
Developing an Architecture to Support the

Implementation and Development of Scienti�c

Computing Applications

Dorian C. Arnold and Jack J. Dongarra
Computer Science Department

University of Tennessee
Knoxville, TN 37996

[darnold, dongarra]@cs.utk.edu

Abstract

As scienti�c computing applications continue to become more com-

plex, it has become apparent, now more than ever, that there is a need

for robust software architectures to facilitate the conceptualization, de-

sign, implementation, deployment and maintenance of these applications.

This paper attempts to shed light on how the unique characteristics of sci-

enti�c computing applications, as well as computational scientists, make

impositions upon the framework used to support research e�orts. We use

our experience with NetSolve, a toolkit designed just for such interac-

tions, as a means to present the approach of one infrastructure intended

to support scienti�c computing and show how it implements the unique

model of using a single system to aggregate, manage and access distributed

hardware and software resources.

1 Introduction

Scientists and engineers have become almost completely reliant on the com-
puter as a tool for advanced modeling and simulation of their experiments and
analyses. Simulating anything, from the electromagnetic �eld of a difribulator
in a virtual human to warfare scenarios with tens of thousands of components
interacting together, is now possible thanks to advancements in computer tech-
nology. While the rapid rate of microprocessor performance growth has been
constant, decades ago scientists realized that an intuitive way to increase the
computational capacity of any single processor is by connecting multiple pro-
cessors together. Indeed, the scienti�c computing application (SCA) that runs
solely on a single processor has become a rare breed. Supercomputers, with mas-
sively parallel processors (MPP) or shared memory multi-processors (SMMP),
are very common and today's fastest computers operate at speeds of over 2
T
op/s. These speeds have been achieved by improved chip technology and

computing architectures that support parallel computing. While the innova-
tions of the computer engineers are increasing the speeds of microprocessors
and developing new paradigms to use them together, computer scientists are
exploring ways to increase computational capacities and capabilities via soft-
ware infrastructures. However, the computational scientist is now faced with
highly complex machines and the fact that both the accuracy and performance
of his code depend upon the level of his knowledge of the architecture(s) at hand.
Furthermore, since every SCA demands interdisciplinary expertise (mathemat-
ics, computer science, and the domain science at the very least,) there must be
simplistic ways for the computational scientist to leverage the e�ort of algorithm
developers, software system designers and hardware engineers and merge them
with his own specialties.

The emergence of technologies like PVM [1] and standards like MPI [2] show
strong e�orts to develop a common parallel programming environment. Even
more recently, there has been the emergence of the Grid [3] and Grid comput-
ing concepts that envision software technologies exploiting today's high network
connectivity to create a single, global virtual machine. However, little attention
has been focused on the computational scientists and what is required for them
to accomplish useful tasks without the colossal nightmare of becoming a com-
puter scientist and a mathematician (and maybe even a magician) overnight.
The goal of this article is to analyze the unique needs of SCAs and the peo-
ple that develop them in an attempt to establish the issues that supporting
software infrastructures should resolve. In the following, we also discuss the
NetSolve distributed computing environment which attempts to address these
issues in a practical and eÆcient way. Section 2 de�nes what we have found
to be the fundamental characteristics of scienti�c computing that should shape
the supporting scienti�c computing application infrastructure (SCAI). After a
general overview of the NetSolve system in Sect. 3, Sect. 4 evaluates some of the
features of NetSolve based on the gathered requirement of scientists and their
applications. What we hope to present is not only an introduction of NetSolve,
but a means by which to evaluate any infrastructure that claims to support
scienti�c computing based on the needs of that community.

2 Characteristics of Scienti�c Computing

Here, we talk about some of the common characteristics of computational sci-
entist and their SCAs that should impact the SCAIs the applications use.

Scienti�c applications typically have four phases as depicted in Fig. 1. Re-
gardless of whether the application is Graphical User Interface (GUI) based or
text based, the �rst phase entails the gathering and preparation of input data.
This may mean getting user input, allocating memory requirements, construct-
ing specialized data structures and the like. After the input is made ready, it
is passed to the computationally intensive phase of the process when complex
algorithms are run on the prepared data. After the data processing, often there
is an analysis phase which may be used to determine if further processing of

the data is necessary, among other things. The data processing and analyses
phases may undergo several iterations until �nally some output results are made
available. This may be in the form of textual output or graphical images that
visualize the simulation and/or its results.

Generation
Output

Analysis of
Results

Preparation
Input

Manipulations

Possible Data
Data

Processing

Figure 1: The four typical phases of a scienti�c computing application

To this point, we have made no mention of possible parallelizations that
may take place in the program. Typically, the only di�erence between parallel
applications and serial ones is that in a parallel application, the data processing
phase is distributed amongst multiple processors. From this point on, we as-
sume the more common scenario of a parallel application. Parallel applications
can be generally categorized into two classes of applications; this categorization
depends on whether or not there is communications amongst the computational
nodes during the computation. Figure 2 depicts what we will refer to as co-
operative parallelism where there is interprocess communication amongst the
computational nodes. Figure 3 shows the other kind of parallelism where there
are concurrently running modules on multiple processors, but no communica-
tions amongst the nodes; we term this independently parallel execution.

The common (and relevant) characteristics of these SCAs and their devel-
opers are described below. These have been collected from a variety of sources,
including [4] in an attempt to provide a complete picture of the demands of sci-
enti�c computing. The format of the items that follow is a detailed description
of the characteristic followed by a single (emphasized) sentence that summarizes
the impact that characteristic has on SCAIs:

Generation
Output

Analysis of
Results

Preparation
Input

Manipulations

Possible Data

to Processors
Data Distributed

Data Collection
Step

Figure 2: The parallel scienti�c computing
application with cooperative parallelism

Generation
Output

Analysis of
Results

Preparation
Input

Manipulations

Possible Data

to Processors
Data Distributed

Data Collection
Step

....

Figure 3: The parallel scienti�c computing
application with independent parallelism

�Knowledge Base of the Scientist
Whether it be a computational chemistry or nuclear engineering application,
the computational scientist will have a deep knowledge and understanding of
the concepts of their scienti�c domain. Often, they also possess a thorough
understanding of relevant mathematical concepts. However, their expertise in
programming and other aspects of software engineering is typically limited. In
larger collaborations, the application development is many times carried out by a
concert of domain scientists, computer scientists and, perhaps, mathematicians.
Not every organization and research e�ort can a�ord such luxuries, nor do they
wish to.
The SCAI must provide an easy and intuitive programming model that allows
computational scientist to integrate complex supporting software and highly-
optimized mathematical modules without advanced levels of expertise.

�Composition of Existing Software Components
To help alleviate the previous problem, the practice of providing highly opti-
mized numerical software libraries is very common. Numerical solvers (linear/non-
linear systems solvers, partial di�erential equation (PDE) solvers, eigensolvers,
etc.) are the fundamental subprograms found in practically all SCAs. Packages
like LAPACK [5], PETSc [6] and ARPACK [7] are only a few examples of such
packages that implement sophisticated techniques. As is the case with these ex-
amples, a wide array of this software is freely available, and even open-sourced.
For obvious reasons, the domain scientist will want to leverage the years, if not
decades, of research and development incorporated in the older packages or the
novel concepts and capabilities of the newer ones.

The SCAI must provide ways to easily incorporate largely varied types of com-
putational modules.

�Granularity of Computational Modules
The granularity of the computational modules can be de�ned as the relation
between the
oating point performance of the module and the average commu-
nication bandwidth of a single processor (Flop/Byte) [8]. A higher granularity
means that the computational modules take on large, atomic chunks of work at
a time, while a lower granularity implies that not much processing takes place
before data is transported. The granularity of the computational modules can
depend upon the class to which that module belongs. Lower level classi�cations
like a mathematical linear system solver (or even the matrix multiply routine
upon which the solver depends) leads to low granularities. Higher level clas-
si�cations like a data transformation module that incorporates linear systems
solvers, or an image processing module that uses a series of data transforma-
tions yield higher granularity. Depending on the speci�c application, it may be
warranted to use a large granularity, a small one, or both.
Varying granularities of computational modules must be supported; neither per-
formance nor ease-of-integration should depend upon granularity.

�Too Many Choices
As can be seen, there are many software packages available from a variety of
sources. While this allows for much
exibility when deciding which packages to
use, it also implies climbing a steep learning curve to determine the peculiarities
of each package to make a fair evaluation of which suit the purposes. The
veritable alphabet soup of packages available can be daunting, yet discovering
which package to use is the least of the troubles. As is the case of iterative
methods, an algorithm is only as good as the manner in which you use it.
Veterans of iterative methods agree that �nding the right combination of solver,
pre-conditioner, scaling and re-ordering is an art form developed only from
experimentation within the application area [9].
The SCAI must hide the complexities and intricacies of the underlying compu-
tational modules while providing convenient ways for the scientist to discover
what services he wants.

�Problem Capacity Often, the memory requirements or the processing de-
mands of the SCA exceed the capacity of workstations and requires multiple
processors to accurately and eÆciently solve the problem speci�cations. In
other cases, it may be that the only appropriate algorithms discovered by the
computational scientist involve code that only run on a particular server. Or,
combining these two scenarios, the only feasible solvers are specialized parallel
algorithms on a remote distributed memory MPP system [9].
The SCAI must be able to execute modules on remote servers in a reliable and
eÆcient way.

�Interaction Levels

Although there de�nitely is a place for GUIs in rapid prototyping and quick
experimentation with SCAs, generally, these high-performance computing ap-
plications can take hours, days and weeks to complete a single task. The user
may not want to keep his GUI open for that duration and de�nitely does not
want to be required to interact for that period. And while GUIs at times pro-
vide a more convenient programming model, the day has not yet arrived when
a graphical programming environment can implement a doubly nested for loop
executing a module hundreds of times more conveniently than a scripting lan-
guage.
Scripting capabilities must be available to allow users to chain complex combina-
tions of modules with as little sacri�ce of convenience and ease-of-use as possible.

�Code Maintenance and Enhancement
The fact that the FORTRAN programming language is still popular after nearly
50 years implies two fundamental things: i) the laws of inertia apply to computer
science as well (i.e. scientists and programmers are reluctant to diverge from
a platform that can work for their purposes after tremendous time and e�orts
have been invested) and ii) it is extremely important for codes to be backward
compatible and have a lifetime as long as possible. As a result, mixed-language
programming is very common in SCAs { hybrid applications now integrate C,
FORTRAN and object-oriented languages like Java and C++ to exploit the
di�erent advantages of each platform whether it be performance, maintenance,
security or programming methodologies (or, simply, code availability).
The SCAI must have multiple-language support and provide mechanisms which
allow users to easily replace components with newer, more optimized, or simply
corrected, versions without signi�cant code modi�cation.

�Criticality of Performance
Last, but by no means least, SCAs demand optimal performance. It is the very
nature of these high-performance applications to consume and dominate any and
all resources they can access and still require days and weeks of computational
time to complete. Data sets can easily extend into the hundreds of megabytes
and gigabyte range for a single application, and this too needs to be considered,
especially when data transfer to remote servers are involved.
The design of the SCAI must consider the performance impact of its component
interactions with respect to the tasks/services they are providing, as well as
the overhead of the SCAIs components place on a host (outside the context of
solving a particular problem), especially when the machine is not dedicated solely
to interaction via the SCAI.

3 The NetSolve Computational Environment

The NetSolve project is being developed at the University of Tennessee's Inno-
vative Computing Laboratory of the Computer Science Department. Its origi-
nal motivation was to alleviate the diÆculties that domain scientists encounter

when trying to locate/install/use numerical software, especially on multiple plat-
forms. Today, the name NetSolve has become a misnomer, as the system has
evolved into much more than a way to access numerical solver routines. Net-
Solve provides an environment that monitors and manages computational re-
sources, both hardware and software, and allocates the services they provide to
NetSolve-enabled client programs. It incorporates load balancing and schedul-
ing strategies to distribute tasks evenly amongst servers. Built upon standard
Internet protocols, like TCP/IP sockets, it is available for all popular variants
of the UNIX operating system, and parts of the system are available for the
Microsoft Windows '95, '98, '00 and NT platforms.

Figure 4 shows the infrastructure of the NetSolve system and its relation to
the applications that use it. NetSolve and systems like it are often referred to
as Grid middleware; this �gure helps to make the reason for this terminology
clearer. The shaded parts of the �gure represent the NetSolve system. It can be
seen that NetSolve acts as glue layer that brings the application or user together
with the hardware and/or software it needs to complete useful tasks.

UsersApplications

Fault Tolerance
Load Balancing

Server
NS

Server
NS

Client Library
NS

Server
NS

Resource Allocation
Resource Discovery

NS Agent

Figure 4: Architectural Overview of the NetSolve System

At the top tier, the NetSolve client library is linked in with the user's applica-
tion. The application then makes calls via NetSolve's application programming
interface (API) for speci�c services. Through the API, NetSolve client-users
gain access to aggregate resources without the users needing to know anything
about computer networking or distributed computing. In fact, the user does
not even have to know remote resources are involved. NetSolve currently sup-
ports the C, FORTRAN, Matlab, and Mathematica programming interfaces as
languages of implementation for client programs.

The NetSolve agent represents the gateway to the NetSolve system. It main-
tains a database of NetSolve servers along with their capabilities (hardware
performance and allocated software) and dynamic usage statistics. It uses this
information to allocate server resources for client requests. The agent, in its
resource allocation mechanism, attempts to �nd the server that will service the
request the quickest, balance the load amongst its servers and keep track of
failed servers. Requests are directed away from failed servers. The agent also

adds fault-tolerant features that attempt to use every appropriate server until
it �nds one that successfully services the request.

The NetSolve server is the computational backbone of the system. It is
a daemon process that awaits client requests. The server can run on single
workstations, clusters of workstations, symmetric multi-processors or machines
with massively parallel processors. A key component of the NetSolve server is a
source code generator which parses a NetSolve problem description �le (PDF).
This PDF contains information that allows the NetSolve system to create new
modules and incorporate new functionalities. In essence, the PDF de�nes a
wrapper that NetSolve uses to call the function being incorporated.

3.1 The Status Of NetSolve

Version 1.3 was released in May of 2000. Features implemented in this release
include a Java GUI to aid in the creation of PDFs, a Microsoft Excel inter-
face, more object data types, more server modules included with the distribu-
tion, and enhanced load balancing among other things. NetSolve-1.3, including
APIs for the Win32 platform, can be downloaded from the project web site
at www.cs.utk.edu/netsolve. NetSolve has been recognized as a signi�cant
e�ort in research and development, and was named in R&D Magazine's top 100
list for 1999. The reader is directed to [10] for further details of the system not
discussed in this article.

4 NetSolve and Scienti�c Computing

The NetSolve system, as mentioned in the previous section, was designed specif-
ically with the computational scientist in mind. The goal was to make his job
of advanced research in his domain easier by facilitating implementation and
deployment. This section compares the system with the requirements of the
scienti�c computing community as discussed in Sect. 2 by placing NetSolve's
features alongside the corollaries of that discussion. While much e�ort has gone
into the development of highly optimized software packages for the scientists and
engineers to use, and many groups are researching ways to make more eÆcient
use of aggregated hardware resources via software infrastructure, the NetSolve
project is one of the only systems that integrates both these concepts. We be-
lieve that this is the key to a complete SCAI.

� Corollary 1: The SCAI should provide an easy programming model and API
for novice non-computer scientists.

The NetSolve system allows for client users to embed functions from practically
any software library into their applications without having to install, learn or
maintain that package. With API's available to a wide variety of programming
environments like C, FORTRAN, Matlab and Mathematica, the scientist can

exibly choose his language of implementation. Fig. 5 shows an example Matlab

code, before and after the NetSolve API has been integrated. The code on the
left hand-side is making a call to a Matlab native function to multiply two
matrices A and B and store the result in C. The call to NetSolve, on the right
hand-side of the �gure, achieves the same end via the NetSolve framework.

B = load(input_matrix2);
C = matmul(A, B);

A = load(input_matrix1);
B = load(input_matrix2);
C = netsolve(‘matmul‘, A, B);

......

... ...

A = load(input_matrix1);

Figure 5: Sample Matlab code: Left side before NetSolve, right side after Net-
Solve integration

This example shows how NetSolve can be used to provide access to com-
plicated software modules without expert interactions of the user. Apart from
this module encapsulation, it allows one to create uniform interfaces of di�er-
ent packages of similar algorithms. For instance, the intricacies of the iterative
methods of sparse solvers like PETSc [6], AZTEC [11] and others can hidden
by a single common interface that takes an additional parameter de�ning the
software package to use.

� Corollary 2: The SCAI must provide ways to easily incorporate largely var-
ied types of computational modules.

As described in Sect. 3, the NetSolve system provides a code generator that
parses a NetSolve PDF in order to extend the servers' functional capabilities.
Figure 6 shows a segment of a PDF that was used to integrate a module from
a sub-surface
uid simulator. The PROBLEM parameter of this �le de�nes
the name we want client applications to use when referring to this module. The
INCLUDE and LIB directives are used in the compilation of the module.
Among other things, this PDF eventually describes the code that determines
how to call the simulation code with the inputs given from a client program.
After this con�guration and a compilation, the NetSolve server is ready to be
attached to a NetSolve agent/system and service requests.

The PDF facility provides a way for NetSolve to seamlessly integrate any
type of computational modules. Furthermore, we have created a Java GUI that
makes this process even easier. One issue, however, is that the NetSolve system
supports NetSolve objects (like the MATRIX, SPARSEMATRIX, VECTOR,
FILE, etc.) and it is up to the author of the PDF to convert these objects into
those supported by the code being integrated, as necessary.

� Corollary 3: The system should adapt to varying granularities of computa-

@PROBLEM ipars
@INCLUDE "ipars.h"
@LIB /home/user/lib/libipars.a
@DESCRIPTION
Parallel Sub-Surface Flow Simulator
@INPUT 2
@OBJECT STRING CHAR model
IPARS physical model to use
@OBJECT FILE CHAR infile
Input data file
....

Figure 6: Portion of a PDF used to integrate functional modules into the Net-
Solve system.

tional modules.

While the PDF facility does not concern itself with the computational mod-
ule being integrated is �nely or coarsely grained, an issue in any distributed
environment is how the amounts and sizes of data transport a�ects perfor-
mance. The �rst way NetSolve attempts to deal with this issue is by analyzing
network bandwidths and latencies to choose the most conveniently located ser-
vice resources to solve client requests. The second way we have optimized data
communications is by creating an interface and infrastructure that allows a user
to group or sequence a collection of NetSolve requests [12]. The system then
analyzes the input and output parameters amongst all requests and caches com-
mon data near the relevant servers. Figure 7 illustrates the typical transactions
that take place during a series of NetSolve requests by a single client. The im-
portant points to note are that parameter A is shared as an input for the �rst
and second requests. Also, output parameters C and D serve as inputs for sub-
sequent requests. Figure 8 shows the reduction in data
ow that occurs when
the sequencing mode is employed.

� Corollary 4: Complexities and intricacies of the underlying computational
modules must be hidden, yet the modules must be conveniently accessible.

Through NetSolve, users are given access to complex algorithms that solve
a variety of types of problems, one instance being linear systems solvers. All
solvers, however, are not built alike; depending on the characteristics of the
system being solved some perform poorly and others not at all. NetSolve has
incorporated a large number of both direct and iterative solver algorithms for
sparse/dense, symmetric/non-symmetric systems. To allow non-expert users to
properly and eÆciently use these algorithms without climbing the steep learning
curve that would otherwise be involved, we have created an interface that allows

Client Server1
result C

command1(A, B)

Client Server2

command1(A, C)

result D

Client Server3

command1(D, E)

result F

Figure 7: Client-server interactions during a
typical request scenario.

Client

Client

result F

sequence(A, B, E)

intermediate
result C + input A

intermediate
result D + input E

Server3

Server2

Server1

Figure 8: Client-server interactions during a
\request sequence".

them to generically call a \LinearSolve" routine which transparently analyzes
the input matrix and determines which algorithm to use based on input char-
acteristics. [13] further discusses this interface and the heuristics and decisions
that are involved in the algorithm selection process. We envision using similar
heuristics for classes of problems other than linear system solvers in the near
future.

� Corollary 5: The SCAI should reliably execute modules on remote servers.

By its very de�nition, NetSolve is a distributed computing environment that
allows for remote problem execution. Its failure detection and fault-tolerant
mechanisms allow the system to detect servers that have failed to solve partic-
ular problems or server hosts that are non-responsive and direct new requests
away from these resources. During a computation, the system attempts to use
every appropriate and capable server host (from best to worse (see Corollary
8)) until a problem has been solved or the list of servers has been exhausted.
Other investigations are leading to the development of heuristics to checkpoint
NetSolve services so that a mid-service failure does not result in a lost of all
previous computation. These checkpoints will be used to migrate the state of
the interrupted service to other NetSolve servers where computation will resume.

� Corollary 6: Scripting capabilities must be available to allow users to chain
complex combinations of modules.

All elements of the NetSolve system are accessible via the API of the client
libraries. Using the functions of this API, users can embed calls to NetSolve in
compiled languages, like C or FORTRAN, or interpreted languages, like Matlab
and Mathematica. The nature of these environments make it possible for the
user to invoke NetSolve in as simple or as complex a way as possible. The
asynchronous interface further allows the user to make non-blocking request to
NetSolve. The call returns immediately with a handle to the request that the
user can use to probe to see if the request has completed and retrieve the results.

This interface allows users to invoke multiple calls to NetSolve that would then
run on di�erent hosts, further improving application turnaround time.

To aid in the development of SCAs that do Monte Carlo simulations, pa-
rameter sweeps and other applications with simple task-parallel structures, i.e.
independently parallel programming, we have created a task farming interface.
The task farming interface allows the user to make a single call to netsolve,
requesting multiple instances of the same problem. Rather than single param-
eters, the user passes arrays of parameters as input/output and designates how
NetSolve should iterate across the arrays for the task farm. The main challenge
in this e�ort is scheduling. Indeed, for long running farming applications it is
to be expected that the availability and workload of resources within the server
pool will change dynamically. [14] discusses the design of this infrastructure
and also presents an adaptive scheduling algorithm used by the task farming
interface to assign tasks to the server resources.

� Corollary 7: The SCAI must be have multiple-language support and its
components should be completely pluggable.

As already mentioned, the NetSolve API has been implemented in many
programming environments. Further motivated by the need to support var-
ious platforms (among other things), we have implemented client proxies to
act on behalf of the Netsolve client. The proxy, a separate process that re-
sides on the client host, handles (almost) all interactions with the underlying
meta-computing resources. With a standard interface between the client and
all proxies, it is possible, especially for third party developers, to easily add new
language support to the NetSolve system. They would simply write libraries
that interface the NetSolve proxies from their language of choice, allowing pro-
grams of that language to become NetSolve-enabled. Figure 9 depicts the main
idea behind the proxy. The client libraries interact with the proxy thanks to a
standard API and the proxy interacts with the meta-computing system using
system-speci�c mechanisms. The NetSolve proxy, for instance, uses the agent to
discover services, contacts the appropriate server and establishes a session with
that server who then receives input data from the client, executes his service
and return output data.

� Corollary 8: The design of the SCAI must optimize performance with min-
imal overhead to the resources it occupies.

The NetSolve agent uses both static and dynamic information from the
servers to assign requests to the best server at that point in time. The al-
gorithms for each service is con�gured with a complexity that describes the
computational time of the algorithm based on input sizes. Performance is mea-
sured by the LINPACK benchmark upon server initiation, and the server mon-
itors its host reporting workload information. All these parameters, along with
network bandwidth and latency information, are used whenever a request is
received to rank the appropriate servers from best to worst. This list is sent

Proxy

Process
 Client

Data

Standard
API

System-specific
Operations

Meta-Computing

 Resources

(GRID)

Figure 9: Proxy Architecture

to the client who then uses the fastest server to solve his problem in order to
optimize performance.

The major drawback in distributed systems is often data transfers. Though
not yet implemented, under consideration are heuristics to consider if perfor-
mance might be improved by using the client's host as a server by uploading the
necessary software once, rather than transferring data to a server (on possibly
several occasions).

5 Conclusion

Scienti�c Computing Applications are a prominent part of the �eld of Com-
puter Science. These applications and the computational scientists that imple-
ment them have unique characteristics that forge the software infrastructures
needed to support large scale development. We have discussed the relevant
characteristics they possess and present NetSolve, an environment for solving
computational problems, as a system that addresses these issues. The system is
a work-in-progress, and at the heart of this e�ort lies the philosophy that con-
venient interfaces and ease of administration are most important; every e�ort
is made not to sacri�ce these elements as the system evolves to meet the needs
of the scienti�c computing community.

References

[1] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM : Parallel Virtual Machine. A Users' Guide and Tutorial for
Networked Parallel Computing. The MIT Press Cambridge, Massachusetts,
1994.

[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI :
The Complete Reference. The MIT Press Cambridge, Massachusetts, 1996.

[3] I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New com-
puting Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[4] Distinctive Characteristics of Scienti�c Applications.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[6] S. Balay, W. D. Gropp, and B. F. Smith. Modern Software Tools in Scien-
ti�c Computing, pages 163{202. Birkhauser Press, 1997.

[7] R. Lehoucq, D. Sorensen, and C. Yang. ARPACK Users' Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, �rst edition,
1998.

[8] B. Monien, R. Diekmann, R. Feldmann, R. Klasing, R. Luling, K. Men-
zel, T. Romke, and U. Schroeder. EÆcient Use of Parallel & Distributed
Systems: From Theory to Practice. In Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[9] R. Bramley, D. Gannon, T. Stuckey, J. Villacis, J. Balsabrumanian, E. Ack-
man, F. Breg, S. Diwan, and M. Govindaraju. Component Architectures
for Distributed Scienti�c Problem Solving.

[10] D. Arnold, S. Blackford, and J. Dongarra. Users' Guide to NetSolve V1.3.
Technical report, Computer Science Dept., University of Tennessee, May
2000.

[11] S. A Hutchinson, Shadid J. N., and Tuminaro R. S. Aztec user's guide: Ver-
sion 1.1. Technical Report SAND95-1559, Sandia National Laboratories,
1995.

[12] D. C Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Opti-
mizing Communication for the Grid. In Euro-Par 2000 { Parallel Process-
ing, August 2000.

[13] D. C. Arnold, S. Blackford, J. Dongarra, V. Eijkhout, and T. Xu. Seamless
Access to Adaptive Solver Algorithms. August 2000.

[14] H. Casanova, M. Kim, J. S. Plank, and J. Dongarra. Adaptive Scheduling
for Task Farming with Grid Middleware. The International Journal of
Supercomputer Applications and High Performance Computing, 1999. to
appear.

