
A New Recursive Implementation of Sparse Cholesky Factorization

J. J. Dongarra� P. Raghavany

Abstract

Consider the Cholesky factorization of a sparse symmetric positive de�nite matrix, A = LL
T . The �rst two

steps use symbolic, graph-theoretic techniques to order A to reduce �ll in L, and to determine the exact sparsity
structure of L. The factor L is computed in a third \numeric factorization" step. The two leading schemes for
numeric factorization are a blocked column-oriented scheme, and a multifrontal implementation. We propose a new
recursive implementation that could be viewed as a hybrid of these two schemes. The new scheme seeks to eÆciently
access the memory hierarchy on modern computers by a simple recursion on a \supernodal tree" associated with
L. Consider diagonal blocks in L numbered in post-order on the supernodal tree; now the recursive formulation is
equivalent to processing a sequence of dense diagonal blocks in L from the top left to the bottom right. Unlike the
multifrontal scheme, the new scheme does not require extra stack storage.

Key words: sparse matrix methods, sparse Cholesky, multifrontal factorization.

AMS subject classi�cations: 65F05,65F50.

1 Introduction

Consider the solution of a sparse linear system of the form Ax = b, where the matrix A is large, sparse, and symmetric
positive de�nite. A \direct" solution method computes the Cholesky factorization A = LLT and then solves triangular
systems Ly = b and LTx = y. The Cholesky factorization causes original zeroes in A to �ll-in and become nonzero
in L. The �ll-in depends on the sparsity structure of A and not on actual numeric values. Consequently, the overall
solution process is organized in the form of four steps. The �rst two steps are symbolic, i.e., use the graph of the
matrix A (i) to compute a �ll-reducing ordering or permutation of A, and (ii) to compute the nonzero structure of the
Cholesky factor of the reordered A. The last two steps are numeric and involve factorization and triangular solution
using static data-structures for the Cholesky factor (of the reordered matrix) obtained from step (ii).

The numeric factorization step is the most expensive; the symbolic steps typically require a small fraction of the
time required for numeric factorization [1, 7, 6, 8, 9, 13, 15, 18]. A simple column-by-column implementation with
columns in L stored using a standard sparse storage scheme is very ineÆcient on modern computers with deep cache-
hierarchies. The ineÆciency stems from indirect addressing and disregard for data-locality leading to both a larger
number of cache-misses and average clock-cycles per operation. Hence, a \cache-cognizant" implementation of the
numeric factorization step is critical for good performance.

Henceforth, let L be the Cholesky factor of the sparse matrix A after the application of a �ll-reducing permutation.
Cache-eÆcient numeric factorization schemes are based on exploiting e�ectively dense groups of columns within L.
The computation can then be organized as a set of suitable matrix-matrix and matrix-vector operations. Optimized
cache-eÆcient kernels are available for such matrix-matrix and matrix-vector operations through the Basic Linear
Algebra Subroutines (BLAS)[3, 11]. The two leading schemes for sparse numeric factorization are a column-block
approach and a multifrontal method [4, 5, 17, 20]. The two schemes di�er in the data-movement and in the amount of

�Department of Computer Science, The University of Tennessee, Knoxville TN, 37996-1301, dongarra@cs.utk.edu.
yDepartment of Computer Science, The University of Tennessee, Knoxville TN, 37996-1301, padma@cs.utk.edu.

16th IMACS World Congress (c
 2000 IMACS)

1

Recursive Sparse Cholesky Factorization 2

0 20 40

0

10

20

30

40

50

nz = 217

Sparse matrix

0 20 40

0

10

20

30

40

50

nz = 288

L in column−block form

0 20 40

0

10

20

30

40

50

nz = 288

Recursive structure of L

Figure 1: The structure of a sparse matrix and its Cholesky factor. The sparse matrix corresponds to a 7� 7; 5-point
�nite-di�erence grid reordered to reduce �ll; the structure of L can be viewed in the form of a column-block partition
or a recursive partition.

temporary storage during factorization. The multifrontal scheme has a recursive control and updates to later columns
from earlier columns are propagated through several dense submatrices that are on a stack (i.e., accessed in a \last in
�rst out" manner). In our experience, the multifrontal schemes show slightly higher execution rates than column-block
schemes. However, this higher performance comes at the expense signi�cant memory overheads. The latter can be a
substantial fraction of the total memory required for L. An intrinsic problem with sparse factorization methods is the
non-linear growth of memory requirements as a function of the matrix dimension. This problem is further exacerbated
with the extra memory requirements of a multifrontal scheme. We therefore explore a new formulation that tries to
combine the best features of both column-block and multifrontal approaches without incurring the memory overheads
of the latter.

Section 2 describes column-block and multifrontal schemes. In Section 3 we describe our new method. Section 4
outlines our plan of work.

2 Numeric Factorization Schemes

Consider the structure of the Cholesky factor of a sparse matrix reordered to reduce �ll. An example is shown in
Figure 1 for the sparse matrix of a model, �ve-point 7� 7 �nite-di�erence grid. This matrix is representative of the
class of sparse matrices from �nite-element and �nite-di�erence applications and we use it for illustrative purposes
throughout this paper. The columns of L can be grouped into \supernodes;" a supernode is a set of consecutive
columns that have nested sparsity structure. The lower triangular matrix induced by the columns in a supernode is
essentially dense in the subscripts of rows containing nonzeroes in the �rst (lowest numbered) column. For example, the
last set of seven columns in Figure 1 form a supernode. In general, columns of L can be partitioned into supernodes
easily [9, 16]. Columns within supernodes are treated as e�ectively dense submatrices and numeric factorization
schemes can thus exploit dense-matrix techniques to compute a sparse Cholesky factorization. The sparsity structure
of L can be viewed in terms of column-blocks or alternatively, in a recursive manner as shown in Figure 1.

As mentioned earlier, the two types of cache-eÆcient numeric factorizations are a column-block scheme and a
multifrontal scheme. The two schemes di�er in how they compute and apply updates to columns in a given supernode
from columns in earlier supernodes. As a consequence of sparsity, columns in a supernode need not be updated by
columns in all preceding supernodes. The data-dependence between supernodes is given by a supernodal tree. A
supernode s can be updated only by columns in supernodes within the subtree rooted at s; the exact subtree is related
to the row-subtree of the \elimination tree" of L [9, 16].

The column-block scheme of Ng and Peyton is a left-looking scheme [17]. The structure of L corresponds to
columns numbered in a post-ordering of the supernodal-tree. Supernodes are processed from left-to-right in what
amounts to a bottom-up computation on the supernodal tree. Consider columns in a supernode s; they are �rst
updated by relevant supernodes to the left of s in L and in the supernodal subtree rooted at s. Next, a dense Cholesky

Recursive Sparse Cholesky Factorization 3

1
2

3

4 5

6

7-9

19-21

43-49

16-18

15

13 14

12

10 11

7-9
3

6

19-21

43-49

19

7-9

7-9

21

43-45

19-21

43-45

16-18

19-21

47-49

Figure 2: The column-block data-structure associated with nodes in the supernodal tree for the Cholesky factor of
the sparse matrix shown in Figure 1.

factorization is computed for the diagonal block in supernode s. Finally, the sub-diagonal part of columns in supernode
s is updated by the newly computed diagonal block. The computation involves a \scatter" followed by matrix-matrix
BLAS operations. The dense matrix associated with a supernode is typically trapezoidal with more rows than columns.
Figure 2 shows a supernodal tree for the example in Figure 1. In this small example several supernodes have only
one column. However, for sparse matrices of interest, most supernodes will be considerably larger. In general, for
an N � N sparse matrix associated with a two-dimensional (three-dimensional) �nite-element mesh, the number of
columns in the largest supernodes is proportional to N1=2 (N2=3) [12].

The multifrontal scheme of Du� et. al. [4, 5] di�ers from the column-block scheme in how updates are performed.
Consider computation at a supernode s; all updates to columns in s are accumulated into matrices at supernodes
whose \parent" is s. That is, updates to the supernode s from all earlier supernodes are stored in matrices at
supernodes that are immediate descendants of s. This is recursively the case at every node in the supernodal tree. As
a consequence, there is extra (temporary) storage associated with each supernode to propagate updates to the parent
supernode. Let struc(s) denote the rows containing nonzeroes in the �rst column of supernode s; the matrix at s is
a jstruc(s)j � jstruc(s)j dense lower triangular matrix. Let columns(s) be the set of columns contained in supernode
s; the part of the matrix associated with columns(s) is called the \new" part and comprised columns of L. The rest
of the matrix is called the \update" part and contains the cumulative updates to ancestor supernodes of s; these
are not retained after the factorization process is completed. The implementation of multifrontal factorization in a
language such as C can be recursive [19]. The computation at a supernode s involves: (i) allocating storage for the
triangular matrix at s, (ii) adding updates from matrices at each child node, (iii) computing the Cholesky factorization
corresponding to columns in s, and (iv) accumulating updates to later supernodes in the update portion of the matrix
s. Most of the computations can be done using a modi�ed form of the dense Cholesky factorization routine available
in LAPACK [2]. The implementation can be very eÆcient; however, this eÆciency comes at the expense of additional
storage for the update part of the matrices at each supernode. Figure 3 illustrates the data-structure at each supernode
for the 7� 7 mode grid example.

3 A New Recursive Formulation of Numeric Factorization

Our new formulation can be viewed as hybrid of column-block and multifrontal schemes. It attempts to formulate
computations in terms of symmetric dense diagonal blocks computed from the top-left to the bottom-right in L. It
can also be restated as a recursion on the supernodal tree or the recursive sparse structure of L. Our main goal is
to obtain the high-performance of multifrontal schemes without paying the penalty of stack-memory overheads. As
shown in Table 1, the memory overhead can be a signi�cant fraction of the storage required for L. On average, the
overhead is greater than one half the storage for L for matrices in the test-suite in Table 1. These matrices were
ordered using the well-known Multiple Minimum degree scheme [14] and in several instances the overhead is as large
as the storage for L.

Recursive Sparse Cholesky Factorization 4

1 2

3

4 5

6

7-9

10 11

12

13 14

15

16-18

19-21

43-49

40-42

28-30 37-39

22 23 25 26

36

31 32
34 35

24 27 33

43-49

19-21

43-49

40-42

43-49

Figure 3: The dense triangular matrices associated with nodes in the supernodal tree in multifrontal factorization.

We also conjecture that a recursive control coupled with our new data-structures may lead to a more eÆcient
implementation . Our conjecture is based on recent results for dense Cholesky factorization; a recursive implementation
was shown to outperform a left-looking blocked implementation because of greater temporal locality of data coupled
with enhanced reuse of data in cache [10].

Owing to the sparsity of L, our recursive scheme di�ers substantially from the one for dense Cholesky. Our recursion
uses the natural recursive structure of L. The sparsity of L is a consequence of nested-dissection orderings as well as
suitable supernodal post-orderings after computing �ll-reducing permutations using greedy schemes. In general, the
structure can be represented as follows: 2

4
L11 0 Ls1

T

0 L22 Ls2
T

Ls1 Ls1 Lss

3
5

The L11 block is n1 � n1, the L22 block is n2 � n2, and Lss block is ns � ns, where n1 + n2 + ns = N for sparse
matrices of dimension N . Typically ns is of the order of N1=2 or N2=3. The matrix Lss is dense but the recursion
continues with blocks L11 and L22. Our new scheme can be stated recursively as follows:

� Recursively compute L11 and L22.

� Compute L1s as L11 � LT
s1 = AT

s1.

� Compute L2s as L22 � LT
s2 = AT

s2.

� Update Lss by L1s and L2s.

� Compute a dense Cholesky factorization of Lss.

An alternate but equivalent formulation can be stated in terms of a recursion on the supernodal tree. Unlike column-
block and multifrontal schemes which use a single matrix at each supernode, we associate a linked list of dense matrices
with each supernode. The recursion will be implemented using the supernodal tree and and the sequence of dense
matrices at each supernode. The update sequence for a supernode s will be maintained using information from \row-
subtrees" much as in left-looking column-block Cholesky. For the 7 � 7 model grid matrix, the recursive sparsity
structure of L is shown in the rightmost matrix in Figure 1; our data-structures are shown Figure 4.

4 Plan of Work

We are in the process of implementing our new recursive formulation. We will report on the performance of our
scheme on a variety of modern high-performance uniprocessor architectures such as the Intel Pentium, Sun Ultra-
Sparc and RISC processors from IBM and SGI. We will also present comparisons with column-block and multifrontal
implementations.

Recursive Sparse Cholesky Factorization 5

Table 1: Memory overheads for a multifrontal factorization of sparse matrices ordered using Multiple Minimum Degree;
on average, the overhead is 58.8% of the memory required for storing the Cholesky factor.

matrix rank jAj jLj L-memory Stack-memory
(103) (106) (106 bytes) (106 bytes) (%) L-memory

nasa2910 2910 88.60 .204 1.84 1.23 67
bcsstk24 3562 81.74 .294 2.51 1.65 66
bcsstk28 4410 111.72 .366 3.11 1.57 51
crystk01 4875 160.38 .991 8.26 8.47 102
bcsstk38 8032 181.75 .764 6.60 4.65 70
msc10848 10848 620.31 2.078 17.32 10.15 59
bcsstk17 10974 219.81 1.030 8.90 5.61 63
bcsstk18 11948 80.52 .680 6.26 4.83 77
vibrobox 12328 157.01 2.002 16.93 20.38 120
crystk02 13965 491.27 4.867 40.08 38.69 96
crystm02 13965 168.44 1.584 13.81 4.61 33
bcsstk25 15439 133.84 1.436 12.91 7.44 58
msc23052 23052 582.87 2.864 24.08 11.32 47
bcsstk36 23052 583.10 2.764 23.29 11.98 51
crystk03 24696 887.94 11.930 97.52 106.20 21
crystm03 24696 304.23 3.789 32.41 9.23 28
bcsstk37 25503 583.24 2.867 24.30 6.95 29
bcsstk35 30237 740.20 2.920 24.80 6.75 27
ct20stif 52329 1326.31 1.0695 88.97 59.89 67
nasasrb 54870 1366.10 11.961 99.77 45.69 46
cfd1 70656 948.12 32.435 267.32 148.58 56

mean 58.8

1
2

3

4 5

6

7-9

19-21

43-49

16-18

15

13 14

12

10 11

43-49

16-18

19-21

47-49

7-9

19-21

43-45

19-21

3

7-9

19

6

7-9

21

43-45

Figure 4: In our recursive formulation, the data-structure associated with a node in the supernodal tree consists of a
sequence of dense matrices.

Recursive Sparse Cholesky Factorization 6

References

[1] P. Amestoy, T. A. Davis, and I. S. Du�. An approximate minimum degree ordering algorithm. SIAM J. Matrix

Anal. Appl., 17:886{905, 1996.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKen-
ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Publications, 2nd edition, 1995.

[3] J. J. Dongarra, J.D. Croz, S. Hammarling, and I. S. Du�. An extended set of basic linear algebra subprograms.
ACM Trans. Math. Software, 14:1{17, 1988.

[4] I.S. Du� and J.K. Reid. The multifrontal solution of inde�nite sparse symmetric linear equations. ACM Trans.

Math. Software, 9:302{325, 1983.

[5] I.S. Du� and J.K. Reid. The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat.

Comput., 5:633{641, 1984.

[6] A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-Hall Inc.,
Englewood Cli�s, New Jersey, 1981.

[7] J. A. George. Nested dissection of a regular �nite element mesh. SIAM J. Numer. Anal., 10:345{363, 1973.

[8] J. A. George and J. W-H. Liu. An automatic nested dissection algorithm for irregular �nite element problems.
SIAM J. Numer. Anal., 15:1053{1069, 1978.

[9] J.R. Gilbert, E. Ng, and B.W. Peyton. An eÆcient algorithm to compute row and column counts for sparse
Cholesky factorization. SIAM J. Matrix Anal. Appl., 15:1075{1091, 1994.

[10] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM Journal

of Research and Development, 46(6), 1997.

[11] C. L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic linear algebra subprograms for fortran usage.
ACM Trans. Math. Software, 5:308{323, 1979.

[12] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal., 16:346{358,
1979.

[13] J. W-H. Liu. Modi�cation of the minimum degree algorithm by multiple elimination. ACM Trans. Math. Software,
11:141{153, 1985.

[14] J. W-H. Liu. Modi�cation of the minimum degree algorithm by multiple elimination. ACM Trans. Math. Software,
11:141{153, 1985.

[15] Joseph W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl., 11:134{172,
1990.

[16] J.W.H. Liu, E. Ng, and B.W. Peyton. On �nding supernodes for sparse matrix computations. SIAM J. Matrix

Anal. Appl., 14:242{252, 1993.

[17] E. G. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J.

Sci. Comput., 14:1034{1056, 1993.

[18] E. G. Ng and P. Raghavan. The performance of greedy ordering heuristics for sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl., 20(4):902{914, 1999.

[19] P. Raghavan. DSCPACK: A Domain-Separator Cholesky Package for solving sparse linear systems on uniproces-
sor, multiprocessors and NOWs, 1999. Available upon request.

[20] E. Rothberg and A. Gupta. An evaluation of left-looking, right-looking, and multifrontal approaches to sparse
Cholesky factorization on hierarchical-memory machines. Int. J. High Speed Comput., 5:537{593, 1993.

