 56th TOP500 Lista

Rank Computer Site Country Cores Rmax (Petaflop/s) Rpeak (Petaflop/s) Power (MW)

1 Supercomputer Fugaku
RIKEN Center for

Computational Science
Japan 7,630,848 442 537 29

2 Summit
Oak Ridge National

Laboratory
United States 2,414,592 148 200 10

3 Sierra
Lawrence Livermore
National Laboratory

United States 1,572,480 94 125 7,4

4 Sunway TaihuLight
National Supercomputing

Center in Wuxi
China 10,649,600 93 125 15

5 Selene NVIDIA Corporation United States 555,520 63 79 2,6

6 Tianhe-2A
National Super Computer

Center in Guangzhou
China 4,981,760 61 100 18

7 JUWELS Booster Module Forschungs-zentrum Juelich Germany 449,280 44 70 1,7
8 HPC5 Eni S.pA. Italy 669,760 35 51 2,2

9 Frontera Texas Advanced Computing,
Univ. of Texas

United States 448,448 23 38

10 Dammam-7 Saudi Aramco Saudi Arabia 672,520 22 55

a Data from reference (54).
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China has 42.8% of the systems in the 56th TOP500 list, followed by the United States with
22.6%, and Japan with 6.8%. The United States leads with 27.5% of the systems, Japan follows at
24.4%, and China has 23.3%. The treemap shown in Figure 2 shows the share of the 56th TOP500
list by country.

Between the first TOP500 list (published in June 1993) and the latest one (published in
November 2020), the United States has had the number one machine 55% of the time (i.e., 31
times), Japan 25% (14 times), and China 20% (11 times), as shown in Figure 3 (54). The complete
list of number one machines is included in Appendices 1 and 2.

Figure 3. Percentage of number one machines in the TOP500 list between 1993 and 2020. Data from
reference (54).

2.2. HPC Benchmarks: Processing, Bandwidth, and Latency

HPC benchmarks focus on measuring the three primary metrics on modern supercomputers:
information processing rate, data transfer rate, and the delay in signaling across the units of the
machine be it the registers, memory hierarchy levels, sockets, or compute nodes. There are three
main approaches to influence these metrics, namely improvement, optimization, and mitigation.
Improvements may be achieved by raw increases in hardware speed including clock rate frequency,
specialization of compute units for critical tasks, and abundant parallelism of functional units or the
chipset pins and communication lanes. Optimization can also happen at the hardware level when
the hardware vendors iterate on their product roadmap over past designs to refine the chip design
based on the real-life usage scenarios of their processors. But a more important optimization work
takes place on the software side as the scientific code is ported and then optimized for new hardware
to better the strengths of new platforms while relying less on their weaknesses. Finally, mitigation is
the last resort effort to overcome the inherent limitations of computing such as latency. One typical
example here would be latency hiding that performs the waiting for completion of work or arrival
of data in parallel with other helpful task. The balance between these three metrics has changed
dramatically over the decades. The early Cray computer models were designed with overprovisioned
memory bandwidth and a comparative scarcity of computational power. Comparing these early
designs with the state-of-the-art in GPU hardware cannot offer a starker contrast. Some of the
compute units measure their compute power in hundreds of tera-operations per second. At the same
time, the extremely wide interface to the memory can deliver only on the order of 1 terabyte per
second of data transfer rates at over 5,000 bits devoted to the main memory bus.

Computers, or more so supercomputers, may be considered tools of scientific discovery. This
gave rise to the emergence of computational science complementing the scientific endeavor’s
theoretical and experimental branches. From the perspective of these scientific applications, a
significant figure of merit is the discovery per unit of time, be it the number of gene sequence
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matches per second or the simulated nano-seconds of molecular dynamics per hour of compute
time – application benchmarks produce those kinds of results. They bundle the implementation and
the input data to deliver information in the application context. Examples of these include the NAS
Parallel Benchmarks (65–68) with multiple input data set classes labeled with letters A, B, C, and D,
as well as the SPEC consortium that licenses a plethora of benchmarking suites for a variety of testing
scenarios such as integer and floating-point computations called SPECint and SPECfp, respectively,
and are collected in SPEC CPU2006 (69, 70). The complexity of the implementation and the limited
data set sizes lead to the development of efforts on simpler performance probes.

To avoid the complexities of complete applications, mini-apps have been developed to provide
relevant representatives that are easier to manage, port, and run with the results remaining
interpretable in the context of fully deployed applications. Mantevo (71) is an example collection
of mini-apps that included representatives of applications of interest to the DOE. Due to a reduced
footprint of the mini-apps’ code and its functionality, the input data is also much reduced and is
more manageable for runs at different scales. Mini-apps may be considered a modern replacement of
the collection of representatives loops such as Livermore Loops (72, 73).

Further reduction of the complexity may be achieved with kernel benchmarks. They do away
with resemblance to the complete applications or even mini-apps. They simply focus on portions
of the code that consume most of the resources, be it time, performance, or available bandwidth.
There are many examples of kernel benchmarks due to their relative simplicity when compared to any
application code. High Performance LINPACK (HPL) (74) is potentially one of the most influential
codes that are used to rank the supercomputers reported biannually on the TOP500 (54–57) list
based on their performance in solving a system of dense linear system of equations using Gaussian
Elimination with partial pivoting in double precision arithmetic. The Green500 (75) list measures
the power used when running HPL and ranks supercomputers in energy efficiency for every floating-
precision operation. Arguably, a better representation for PDE solvers is the High Performance
Conjugate Gradients (HPCG) benchmark (76) that solves systems of sparse linear equations arising
from a simple PDE and its 27-point stencil discretization. Ranking based on HPL and HPCG often
diverge and offers a complementary ranking of large-scale machines. To take advantage of modern
hardware with multi-precision hardware and large numbers of low-precision floating-point units, the
HPL-AI benchmark was created as a combination of dense factorization in lower precision and an
iterative scheme based on GMRES (77) to attain higher precision accuracy of the solution. Focusing
on isolated kernels radically reduces complexity, improves portability, and can even be performed on
prototype systems with a barely functioning hardware/software stack. However, they may indicate
artificially elevated performance levels since a kernel may be easily scaled to maximize the utilization
of the hardware beyond what is possible in the actual application code.

Finally, synthetic benchmarks completely detach from application-based metrics of merit. They
primarily represent the interests of the hardware engineers or library developers. They focus on
synthetic hardware or software behavior measures, for example, peak performance of floating-point
units or minimum latency of accessing memory in the prescribed pattern of data requests. While
synthetic benchmarks might seemingly be of little interest to scientific application developers, they
offer valuable information to develop support components of high-end computer systems and offer a
comparison between competing products and implementations.

Performance benchmarks are not only valuable for rank new machines, but they are also essential
in hardware development (as proxies for full-fledged applications) and use (to ensure proper
operations) (78). The hardware designers feed their nascent designs with past data of user codes but
these are always from the past and ran on old hardware. Having up-to-date information requires up-
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to-date results that can be obtained from simple kernel benchmarks. These benchmarks work even
on unsupported systems that are far from production-ready and may never even make it beyond the
experimental lab. For such a system, the benchmark’s simplicity is at the premium, which makes
kernel-based testing very valuable.

Figure 4 shows the performance of each kernel benchmarks HPL, HPCG, and HPL-AI with
the peak double precision performance for the machines from the latest TOP500 list (54–57, 79)
issued in November 2020. A somewhat counter-intuitive line representing peak performance uses
64-bit floating-point capability of the systems. With modern hardware, much larger hardware levels
are possible when using low-precision floating-point arithmetic such as FP16 or BF16. These new
formats and their corresponding performance are captured by the HPL-AI benchmark and are shown
in the figure as the highest attained execution rate. Rmax and Rpeak refers to the metric that ranks
the machines on the TOP500 list. Rmax is the floating-point rate when solving a system of dense
linear equations in double precision floating-point arithmetic. Rpeak is the peak performance of the
machine in double precision that considers all processing units available in the hardware.

Figure 4. Performance of the supercomputers in the TOP500 56th list calculated with the HPCG and HPL-
AI benchmarks. Data from reference (79).

2.3. HPC Performance

In the era of extreme scale platforms, understanding the performance characteristics of
computational science applications is indispensable to identify and overcome the barriers to
achieving performance goals. This becomes more important – albeit more and more cumbersome
– as the architectures grow more complex. Particularly, with the profound changes in the hardware
landscape, featuring increasing complexity and heterogeneity of today’s and projected future high-
performance computers, most of the computational chemistry and nuclear methods are unable to
take full advantage of current computer resources at national supercomputer centers. As a result,
these methods fail to sustain the expected performance scalability on these systems and are bound
to drop back even more on next-generation systems. This section provides insights into the kind
of performance data that can be measured on distributed, many-core, heterogeneous architectures
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and how it can be used to effectively analyze, characterize, and optimize the performance of
computational science applications.

Achieving performance goals does not merely target time-to-solution – although it is often used
as a starting point – but implies the efficient use and utilization of the underlying hardware and
software stack. If and how efficiently different hardware resources in heterogeneous extreme-scale
systems are utilized can be detected with detailed measurements from a wide range of performance
counters. The HPC community has relied on the Performance API (PAPI) monitoring library (80)
to track low-level hardware operations for more than two decades. In addition to traditional CPU
counters, such as floating point operations, retired instructions, cache access, and misses, PAPI’s
latest developments enable the monitoring of counters on GPUs (AMD, Intel, NVIDIA),
communication networks, I/O systems, as well as energy monitoring with power capping features
(81–86). The convenience of PAPI enables the collection of performance counter data from across
the entire compute system with a single interface, and without putting the burden on the application
developer to study, and incorporate various library primitives for accessing counters on different
hardware.

In addition to providing hardware-specific performance metrics, PAPI has been extended with a
standardizing layer for monitoring software-defined events (SDE) that expose the internal behavior
of runtimes and libraries, such as communication and math libraries to the applications (87, 88). The
lack of information exchange between different libraries and blackbox-style "code entities" employed
in an application can lead to suboptimal interaction between the software stack, which can lead to loss
of performance. PAPI SDEs are meant to be used by the developers who write software libraries so
that the internal behavior of their library can be better understood by application scientists who work
with it. For example, a task scheduling runtime could export the number of available tasks at different
points in time; and a climate-modeling code could export a performance metric such as "simulated
years per second." PAPI enables monitoring of both hardware and software events through the same
PAPI_start(), PAPI_read() interface, which allows tuning for more efficient use of heterogeneous
hardware resources and presents a complete picture of the entire application performance.

In addition to using PAPI directly, application scientists can take advantage of performance
frameworks that use PAPI for performance counter monitoring under the covers. Such tools employ
hardware counter sampling, as well as call path and binary analysis. As a result, they can offer their
users graphical profiles that attribute counter values and time spent to particular application code
lines. Examples of such integrated performance frameworks are Arm MAP (89), HPCToolkit (90)
and TAU (91).

Tracing is a different approach to analyzing application behavior. A trace shows a detailed
timeline of performance metrics and the corresponding code that caused them. Vampir (92) is an
integrated performance framework that utilizes tracing to display program behavior and allows users
to view the trace at different zoom levels to acquire information at varying detail levels.

Suppose the target application is instrumented – manually or via provided compiler wrappers -
using a tool such as Score-P (93), then information is collected at specific points in the application
code, such as entries and exits of functions or other code regions of interest. This level of information
acquisition, together with PAPI hardware and software metrics, gives an exact picture of the
application behavior and can reveal rare bottlenecks missed by sampling since the latter is statistical.
However, sampling has the benefit that it can be performed on unmodified binaries.

PAPI counters have been used with various quantum chemistry codes – primarily at the larger
computer centers – either directly or with other optimization software such as TAU. In particular, the
counters were extensively used at the Environmental Molecular Sciences Laboratory HPC system to
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optimize NWChem and GAMESS performance. By examining regions of the code with low percent
peak and high cache misses, data layout and localization as well as prefetching was used to improve
the overall performance of the software.

2.4. HPC Performance, Benchmarks, and Their Relationship to Chemical Modeling

Since chemistry software often contains many different types of simulations, the full suite of
benchmarks can help to inform the performance of the software on new architectures and possible
optimizations in the software. For example, some parts of the code, such as the (T) part of the
CCSD(T) will rely heavily on matrix multiplies that are often benchmarked on new systems. The
HPL benchmarks can help to inform places in the software (such as the iterative coupled cluster
and Hartree-Fock) since there are some similar data patterns. Benchmarks to understand the
communication performance can aid in optimization of communication within parts of the code
such as classical molecular dynamics and FFTs.

Most chemistry codes do not use % peak as a metric for performance, preferring to focus on time
to solution. The major exception here is in the dense matrix multiplies that can reach very high %
peak. However, there is often a correlation of the performance of the benchmarks between machines
and the performance of the computational chemistry software on those machines. Of course, one
must be careful to use appropriate benchmarks associated with the software, as described above.

The benchmarks discussed and the chemical modeling applications relevant to this discussion
share computational patterns. For example, software discussed in the following section, such as
MADNESS, operates on blocks with block-sparse representation and the benchmarks compute on
blocks. Computing energy levels and wave function basis becomes an eigenvalue problem after
linearization, and linear eigenvalue problems use matrix-matrix operations that are cache-friendly
and exploit floating-point units effectively. This is also the case for the HPL benchmark. The real
contrast is what percentage of peak each one achieves. As a generalization, HPL provides
approximately 70% of peak, while symmetric eigenvalue problems are almost 50% (94).

Developing efficient methods for chemical modeling requires comparing and evaluating
dataflow-based executions over coarse grain parallelism in terms of scalability, resource utilization,
and programmability. For this, software-defined events (SDEs) are utilized for performance
evaluation focusing on exposing performance-critical events. The PAPI library is often utilized for
large-scale computational chemistry applications. It is essential to enable monitoring of both types of
performance events—hardware- and software-related events—in a uniform way, through the same
consistent PAPI interface.

To this day, Coarse Grained Parallelism (CGP) remains the most popular programming model
for large scale scientific applications, where the software is commonly structured as serial code,
and parallelism is achieved by injecting carefully implemented send and receive calls to the
communication layer, and executing multiple parallel instances of the code. The execution of such
applications on today’s largest HPC systems shows that the CGP models already struggle to
efficiently harness the parallelism available on systems with multiple cores, accelerators, and multiple
non-uniform memory access (NUMA) hierarchies. As the community moves toward Exascale
computing, with increasing parallelism, one of the challenges for the mainstream programming
models is to sustain the expected performance scalability.

Further challenges emerge from the increasing complexity and heterogeneity of hardware
architectures, where coarse-grained parallelism and fork-join expressions of parallelism limit
performance portability of applications, and thereby sacrifice the productivity of scientific
application developers.
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Computational chemistry applications comprise one of the driving forces of HPC. In particular,
computational methods—as they are present in quantum chemistry codes such as software resources
discussed in the next section—are extremely compute intensive and consume significant computer
resources at national supercomputer centers.

Hardware-Based Measurements

Analysis of hardware-based measurements is critical to identify sub-optimal parts of the software
chain and unveil ways to improve performance and system utilization. This is essential to enable high-
performance software in chemical modeling.

To illustrate these measurements, an example of performance profiles conducted with the
Coupled-Cluster method (CCSD) in NWChem captured during the execution of two different
data-flow implementations of CCSD is shown in Figure 5. These measurements evaluated network
and CPU utilization. Specifically, the blue and purple boxes correspond to the execution of
communication tasks, the red boxes correspond to the execution of computation tasks, and the
gray area corresponds to idle time. The two implementations shown in Figure 5 differ in how the
communication tasks are prioritized over the computation tasks. As a result, it is observable that
when the priority of communication tasks is too high the network is overloaded with traffic leading
to significant idle time at the beginning of the run. On the other hand, when task priorities allow for a
more balanced execution of communication and computation tasks, the data transfers are overlapped
with useful work and the hardware is utilized more efficiently.

Software-Based Measurements

The direct use of Software-defined Events (SDEs) in real-world applications can be highly
beneficial for in-depth analysis or for quickly identifying performance and scalability bottlenecks.

Besides the PAPI’s capabilities described, SDEs can be applied beyond libraries and
performance tools. For example, PAPI’s SDEs were applied in a study targeting the field of electronic
structure theory focused on the implementation of SDEs to characterize the performance and the
level of parallelism of the NWChem quantum chemistry application (95). Specifically, the Coupled
Cluster Single Double (CCSD) methods (96) were evaluated as they are currently implemented in
the Tensor Algebra for Many-body Methods (TAMM) library, which is expected to be part of the
new C++ version of NWChemEx.

The findings of these software-based performance metrics for several CCSD kernels are
discussed below in the “Usage Examples” section. Ultimately, the objective is to have computational
chemistry experts, who are aware of the scientific function of different code segments, add SDEs that
correspond to physically meaningful quantities that could reveal information, such as “computed
electron potentials per second”. Table 2 lists the SDE-registered NWChem events and their
descriptions as they are available through PAPI. All four of the NWChem single-value SDEs are
registered as 64-bit integer counters. As for the counting mode, DGEMM- and FlopCount are
registered as delta counters---which means PAPI reports the difference between the counter value
at PAPI_start() and PAPI_read()---while the Contraction_ID and the MaxTaskLength return
instantaneous values—which means PAPI reports the absolute value of the counter every time
PAPI_read() is called.

In addition to these single-value SDEs, support for two multi-values SDEs is included. For
instance, instead of just monitoring how big the biggest CCSD task in the NWChem code is, which
is accomplished via MaxTaskLength for each tensor contraction, with the addition of
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LengthPerTask_RCRD, the length of all tasks per contraction and the distribution of task lengths can
easily be recorded. Similarly, the FlopsPerTask_RCRD recorder produces important details about
the number of floating-point operations (FLOPs) computed for each sequential task.

Usage Examples

The input data is a beta-carotene molecule (C40H56) in the 6-31G basis set, composed of
472 basis set functions. In these tests, all core electrons are kept frozen, and 296 electrons are
correlated. The beta-carotene molecule serves as a strongly representative test case of large molecular
complexes with a relatively small basis set. This is a fairly common use case for researchers. Thus,
in that context, the computational resource requirements for beta-carotene, both from the memory
and computational power perspective, represent a classic use-case scenario with large implications.
Figure 6 shows the distribution of task lengths and FLOPs count for five contractions (presented by
the different colors in the figure) with the highest workload in the case of beta-carotene. To calculate
the load, the SDE counters that monitor the total number of floating-point operations for each CCSD
contraction were used (e.g., FlopCount_I). For instance, the first contraction (t2_7_3) computes
327,680 DGEMMs (DgemmCount) and 32,557,729,032 FLOPs (32.5 GFLOPs) (FlopCount).
The x-axis shows the various length of the tasks, meaning the number of sequential DGEMMs per
tasks for each contraction. In the case of contraction (t2_7_3), there are two task lengths only, with
16 being the maximum number of sequential DGEMMs per task.

Figure 5. Trace of execution with idle time (left) and with better CPU utilization (right).

Data from the LengthPerTask_RCRD recorder is plotted by the bars, and the
FlopsPerTask_RCRD data is shown by the labels on top of each bar. For instance, contraction
t2_7_3, which happens to also be the most compute intensive portion of the code, has more than
24,000 tasks and approximately 2/3 of these tasks compute 16 sequential DGEMMs, while the other
8,000 compute eight sequential DGEMMs. Each of these 16,000 tasks performs over 20 GFLOPs
and the remaining 8,000 perform about 10 GFLOPs.

In summary, these tasks are very expensive, which ultimately limits the scalability of CCSD
because they execute serially—so they cannot take advantage of additional cores. It would be
beneficial to break down the computation of the CCSD methods into more fine-grained tasks, so that
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the serialization imposed by the traditional, linear algorithms can be transformed into parallelism,
allowing the overall computation to scale to larger computational resources.

Figure 6. PAPI SDE-Recorder logging task lengths and FLOPs count for NWChem CCSD.

Table 2. Registered SDEs in TAMM/NWChem to Enable Users to Gather CCSD-Specific
Details though PAPI

SDE Name (prefixed with
sde:::TAMM::) SDE Description

ContractionID_I ID of CCSD contraction (I=integer)

DgemmCount_I::ContrID=46 Total number of DGEMMs for CCSD ContrID=46
(I=integer)

FlopCount_I::ContrID=46 Total number of floating-point operations for CCSD
ContrID=46 (I=integer)

MaxTaskLength_I::ContrID=46
Maximum number of sequential DGEMMs per task
for CCSD ContrID=46 (I=integer)

LengthPerTask_RCRD_I::ContrID=46
Array of the number of sequential DGEMMs per task
for CCSD ContrID=46 (RCRD=recorder) (I=integer)

FlopsPerTask_RCRD_I::ContrID=46
Array of the number of FLOPs per task for CCSD
ContrID=46 (RCRD=recorder) (I=integer)

The PAPI SDEs can be leveraged in an equivalent way for REEs to expose performance metrics
that are specific to the chemical modeling of separations of adjacent REEs. Exporting these REE-
specific SDEs through a standard middleware, as established as PAPI, creates the opportunity for
the instrumentation to be reused by other developers and, more importantly, enables higher level
toolkits (e.g., TAU , Scalasca , Vampir , Score-P, HPCToolkit) to take advantage of it and include
it in their powerful analysis and visualization solutions without implementing a custom interface
for each library. The convenience of PAPI enables the collection of REE software-related and HPC
hardware-related performance counter data from across the entire compute system with a single
interface, and without putting the burden on the computational scientist to study and incorporate
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various library primitives for accessing counters on different systems. Usage examples on REE- and
actinide-containing systems are future items to be explored for exascale implementation.

3. Software Challenges and Advances

There are many software packages often utilized to model chemical compounds and materials.
Three software – NWChem/NWChemEx, MADNESS, and MPQC are discussed due to their
ability to model REEs and actinides and their active development to provide enabling capabilities at
the exascale level. Amongst the many software options, the authors discuss these three given their
widespread utilization across chemical modeling scope and their scalability. These software status are
highlighted with respect to modeling REEs and actinides.

3.1. NWChem/NWChemEx

NWChem (97) was designed and developed in the early 1990s to enable the use of high
performance computers to solve grand challenge problems, especially those of importance to the
DOE. At the time, the goals were to run efficiently and to scale well on gigaflop to teraflop computers.
Over the years, the architecture of NWChem was adjusted to enable computations on petaflop
computers. However, with the soon to be realized advent of exascale computers, it was realized
that the old architecture of NWChem had significant issues that would make it difficult to use
heterogeneous computers at scale. In particular, NWChem was not well suited to address the
increased scale of parallelism, the greater heterogeneity of the processors, the complex memory-
hierarchy, the limited ability to hide latency, and the necessary data abstraction and complexity for
new reduced scaling methods.

Fortunately, DOE initiated the Exascale Computing Project (ECP) (59) to ensure that scalable
scientific codes were available when the exascale computers came online. The NWChem team made
the difficult decision to design and implement an updated version of NWChem, NWChemEx, to
address the previously noted challenges. NWChemEx is designed with a focus on performance
and flexibility by decoupling concerns as much as possible through the use of modules and object-
oriented and functional programming styles. Each module is a self-contained, opaque, callable object
adhering to one of many possible standardized application programming interfaces (APIs). Toward
that end, a simulation development environment that enables separation of concerns and facilitates
incorporation of new methods, libraries, and methods has been developed. The use of C++ instead
of Fortran was seen as a positive step forward to enable this programming model and to allow for the
use of many of the other mathematical and computer science capabilities that were being developed
within ECP. The full redesign of NWChemEx allows us to flexibly address the issues discussed above
that will be paramount when dealing with exascale computations.

Another important aspect of the software development is the use of software engineering
practices that help to enable revision control, continuous integration testing, code coverage, code
quality tools, documentation generators, software distribution, peer review, and software
deployment. NWChemEx uses various tools to enable these capabilities with the core being GitHub,
Catch2 for unit testing, Gcov, Gcovr, Codecov, TravisCI, Doxygen, Sphinx, CMake, and Docker.
These tools all enable and support our code peer review that helps to provide internal mechanisms
for software improvements.

While having much larger computers is important to perform more realistic simulations, new
physical models are just as important. In this context, NWChemEx will be enabling sparse, reduced-
scaling methods as well as the conventional methods. For example, resolutions of identity, Cholesky
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decomposition, and domain-local pair natural orbital methods are being used at all levels of theory
to reduce the scaling of the computations. The goal is to enable the computation of on the order
of thousands of atoms using accurate, high-level quantum mechanical methods and one hundred
thousand to one million atoms using less accurate methods such as density functional methods.
This capability, combined with embedding techniques to combine the two regimes, will allow for
the realistic and accurate simulation of chemical systems and their energies and properties. While
the initial science capability is aimed at catalytic processes in zeolites, the capabilities within
NWChemEx will provide ubiquitous capabilities in many science domains. At this point,
NWChemEx does not have all of the infrastructure for REE and actinide chemistry, but the design
is in place to enable this capability future implementations. In particular, NWChemEx currently
does not handle effective core potentials, relativistic corrections such as Douglas-Kroll, and implicit
solvent methods required for more realistic simulations of the experimental conditions.

3.2. Multiresolution Adaptive Numerical Environment for Scientific Simulation (MADNESS)

MADNESS (98) started as an environment for fast and accurate numerical simulation in
chemistry (99) but rapidly expanded to include applications in nuclear physics (100), boundary value
problems (101), solid state physics, and atomic physics in intense laser fields (102). Other projects
such as MPQC and NWChemEx employ the MADNESS parallel runtime.

Applications to electronic structure (99) have primarily focused on single-particle methods
(HF and DFT) for molecules (103, 104). The MADNESS molecular DFT code includes energies,
gradients, solvation, and linear response for LDA, HF, GGA, and hybrid functionals, using localized
orbitals to reduce scaling of the computational cost with system size (including linear-scaling
Hartree-Fock exchange) (105). Computations beyond 3-D include time evolution in an intense
laser pulse of H2+ in 4-D (3 electronic and 1 vibrational) (102), and in 6-D with the first ever
numerical computation of the MP2 energy of a nonlinear molecule (106, 107). The most ambitious
such project is due to Bischoff (Humbolt University, Berlin) who has made steady progress towards
the goal of implementing full coupled-cluster energy and response properties in 6D on top of
MADNESS (108–110). Independent implementations have also been demonstrated (111, 112).

MADNESS employs adaptive multi-resolution algorithms for fast computation with guaranteed
precision and separated representations for efficient computation in many dimensions (99). Multi-
resolution analysis (MRA) allows a compact representation of sufficiently smooth functions with
arbitrary guaranteed precision, sparse representation of many differential and integral operators,
and fast algorithms for their applications, thus, realizing a basis-free fast computational integro-
differential calculus (113–115).

There exist only two widely-used numerical representations for solving the many-body Dirac
equation for all electrons in general molecules or periodic solids:

• Linear combination of atomic orbitals (LCAO), in which solutions are expanded in terms
of pre-optimized fixed sets of atomic-centered orbitals. Gaussian AOs (116) are used
almost exclusively, but Slater (117, 118) and numerical orbitals (119–121) can also be
used. (Note that only the basis used to expand the orbitals matters here; e.g., use of real-
space representations or plane waves for intermediate quantities to accelerate LCAO
computations, such as in the pseudospectral method, still fall under the LCAO umbrella.)

• Muffin-tin-like approaches which utilize separate representations in the interatomic
(interstitial) region, typically described by plane waves, and the spherical intraatomic
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regions, which are described by a variety of analytic and numerical forms. These include
full-potential linear muffin-tin orbital method (LMTO) (122), linearized augmented plane
waves (LAPW) (123) APW+lo (124, 125) and other full-potential cousins of the original
APW approach (118). Other related methods (126) are in principle also usable for all-
electron relativistic computations.

Unlike the conventional LCAO representation, where the basis is chosen a priori, the MRA
representation has no predefined basis. The basis to represent a given function (e.g., a molecular
orbital) is extended adaptively (where needed) until the user-defined precision threshold ε is
reached. The abilities to compute solutions with guaranteed precision and speed (O(N) in the basis
size) are the crucial advantages of the MRA representation over LCAO. To guarantee precision,
every function (O(104) in a large calculation) has an independent and dynamically refined mesh,
and composing functions or applying operators can change the mesh refinement. These meshes
are represented as k-d-trees – i.e., trees in either 3 or 6 spatial dimensions for one or two electron
problems, respectively. Typically, these trees are poorly balanced and change very dynamically and,
hence, pose significant challenges for computation on a parallel machine. For instance, in simulating
high-harmonic generation in an intense infra-red laser pulse the electron is literally ripped hundreds
of atomic units of distance from the atom only to be brought back to rescatter off the nucleus.

Recently Harrison and co-workers demonstrated (127) the first converged numerical solution
of the Dirac-Fock equations for general non-linear molecules using the MRA representation. Our
novel approach extended the integral (Lippmann-Schwinger) equation approach employed in the
non-relativistic setting by using the relationship between the Dirac and Schrodinger free-electron
Green’s functions (128). The Dirac Green’s function defines a 4x4 matrix of integral operators that
can be accurately and efficiently applied in the MRA representation. Crucially, in subsequent work,
Beylkin proved that the iteration employing this Green’s function to solve the Diract equation is
globally and robustly convergent to the sought electronic states, without any need to impose ad hoc
kinetic balance conditions upon the basis set to avoid collapse to negative-energy (positronic) states.
This new relativistic capability has the same robust error control and scaling of computational cost
as demonstrated for the Schrodinger equation. The MRA representation is capable of depicting the
finest scale details of the molecular spinors; for some spinors as many as 18 levels of refinement were
needed in order to describe accurately the nuclear penetration of the spinors. Although the current
code is only a pilot implementation of the method, since it is missing many optimizations as well
as necessary features such as treating open shells, its superior precision relative to Gaussian AOs is
motivating its further development that will enable calculations free of basis set error on systems
containing lanthanides and actinides.

From the outset, the twin goals of both performance and productivity were paramount.
Performance means enabling efficient computation on systems spanning from laptop to exascale
supercomputer. To this end, MADNESS introduced its own parallel runtime that is fully
asynchronous and employs task-based parallelism to utilize multi-core processors.

The MADNESS runtime has evolved into a powerful environment for the composition of a wide
range of parallel algorithms on many distributed data structures including trees in MADNESS and
the sparse tensors in TiledArray. The central elements of the parallel runtime are a) futures for hiding
latency and managing dependencies, b) global namespaces with one-sided access, c) remote method
invocation in objects in global namespaces, and d) dynamic load balancing and data redistribution.
An application in the MADNESS runtime can be viewed as a dynamically constructed DAG, with
futures as edges. Moreover, the structure of the discontinuous, high-order, spectral-element basis
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results in key computational steps being phrased as small matrix-matrix operations that are very well
suited to modern processors that emphasize cache locality and use of SIMD functional units.

Productivity means addressing the semantic gap that inflates a few pages of equations into
millions of lines of software (the size of a typical quantum chemistry package). At the lowest level,
this is addressed in part by the MADNESS parallel runtime strongly separating the responsibilities of
the programmer expressing parallelism and the runtime managing data and scheduling computation.
At the highest level a prototype domain specific language, which maps nearly one-to-one onto the
C++ API, means that application codes are written in terms of the functions and integro-differential
operators of the physics equations being implemented, rather than in terms of matrix elements and
coefficients.

The limitation to these choices is due to the need to describe small (high-energy) states of
core electrons explicitly, i.e., without a pseudopotential; plane waves alone or traditional real-space
numerical representations (grids, finite elements) cannot economically represent such tightly-
localized states. Furthermore, if accurate ab initio (post-DFT) treatment of electron correlation is
desired, LCAO becomes the primary choice. This is largely due to the fact that compact sets of
nonvalence unoccupied states, the most convenient building block for dynamical correlation, can
be constructed a priori from inexpensive atomic computations and fixed once and for all; MT-like
representations are more verbose, i.e., use significantly more basis functions than the AO based
counterparts. Computation of operators in the LCAO representation is also simpler – due to the
single functional form of the basis – than in the muffin-tin-like approaches which combine multiple
types of bases.

3.3. Massively Parallel Quantum Chemistry (MPQC) Program

MPQC (129) is a large-scale research platform for electronic structure molecules and materials.
Its development began at Sandia National Laboratories in the early 1990s, motivated by the need
to deploy electronic structure methods on shared and distributed memory machines that became
available to the community at the time. To reach these objectives the MPQC team recognized the
need to employ abstractions that went beyond simple message passing; thus both hybrid (intranode
tasking + message passing) and partitioned global address space (PGAS) abstractions were
prominently used throughout the code. MPQC was the first large-scale molecular electronic
structure package to be implemented in C++, utilizing its support for object oriented and generic
(templates) programming styles. The modular design of MPQC facilitated code reuse within the
package and composition with external packages.

In the 2010s, the MPQC package was redesigned almost from scratch to address several pressing
challenges, which included:

• the rapidly growing complexity of HPC platforms that nowadays feature 100s of execution
units within the node, the extreme size of high-end distributed memory HPC platforms
(spanning 10s and 100s of thousands of nodes), and the growing importance of
heterogeneous hardware and the associated asynchronous programming models;

• critical importance of reduced-complexity algorithms for modern accurate electronic
structure methods; and

• increasing costs of maintaining legacy C++ codebase and the need to exploit the full power
of modern C++.
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Today’s MPQC is based on the multiparadigm MADNESS parallel runtime (98) that supports
traditional (message-passing, threads) and advanced (active messages, distributed task graphs,
distributed object model) techniques for writing parallel algorithms, allowing to hide latencies across
the entire memory hierarchy (intranode and internode) and interoperate naturally with the
asynchronous heterogeneous programming models (e.g., CUDA). The TiledArray block-sparse
tensor framework (130) allows facile high-level composition of conventional and reduced-scaling
mean-field and many-body algorithms in MPQC. The latest MPQC fully leverages the power of
modern C++ (the 2017 ISO standard) and can exploit heterogeneous (CUDA-based) platforms for
a key subset of its functionality (131).

TiledArray (132), a modern C++ framework (130) for parallel data-sparse tensor algebra
translates sparse tensor algebra into a dataflow-style depiction of operators. Supporting block-sparse
and other non-standard tensor structures is a significant structural challenge that needs to be exposed
to the algorithm in a comprehensive way. Dense matrix and tensor algebra have well established
strong-scaling algorithms with theoretically proven bounds for data movements, but extension of
these algorithms to unstructured sparse tensor computation is far from straightforward. To address
these challenges and deal with the ramifications of sparsity, TiledArray extends upon the capabilities
of the task-based MADNESS while putting forward several features that distinguish TiledArray from
most other tensor algebra frameworks, such as the Tensor Contraction Engine (133): 1) TiledArray is
domain-neutral, composable via a high-level DSL and is broadly applicable in chemistry, condensed
matter physics, quantum information theory, and applied mathematics; 2) it is a standalone generic
framework, not part of a monolithic package, and is designed to be easily reusable and customizable
to a science domain; and 3) it is designed to support dataflow-style concurrent execution of dense
and data-sparse tensor algebra.

While not specifically a Domain Specific Language, TiledArray supports multiple levels of
composition, from the low-level interface dealing with individual tiles and tasks to the top-level
end-user interface for composing complex tensor expressions, e.g., the right-hand side of a simple
linear tensor equation of one of the simplest many-body electronic structure method. Recently
TiledArray has been extended to support multiple underlying task-based runtimes (such as PaRSEC
and MADNESS), and to support rising hybrid architectures, multi-GPU multi-node platforms while
delegating the onus of resource management and scheduling to the underlying runtime system.

To address the pressing needs of the REE and actinide chemistry community the MPQC team
is developing support for all-electron relativistic Hamiltonians. Accurate treatment of realistic large
models of experimental systems will be possible by the use of several existing types of reduced-scaling
coupled-cluster formalisms. The basis set error of many-body methods can be robustly reduced by
the use of explicitly correlated formalisms, also already available in the package. Lastly, the needs for
robust treatment of strong correlation will be addressed by the ongoing development of sparse CI and
other electronic structure models.

4. Artificial Intelligence

Advances in supercomputing have enabled HPC capabilities in Artificial Intelligence (AI) to
accelerate findings across disciplines. Unlike the challenges with efficient utilization of HPC
resources from traditional software packages to model chemical systems, advanced data science
stemming from AI techniques can readily take advantage of increased HPC resources. However,
applications of AI to modeling REEs and actinides in applications relevant to optimization of
separations, binding selectivity, and recycling – key areas to solve REEs and actinides challenges – are
in its infancy.
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AI encompasses various advanced computational techniques, including machine learning, deep
learning, symbolic AI, Bayesian networks, and support vector machine, amongst others. AI
techniques rely on previously collected data sets to train algorithms to generate predictive capabilities
to provide insight into properties of interest. Predicting properties of REE- and actinide-containing
systems relevant to solutions to guarantee a healthy supply of these elements (from extraction to
purification) and those needed for waste management and environmental concerns requires
thermochemical data. These data are challenging when needing to obtain strong, reliable, and
complete data sets to train algorithms for AI applications. Populating these data sets require a large
amount of experimentally obtained results or theoretical values from predictive modeling. As
discussed in previous sections in this chapter, accurate modeling of REE- and actinide-containing
compounds faces great challenges due to the limitations in the software’s capability to make efficient
use of current HPC resources. Therefore, obtaining a reliable data set to model properties needed for
binding and separation optimization for REEs and actinides is highly limited.

For example, AI techniques including machine learning and deep learning have been applied
to predict properties of materials, including chemical and spectroscopic characteristics for various
systems (134–142), but applications to thermochemistry of REEs and actinides remain scarce. A
recent review of learning-based techniques in nuclear science and engineering discusses the
utilization of machine learning in nuclear technologies, highlighting detection through gamma
spectroscopy and reactor health monitoring, radiation protection, environmental monitoring, and
materials, amongst others (143). Other AI applications (including machine learning and deep
learning) in radiochemistry have included detection of gamma-ray sources, and radiotherapy to
enhance cancer treatment (144–150). Machine learning has also been utilized in nuclear forensics
to determine dispersion of airborne particles, and monitoring and detection for identification of
radioactive particles (151, 152). Modeling of nuclear reactors anomalies detection and sensor
training in nuclear plants has included deep learning approaches (153), amongst others.

Developing software such as NWChemEX, MADNESS, and MPQC to make efficient use of
exascale resources will accelerate opportunities for creating data sets for AI applications. This will
provide valuable advances to predict chemical reactions critical in optimization of separations and
selective binding to REEs and actinides.

5. Protocol to Evaluate Complexation Preferences in Separations of REEs and
Actinides through Computational Modeling

There are many areas that can benefit from modeling REEs and actinides, including applications
in synthesis of REE- and actinide-containing compounds, characterization and detection driven by
spectroscopic analysis, and other uses. Although beyond the scope of the discussion in this section,
excellent examples of traditional computational modeling in these areas are provided in works by
Vallet, Bagus, Knope, Peterson, Batista, Yang, Gagliardi, Peterson, Dixon, Kaltsoyannis, and others
(154–180). In this section, highlights are provided for a systematic protocol to evaluate complexation
preferences of specific interest in separations through applications of computational modeling.

Optimization of separations of REEs and actinides is critical in many areas, including efforts to
guarantee a supply of REEs, purification processes needed for radiotherapy, to manage radiological
waste, and for environmental and energy concerns. Selective separation of REEs is challenging due
to the similar chemistries presented by these elements, and the need for expert facilities to handle
radiation and safety concerns. The need for novel solutions to this challenge is clear, and it can be
addressed by accelerating the understanding and development of selective extracting processes for
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efficient separation from ores and recycling. Trial-and-error experimental approaches to advance
solutions for REEs and actinides present challenges due to limitations in the availability of materials
and the need for expert facilities to handle radioactive elements. Therefore, computational modeling
is essential to advance solutions for REEs and actinides. HPC-enabling capabilities are critical to
provide application-ready tools to the community. However, as previously discussed, the current
HPC ecosystem is not optimum to facilitate the computational modeling needed. Given available
software/hardware integration, some useful qualitative descriptions can be provided to aid selective
separations of REEs and actinides.

Current efforts in modelling REE and actinide separations include a large variation in choices
of levels of theory (methods, basis sets, etc.) often providing qualitative non-systematic descriptions
(i.e., appropriate for one REE or actinide but not another). There have been great strides in applying
currently available HPC resources (181–195). These efforts highlight the limitations in accurate
descriptions of separations thermochemistry in this area.

Previous studies of [Ln(NO3)]+2 and [An(NO3)]+2 in gas and aqueous phases for the entire
lanthanide and actinide series illustrated the need to apply predictive many-body methods to such
systems, underscored by often drastic differences between binding energies (ordinary and
differential) calculated with CCSD(T)/CBS and DFT (with even more variations within functional
and basis sets of choice) (196, 197). For example, the differential in some contiguous actinides
such as in Pu/Am binding energies were predicted to be +24.47 kcal/mol with CCSD(T)/CBS
and -20.00 kcal/mol with B972/6-311++G** (196, 197). Of course, one of the challenges is that
the conventional CCSD(T) method scales as O(N7) while DFT scales as O(N3), where N is the
number of basis functions in the system. This makes it difficult to scale the canonical high accuracy
methods to large systems without improved methodologies and HPC. Recently, binding data was
obtained for actinium and lanthanum with formic and acetic acids using pseudopotential and all-
electron CASPT2, CCSD(T), MP2, and DFT with various functionals and basis sets (198, 199)
(shown in Figure 8 and described in the Appendix). Yet again, strong variations of the differential
binding energies are observed within DFT results obtained with different functionals and basis sets,
between DFT and reliable many-body predictions, and between pseudopotential and all-electron
computations.

Advancing efficiency in separations of REEs and actinides by addressing binding selectivity
through computations can extend beyond accurate predictive thermochemistry. Some of these
properties include electron withdrawing and donation effects, structural characteristics, electronic
contribution to binding orbitals, sterics, speciation, and competition in solution. There are many
variables present when modeling binding environments in ion-exchange and solvent extraction
mechanisms for separations of REEs and actinides, including solvation effects, ligands’
characteristics, backbone variations, alkyl substitutions, solvents, ions in solution, speciation,
temperature, and pH.

Thermochemical calculations are often utilized when seeking quantification. This involves
calculations of Gibbs free energies of reaction (including enthalpic and entropic effects) which relate
to the reaction constants and distribution coefficient driving the reactions in separations. However, as
previously discussed, given the limitations in utilization of high level theory methods with the current
software in the unbalanced hardware-software ecosystem available, highly accurate quantitative
predictions are often not feasible for real-size fully complexed REE- and actinide-containing systems
of interest in separations. Nonetheless, there is much qualitative information that can aid in
optimization of separations by providing insight into complexation preferences, which, if adjusted,
can accelerate targeted binding in selective separations. A protocol to provide qualitative information
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including five evaluations steps is described below. These steps take in consideration stages in the
complexation and binding preference between the time in which the REE or actinide is fully hydrated
(i.e., complexed with only water molecules) to a state in which it is fully complexed with only ligands
and no water molecules (solvent extraction), or ligands and waters (ion-exchange). These steps
consist of an evaluation of: (1) coordination number, (2) coordination geometry, (3) complexation
mechanism, (4) preferential binding, and (5) other binding characteristics.

• Coordination number: The coordination number of REEs and actinides show variations
(10, 53). For example, lanthanides present a coordination number preference of 8 and 9,
for lighter and heavier lanthanides, respectively, with actinides allowing for a wider range.
Depending on the environment (ions in solution, ligands’ chelation characteristics, and
other factors) the coordination number may change. To illustrate this first step, Figure 7
shows a plot which aids in the evaluation of complexation by providing the researcher with
a simple visual which shows the coordinating atoms. In the example illustrated in Figure 7,
einsteinium is complexed with 4-hydroxy-5-iodo-2,3-dimethoxy-6-methylbenzoic acid.
The result shows a clear limit of nine coordinating oxygen atoms from six ligands in an
EsR3(HR)3 configuration. The coordination shell includes coordinating oxygen atoms
between 2.38 and 2.70Å, with an outer coordination shell starting at 3.89Å.

• Coordination geometry: The coordination analysis provides structural information
about the compound. In the example shown in Figure 7, it can be seen that the
coordination shell is composed by nine oxygen atoms from which six are from the
carboxylate groups (deprotonated ligands) binding with the metal in a bidentate form, and
three oxygen atoms from carboxyl groups in a monodentate binding. All other oxygen
atoms are clearly outside the coordination shell (with Es-O interatomic distances larger
than 3.89Å. This type of evaluation provides fundamental information about the
coordination preferences, solvation shells, and often chelation competition from ions in
solution, which can provide critical information to tailor separation environments to
optimize selective binding.

• Complexation mechanism: In this step, the complexation mechanism is evaluated, which
includes step-wise reactions and systematic additions. Understanding how the
complexation occurs is a critical step to design optimized processes for selective binding.
Experimentally, one can measure/characterize when the REE is extracted into the organic
phase (or separated) after initially being in in the aqueous phase. However, the process in
which the ligands complex with the REE cannot be easily evaluated in a step-wise fashion
experimentally. This requires proposed step-wise addition of ligands while removing water
molecules from the coordination shell (for a separation process in which the initial stage is
an aqueous phase). This computational visualization is similar to that shown in Figure 7,
but also includes competing ions and water molecules (200).

• Preferential binding: Preferential binding in complexation of REEs and actinides can be
qualitatively addressed to determine preferences not just inferred from thermodynamic
calculations, but focusing on structural characteristics that can drive binding preferences
(for example, as it was observed in actinyls bound with ligands producing delocalization
in chelation) (201). Creating relative binding preference plots calculated for various
separation environments to evaluate binding preferences can also contribute to selective
separations. When the size of the molecular system is suitable for high level accurate
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calculations, thermochemical predictions can predict the binding preference; however, as
previously discussed, for fully complexed systems, this is often not feasible with current
computing resources. In this case it can be helpful to create maps that survey
thermochemical properties, such as Gibbs free energies of reaction, with lower-level
methods (feasible to be calculated with currently available computing resources) against
target high-level methods. Maps of this nature have been built for lanthanides and actinides
across the series bound with nitrates, including targets with CCSD(T)/CBS (196, 197).
Evaluations including Gibbs free energies of reactions calculated with multireference
methods have been pursued in efforts including separation of actinium and lanthanum
(as shown in Figure 8) (198, 199). Including relativistic effects from spin-orbit properties
can also be challenging to calculate for fully complexed systems. Spin-orbit contributions
calculated using the X2C-Dirac-Hartree-Fock showed that the contribution to the Gibbs
free energy of reaction in a study of lanthanides bound with nitrates was less than 0.5 kcal/
mol (except for Pr, which results shows 3.8 kcal/mol) (196). This type of analysis can aid
in determining efficient methods to predict qualitative preferential binding.

• Binding characteristics: In this step, other properties that can drive binding preferences,
such as electron withdrawing/donation effects, and delocalization in chelation are
evaluated. Previous work in which binding strength is correlated directly to structural
characteristic and electron donation/withdrawing effects in actinides bound with cyclic
imide dioximes (201) and nitrates (197), revealed strong qualitative predictive insights.

Figure 7. Einsteinium coordination with 4-hydroxy-5-iodo-2,3-dimethoxy-6-methylbenzoic acid in
EsR3(HR)3.

Conclusion

Accelerating solutions to guarantee a healthy supply of REEs and efficient handling of actinides
to fulfill national and global needs requires accurate computational modeling. Computational
techniques ranging from electronic structure modeling to applications of AI require HPC. Traditional
modeling involving electronic structure theory through software packages, such as NWChemEX,
MADNESS, and MPQC needs advances in hardware-software integration to enable software to
make efficient use of HPC resources. The great increase observed in hardware architectures, as shown
in the global TOP500 list compiled since 1993, indicates immense promise on continuing advances
in supercomputers. Recent investments from the U.S. DOE into the Exascale Computing Project
provide encouraging efforts in creating a more balanced hardware-software ecosystem in which not
only the hardware sees advances, but also the software are designed to make efficient use of the
most advanced HPC architectures. As the community moves onto the HPC exascale era, redesigned
and newly developed software will allow for accurate predictive capabilities to optimize separations
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and binding preferences of critical materials. This will be possible from accurate predictive
thermochemistry utilized in direct chemical analysis, and for creating robust data sets for AI
applications. This will enable finding solutions for REEs and actinides in their myriad of applications
in energy, defense, medical treatments, and environmental needs.

Figure 8. Relative Gibbs free energies of reaction calculated for La(HCO2)3, Ac(HCO2)3, La(CH3CO2)3,
and Ac(CH3CO2)3, as described in the Appendix.

Associated Content

Table A1 and Table A2 include a list of the number one supercomputer in the TOP500 list from
1993 through 2020. The Appendix text includes computational details relevant to section 5.
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Appendix

Table A1. Number 1 Supercomputer in TOP500 List from 1993 to 2020—Specs, Site, and
Vendora

Year List Computer Country Site Specs Vendor

2020

Nov
Supercomputer

Fugaku
Japan

RIKEN Center for
Computational

Science

A64FX, 48C, 2.2
GHz, Tofu

Interconnect D
Fujitsu

June
Supercomputer

Fugaku
Japan

RIKEN Center for
Computational

Science

A64FX, 48C, 2.2
GHz, Tofu

Interconnect D
Fujitsu

2019

Nov Summit
United
States

Oak Ridge National
Laboratory

AC922, IBM
POWER9 22C

3.07GHz,
NVIDIA Volta

GV100, Dual-rail
Mellanox EDR

Infiniband

IBM

June Summit
United
States

Oak Ridge National
Laboratory

AC922, IBM
POWER9 22C

3.07GHz,
NVIDIA Volta

GV100, Dual-rail
Mellanox EDR

Infiniband

IBM
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Table A1. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Specs, Site, and Vendora

Year List Computer Country Site Specs Vendor

2018

Nov Summit
United
States

Oak Ridge National
Laboratory

AC922, IBM
POWER9 22C

3.07GHz,
NVIDIA Volta

GV100, Dual-rail
Mellanox EDR

Infiniband

IBM

June Summit
United
States

Oak Ridge National
Laboratory

AC922, IBM
POWER9 22C

3.07GHz,
NVIDIA Volta

GV100, Dual-rail
Mellanox EDR

Infiniband

IBM

2017

Nov
Sunway

TaihuLight
China

National
Supercomputing
Center in Wuxi

Sunway MPP,
Sunway SW26010

260C 1.45GHz
NRCPP

June
Sunway

TaihuLight
China

National
Supercomputing
Center in Wuxi

Sunway MPP,
Sunway SW26010

260C 1.45GHz
NRCPP

2016

Nov
Sunway

TaihuLight
China

National
Supercomputing
Center in Wuxi

Sunway MPP,
Sunway SW26010

260C 1.45GHz
NRCPP

June
Sunway

TaihuLight
China

National
Supercomputing
Center in Wuxi

Sunway MPP,
Sunway SW26010

260C 1.45GHz
NRCPP

2015

Nov Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

June Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

29
 Penchoff et al.; Rare Earth Elements and Actinides: Progress in Computational Science Applications 

ACS Symposium Series; American Chemical Society: Washington, DC, 2021. 



Table A1. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Specs, Site, and Vendora

Year List Computer Country Site Specs Vendor

2014

Nov Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

June Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

2013

Nov Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

June Tianhe-2A China

National
Supercomputing

Center in
Guangzhou

TH-IVB-FEP
Cluster, Intel Xeon

E5-2692 12C
2.200GHz, TH
Express-2, Intel
Xeon Phi 31S1P

NUDT

2012

Nov Titan
United
States

Oak Ridge National
Laboratory

Cray XK7,
Opteron 6274 16C

2.200GHz, Cray
Gemini

interconnect,
NVIDIA K20x

Cray HPE

June Sequoia
United
States

Lawrence
Livermore National

Laboratory

BlueGene/Q,
Power BQC 16C

1.60 GHz, Custom
IBM

2011

Nov K computer Japan

RIKEN Advanced
Institute for

Computational
Science (AICS)

SPARCC64 VIIIfx
2.0GHz, Tofu
interconnect

Fujitsu

June K computer Japan

RIKEN Advanced
Institute for

Computational
Science (AICS)

SPARCC64 VIIIfx
2.0GHz, Tofu
interconnect

Fujitsu
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Table A1. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Specs, Site, and Vendora

Year List Computer Country Site Specs Vendor

2010

Nov Tianhe-1A China
National

Supercomputing
Center in Tianjin

NUDT TH MPP,
X5670 2.93GHz

6C, NVIDIA
GPU, FT-1000 8C

NUDT

June Jaguar
United
States

Oak Ridge National
Laboratory

Cray XT5-HE
Opteron 6-core

2.6 GHz
Cray HPE

2009

Nov Jaguar
United
States

Oak Ridge National
Laboratory

Cray XT5-HE
Opteron 6-core

2.6 GHz
Cray HPE

June Roadrunner
United
States

Los Alamos
National

Laboratory

Bladecenter QS22/
LS21 Cluster,

PowerXCell 8i 3.2
GHz / Opteron

DC 1.8 GHz,
Voltaier Infiniband

IBM

2008

Nov Roadrunner
United
States

Los Alamos
National

Laboratory

Bladecenter QS22/
LS21 Cluster,

PowerXCell 8i 3.2
GHz / Opteron

DC 1.8 GHz,
Voltaier Infiniband

IBM

June Roadrunner
United
States

Los Alamos
National

Laboratory

Bladecenter QS22/
LS21 Cluster,

PowerXCell 8i 3.2
GHz / Opteron

DC 1.8 GHz,
Voltaier Infiniband

IBM

2007

Nov BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM

June BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM

2006

Nov BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM

June BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM
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Table A1. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Specs, Site, and Vendora

Year List Computer Country Site Specs Vendor

2005

Nov BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM

June BlueGene/L
United
States

Lawrence
Livermore National

Laboratory

eServer Blue Gene
Solution

IBM

2004

Nov BlueGene/L
United
States

Department of
Energy

BlueGene/L DD2
beta-System (0.7

GHz PowerPC
440)

IBM

June Earth-Simulator Japan

Japan Agency for
Marine-Earth

Science and
Technology

NEC

2003

Nov Earth-Simulator Japan

Japan Agency for
Marine-Earth

Science and
Technology

NEC

June Earth-Simulator Japan

Japan Agency for
Marine-Earth

Science and
Technology

NEC

2002

Nov Earth-Simulator Japan

Japan Agency for
Marine-Earth

Science and
Technology

NEC

June Earth-Simulator Japan

Japan Agency for
Marine-Earth

Science and
Technology

NEC

2001

Nov ASCI White
United
States

Lawrence
Livermore National

Laboratory

SP Power3 375
MHz

IBM

June ASCI White
United
States

Lawrence
Livermore National

Laboratory

SP Power3 375
MHz

IBM

2000 Nov ASCI White
United
States

Lawrence
Livermore National

Laboratory

SP Power3 375
MHz

IBM
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Table A1. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Specs, Site, and Vendora

Year List Computer Country Site Specs Vendor

2000 June ASCI Red
United
States

Sandia National
Laboratories

Intel

1999

Nov ASCI Red
United
States

Sandia National
Laboratories

Intel

June ASCI Red
United
States

Sandia National
Laboratories

Intel

1998

Nov ASCI Red
United
States

Sandia National
Laboratories

Intel

June ASCI Red
United
States

Sandia National
Laboratories

Intel

1997

Nov ASCI Red
United
States

Sandia National
Laboratories

Intel

June ASCI Red
United
States

Sandia National
Laboratories

Intel

1996
Nov CP-PACS/2048 Japan

Center for
Computational

Sciences,
University of

Tsukuba

Hitachi /
Tsukuba

June SR2201/1024 Japan University of Tokyo Hitachi

1995

Dec
Numerical Wind

Tunnel
Japan

National Aerospace
Laboratory of Japan

Fujitsu

June
Numerical Wind

Tunnel
Japan

National Aerospace
Laboratory of Japan

Fujitsu

1994

Nov
Numerical Wind

Tunnel
Japan

National Aerospace
Laboratory of Japan

Fujitsu

June XP/S140
United
States

Sandia National
Laboratories

Intel

1993

Nov XP/S140
United
States

Sandia National
Laboratories

Intel

June CM-5/1024
United
States

Los Alamos
National

Laboratory

Thinking
Machines

Corporation

a This table was built from information available online, and it provides a unique view of the data unavailable in
other sources (54–57).
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Table A2. Number 1 Supercomputer in TOP500 List from 1993 to 2020—Cores, Rmax,
Rpeak, and Powera

Year List Computer Cores Rmax
(Teraflops/s)

Rpeak
(Teraflops/s) Power (kW)

2020

November
Supercomputer

Fugaku 7,630,848.0 442,010.0 537,212.0 29,899

June
Supercomputer

Fugaku 7,299,072.0 415,530.0 513,854.7 28,335

2019
November Summit 2,414,592.0 148,600.0 200,794.9 10,096

June Summit 2,414,592.0 148,600.0 200,794.9 10,096

2018
November Summit 2,397,824.0 143,500.0 200,794.9 9,783

June Summit 2,282,544.0 122,300.0 187,659.3 8,806

2017
November Sunway TaihuLight 10,649,600.0 93,014.6 125,435.9 15,371

June Sunway TaihuLight 10,649,600.0 93,014.6 125,435.9 15,371

2016
November Sunway TaihuLight 10,649,600.0 93,014.6 125,435.9 15,371

June Sunway TaihuLight 10,649,600.0 93,014.6 125,435.9 15,371

2015
November Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

June Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

2014
November Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

June Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

2013
November Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

June Tianhe-2A 3,120,000.0 33,862.7 54,902.4 17,808

2012
November Titan 560,640.0 17,590.0 27,112.5 8,209

June Sequoia 1,572,864.0 16,324.8 20,132.7 7,890

2011
November K computer 705,024.0 10,510.0 11,280.4 12,660

June K computer 548,352.0 8,162.0 8,773.6 9,899

2010
November Tianhe-1A 186,368.0 2,566.0 4,701.0 4,040

June Jaguar 224,162.0 1,759.0 2,331.0 6,950

2009
November Jaguar 224,162.0 1,759.0 2,331.0 6,950

June Roadrunner 129,600.0 1,105.0 1,456.7 2,483

2008
November Roadrunner 129,600.0 1,105.0 1,456.7 2,483

June Roadrunner 122,400.0 1,026.0 1,375.8 2,345

2007
November BlueGene/L 212,992.0 478.2 596.4 2,329

June BlueGene/L 131,072.0 280.6 367.0 1,433
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Table A2. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Cores, Rmax, Rpeak, and Powera

Year List Computer Cores Rmax
(Teraflops/s)

Rpeak
(Teraflops/s) Power (kW)

2006
November BlueGene/L 131,072.0 280.6 367.0 1,433

June BlueGene/L 131,072.0 280.6 367.0 1,433

2005
November BlueGene/L 131,072.0 280.6 367.0 1,433

June BlueGene/L 65,536.0 136.8 183.5 716

2004
November BlueGene/L 32,768.0 70,720.0 91,750.0

June Earth-Simulator 5,120.0 35,860.0 40,960.0 3,200

2003
November Earth-Simulator 5,120.0 35,860.0 40,960.0 3,200

June Earth-Simulator 5,120.0 35,860.0 40,960.0 3,200

2002
November Earth-Simulator 5,120.0 35,860.0 40,960.0 3,200

June Earth-Simulator 5,120.0 35,860.0 40,960.0 3,200

2001
November ASCI White 8,192.0 7,226.0 12,288.0

June ASCI White 8,192.0 7,226.0 12,288.0

2000
November ASCI White 8,192.0 4,938.0 12,288.0

June ASCI Red 9,632.0 2,379.0 3,207.0

1999
November ASCI Red 9,632.0 2,379.0 3,207.0

June ASCI Red 9,472.0 2,121.0 3,154.0

1998
November ASCI Red 9,152.0 1,338.0 1,830.0

June ASCI Red 9,152.0 1,338.0 1,830.0

1997
November ASCI Red 9,152.0 1,338.0 1,830.0

June ASCI Red 7,264.0 1,068.0 1,453.0

1996
November CP-PACS/2048 2,048.0 368.2 614.4

June SR2201/1024 1,024.0 220.4 307.2

1995

December
Numerical Wind

Tunnel 140.0 170.0 235.8

June
Numerical Wind

Tunnel 140.0 170.0 235.8

1994
November

Numerical Wind
Tunnel 140.0 170.0 235.8

June XP/S140 3,680.0 143.4 184.0
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Table A2. (Continued). Number 1 Supercomputer in TOP500 List from 1993 to
2020—Cores, Rmax, Rpeak, and Powera

Year List Computer Cores Rmax
(Teraflops/s)

Rpeak
(Teraflops/s) Power (kW)

1993

November XP/S140 3,680.0 143.4 184.0

June CM-5/1024
1,024.9/13/
21 3:13:00

AM0
59.7 131.0

a This table was built from information available online, and it provides a unique view of the data unavailable in
other sources (54–57).

Methods Utilized to Calculate the Gibbs Free Energies of Reaction of Lanthanum- and
Actinium-Containing Compounds

The Gibbs free energies of reaction for La(HCO2)3, Ac(HCO2)3, La(CH3CO2)3, and
Ac(CH3CO2)3 (shown in Figure 8) were calculated with optimizations in an aqueous phase utilizing
the Local Density Approximation (LDA) (202), the hybrid-GGA B3LYP (203) and PBE0 (204)
functionals, and the Strongly Constrained and Appropriately Normed Semilocal (SCAN) (205)
functional. The Stuttgart RSC Segmented ECP and associated basis set for lanthanum (206), and
the Stuttgart RSC 1997 ECP and associated basis set for actinium are utilized. The 6-31G* (207),
cc-pVDZ (208), 6-311++G** (207), cc-pVTZ (208), cc-pVQZ (208) basis sets are utilized for
carbon, oxygen, and hydrogen atoms. Gibbs free energies of reaction calculated as single point
calculations are obtained with spin unrestricted coupled cluster with single and double excitations
and with perturbative triples (CCSD(T)) and without (CCSD) (209, 210), second-order Møller-
Plesset perturbation (MP2) (211), and Complete Active Space Second-Order Perturbation Theory
(CASPT2) (212). Basis sets utilized for La and Ac in single point calculations include the all-electron
eXact 2-Component (X2C) based correlation consistent basis set with (cc-p(wC)VnZ-X2C where
n=D,T,Q,∞ (with ∞=Complete Basis Set extrapolation (CBS)) along with uncontracted versions
(denoted as (U)cc-pVnZ-X2C) (213, 214). Single point calculations include the 6-31G* and 6-
311++G** basis sets and the correlation consistent basis sets (cc-pVnZ and cc-pVnZ-DK where
n=D,T,Q,∞) for the C, O, and H atoms.

For HF Complete Basis Set extrapolations, the formula by Karton Martin (215) shown in Eq. 1
is used;

while the correlation energy is calculated with the extrapolation by Feller and co-workers, shown in
Eq. 2 (216)

Energies calculated with CCSD, CCSD(T), and MP2 include two correlation spaces (denoted
FSI and FSII). The correlation space for the FSI level includes the 6s6p5f electrons of the Ac atom,
the 5s5p4f electrons of the La atom, the 2s2p electrons of the C and O atoms, and the 1s electrons of
the H atom. The FSII level adds outer-core correlation by incorporating the 5s5p5d electrons of the
Ac atom, 4s4p4d electrons of the La atom, and the 1s electrons of C and O to the correlation space.
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Multireference calculations for the compounds are performed with CASPT2 at the FSI level of
correlation. An active space of 18 electrons and 16 orbitals that includes the π-bonding and non-
bonding lone pairs of the acetate/formate ligand and the f orbitals of the actinium and lanthanum
atoms are considered.

Spin-orbit relativistic effects are calculated with Dirac-Hartree-Fock with basis sets developed by
Dyall at a double-ζ level (217, 218). The effect of spin-orbit coupling (SO) in the proposed systems is
determined by the difference between the total energy using Dirac-Hartree-Fock and the total energy
using Spin-Free-Dirac-Hartree-Fock (shown in Eq. 3) as described by Dyall and co-workers (219)
and previously implemented by Peterson in basis set development of lanthanides (220) and actinides
(214, 221). This technique has also been previously applied to Gibbs free energies of reaction of
lanthanide (196) and actinide (197) nitrates. Gibbs free energies were also calculated using Dirac-
DFT methods with the eXact 2-Component (X2C) Hamiltonian with basis sets developed by Dyall
et. al. (Dyall-nZ where n= D,T) denoted as DB3LYP and DPBE0 along with DB3LYPSF and
DPBE0 for Spin-Free X2C Hamiltonian (222, 223).

The proposed binding reaction for La(HCO2)3, La(CH3CO2)3, Ac(HCO2)3 and
Ac(CH3CO2)3 is indicated in Eq. 4 and 5, describing binding in the gas phase (g) and in aqueous
environment (aq), respectively. [Note: Although La is not an actinide, for simplicity, the An general
notation is utilized throughout this appendix to indicate La and Ac.]

with An = La and Ac, and R− = HCO2− and CH3CO2−.
The Gibbs free energy of reaction for Eq. 5 and 6 is calculated as shown in Eq. 6 and 7,

respectively.

Relative Gibbs free energies of reaction, Δ(ΔG)rxn, between La- and Ac-containing compounds
(maintaining the ligand constant) in the gas and aqueous phases are calculated as indicated in Eq. 8
and Eq. 9, respectively.

with R− = HCO2− and CH3CO2−.
The geometry optimizations were obtained without symmetry constraints to avoid pre-

conceived symmetry assumptions, with tight tolerances, and extra fine grid. Some complex
frequencies were obtained for the gas phase structures, which were removed almost entirely by
applying the solvation model. DFT geometry optimizations, and harmonic vibrational frequency
calculations are obtained with the NWChem 6.8 package (224). The Natural Bond Orbital 7.0
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(NBO7) program (225) was used to obtain NBO (226) population analysis. CCSD, CCSD(T)
and MP2 single point calculations utilized Molpro2019 (227) default convergence criteria.
OpenMOLCAS version 18.0 (228) was used for the CASPT2 calculations. Spin-orbit relativistic
effects were calculated with Dirac-Hartree-Fock and Dirac-DFT with the DIRAC18 (229) package.
Partial charges, electron withdrawing effects, and orbital occupancies were calculated with Natural
Bond Orbital (NBO) (226). Aqueous phase calculations were obtained with the COSMO (230)
solvation model implemented in NWChem 6.8 to account for implicit solvation effects. Basis sets
and effective core potentials were obtained from the Basis Set Exchange (231–233).

The results stemming from the calculations described in this appendix were presented at ACS
symposia (198, 199).
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