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Abstract. The GMRES method is used to solve sparse, non-symmetric
systems of linear equations arising from many scientific applications. The
solver performance within a single node is memory bound, due to the low
arithmetic intensity of its computational kernels. To reduce the amount
of data movement, and thus, to improve performance, we investigated
the effect of using a mix of single and double precision while retaining
double-precision accuracy. Previous efforts have explored reduced preci-
sion in the preconditioner, but the use of reduced precision in the solver
itself has received limited attention. We found that GMRES only needs
double precision in computing the residual and updating the approx-
imate solution to achieve double-precision accuracy, although it must
restart after each improvement of single-precision accuracy. This finding
holds for the tested orthogonalization schemes: Modified Gram-Schmidt
(MGS) and Classical Gram-Schmidt with Re-orthogonalization (CGSR).
Furthermore, our mixed-precision GMRES, when restarted at least once,
performed 19% and 24% faster on average than double-precision GMRES
for MGS and CGSR, respectively. Our implementation uses generic pro-
gramming techniques to ease the burden of coding implementations for
different data types. Our use of the Kokkos library allowed us to exploit
parallelism and optimize data management. Additionally, KokkosKernels
was used when producing performance results. In conclusion, using a mix
of single and double precision in GMRES can improve performance while
retaining double-precision accuracy.

Keywords: Krylov subspace methods, mixed precision, linear algebra,
Kokkos

1 Introduction

The Generalized Minimum Residual (GMRES) method [22] is used for solving
sparse, non-symmetric systems of linear equations arising from many applica-
tions [21, p. 193]. It is an iterative, Krylov subspace method that constructs an
orthogonal basis by Arnoldi’s procedure [2] then finds the solution vector in that
subspace such that the resulting residual is minimized. One important extension
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of GMRES is the introduction of restarting, whereby, after some number of it-
erations, GMRES computes the solution vector, then starts over with an empty
Krylov subspace and the newly computed solution vector as the new initial guess.
This limits the number of basis vectors required for the Krylov subspace thus
reducing storage and the computation needed to orthogonalize each new vector.
On a single node system, performance of GMRES is bound by the main memory
bandwidth due to the low arithmetic intensity of its computational kernels. We
investigated the use of a mix of single and double floating-point precision to re-
duce the amount of data that needs to be moved across the cache hierarchy, and
thus improve the performance, while trying to retain the accuracy that may be
achieved by a double-precision implementation of GMRES. We utilized the iter-
ative nature of GMRES, particularly when restarted, to overcome the increased
round-off errors introduced by reducing precision for some computations.

The use of mixed precision in solving linear systems has long been estab-
lished in the form of iterative refinement for dense linear systems [24], which is
an effective tool for increasing performance [6]. However, research to improve
the performance of GMRES in this way has had limited scope. One similar work
implemented iterative refinement with single-precision Krylov solvers, including
GMRES, to compute the error corrections [1]. However, that work did not explore
the configuration of GMRES and tested only a limited set of matrices. Recent
work by Gratton et al. provides detailed theoretical results for mixed-precision
GMRES [12]; although, they focus on non-restarting GMRES and understand-
ing the requirements on precision for each inner-iteration to converge as if done
in uniform, high precision. Another approach is to use reduced precision only
for the preconditioner [10]. One interesting variant of reduced-precision precon-
ditioners is to use a single-precision GMRES to precondition a double-precision
GMRES [3].

In this paper, we focus on restarted GMRES with left preconditioning and
with one of two orthogonalization schemes: Modified Gram-Schmidt (MGS) or
Classical Gram-Schmidt with Reorthogonalization (CGSR), as shown in Alg. 1.
The algorithm contains the specifics of the GMRES formulation that we used.
MGS is the usual choice for orthogonalization in GMRES due to its lower compu-
tational cost compared to other schemes [20]. CGSR is used less often in practice
but differs in interesting ways from MGS. First, it retains good orthogonality rel-
ative to round-off error [11], which raises the question of whether this improved
orthogonality can be used to circumvent some loss of precision. Second, it can be
implemented as matrix-vector multiplies, instead of a series of dot-products used
by MGS. Consequently, CGSR requires fewer global reductions and may be a
better candidate when considering expanding the work to a distributed memory
setting. Restarting is used to limit the storage and computation requirements of
the Krylov basis generated by GMRES [4,5].
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Algorithm 1 Restarted GMRES with left preconditioning [21]

1: A ∈ R
n×n, x0,b ∈ R

n, M
−1 ≈ A

−1

2: for k = 1, 2, . . . do
3: zk ← b− Axk ⊲ compute residual
4: If ‖zk‖2 is small enough, stop
5: rk ← M

−1zk
6: β ← ‖rk‖2, s0 ← β, v1 ← rk/β, V1 ← [v1]
7: j ← 0
8: loop until the restart condition is met
9: j ← j + 1
10: w← M

−1
Avj

11: w, h1,j , . . . , hj,j ← orthogonalize(w,Vj) ⊲ MGS or CGSR
12: hj+1,j ← ‖w‖2
13: vj+1 ← w/hj+1,j

14: Vj+1 ← [Vj,vj+1]
15: for i = 1, . . . , j − 1 do

16:

[

hi,j

hi+1,j

]

←

[

αi βi

−βi αi

]

×

[

hi,j

hi+1,j

]

⊲ apply Givens rotation

17: end for

18:

[

αj

βj

]

← rotation matrix

([

hj,j

hj+1,j

])

⊲ form j-th Givens rotation

19:

[

sj
sj+1

]

←

[

αj βj

−βj αj

]

×

[

sj
0

]

20:

[

hj,j

hj+1,j

]

←

[

αj βj

−βj αj

]

×

[

hj,j

hj+1,j

]

21: end loop
22: H← {hi,ℓ}1≤i,ℓ≤j , s← [s1, . . . sj ]

T

23: uk ← VjH
−1s ⊲ compute correction

24: xk+1 ← xk + uk ⊲ apply correction
25: end for

26: procedure MGS(w,Vj)
27: [v1, . . . ,vj]← Vj

28: for i = 1, 2, . . . , j do
29: hi,j ← w · vi

30: w← w − hi,jvi

31: end for
32: return w, h1,j , . . . , hj,j

33: end procedure

34: procedure CGSR(w,Vj)
35: h← Vj

Tw
36: w← w − Vjh
37: [h0,j , . . . , hj,j ]

T ← h
38: return w, h1,j , . . . , hj,j

39: end procedure
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2 Numerics of Mixed Precision GMRES

To use mixed precision for improving the performance of GMRES, it is important
to understand how the precision of different parts of the solver affects the final
achievable accuracy. First, for the system of linear equations Ax = b; A, b, and
x all must be stored in full precision because changes to these values change the
problem being solved and directly affect the backward and forward error bounds.
Next, note that restarted GMRES is equivalent to iterative refinement where
the error correction is computed by non-restarted GMRES. Hence, adding the
error correction to the current solution must be done in full precision to prevent
x from suffering round-off to reduced precision. Additionally, full precision is
critical for the computation of residual r = Ax−b because it is used to compute
the error correction and is computed by subtracting quantities of similar value.
Were the residual computed in reduced precision, the maximum error that could
be corrected is limited by the accuracy used for computing the residual vector [7].

Next, consider the effects of reducing precision in the computation of the
error correction. Note that for stationary iterative refinement algorithms, it has
long been known that reduced precision can be used in this way while still
achieving full accuracy [24], which, to some extent, can be carried over to the
non-stationary correction of GMRES. The converge property derives from the
fact that if each restart i = 1, . . . , k computes an update, ui, fulfilling ‖ri‖ =
‖ri−1 − Aui‖ ≤ δ‖ri−1‖ for some error reduction δ < 1, then after k steps we get
‖rk‖ ≤ δk‖r0‖ [1]. Thus, reducing the accuracy of the error-correction to single
precision does not limit the maximum achievable accuracy. Furthermore, under
certain restrictions on the round-off errors of the performed operations, non-
restarted GMRES behaves as if the arithmetic was done exactly [12]. Therefore,
when restarted frequently enough, we hypothesize that mixed-precision GMRES
should behave like the double-precision implementation.

3 Restart Strategies

Restart strategies are important to the convergence. In cases when limitations of
the memory use require a GMRES restart before the accuracy in working preci-
sion is reached, the restart strategy needs no further consideration. However, if
mixed-precision GMRES may reach the reduced precision’s accuracy before the
iteration limit, it is important to have a strategy to restart early. But restarting
too often will reduce the rate of convergence because improvement is related to
the Arnoldi process’s approximation of the eigenvalues of A, which are discarded
when GMRES restarts [23]. As a countermeasure, we propose four possible ap-
proaches for robust convergence monitoring and restart initiation.

There are two points to note before discussing specific restart strategies. First,
the choice of orthogonalization scheme is important to consider, because some
Krylov basis vectors usually become linearly dependent when GMRES reaches
the working precision accuracy, e.g., MGS [20], while other methods remain
nearly orthogonal, e.g., CGSR [11]. Second, the norm of the Arnoldi residual,
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the residual for GMRES’s least-squares problem, approximates the norm of the
residual of the original preconditioned linear system of equations and is computed
every iteration when using Givens rotations to solve the least-squares problem
(sj+1 in Alg. 1) [21, Proposition 6.9]. However, this approximation only monitors
the least-squares problem and is not guaranteed to be accurate after reaching
working precision [13]. The explanation is unknown, but it has been noted that
the Arnoldi residual typically decreases past the true residual if and only if
independent vectors continue to be added to the Krylov basis. Hence, the choice
of orthogonalization scheme must be considered when using restarts based on
the Arnoldi residual norm.

Our first restart strategy derives from the observation that the number of
iterations before the convergence stalls appears to be roughly constant after each
restart. See Sec. 4.1 for numerical examples. While this does not alleviate the
issue determining the appropriate point for the first restart, this can be used
for subsequent restarts either to trigger the restart directly or as a heuristic for
when to start monitoring other, possibly expensive, metrics.

The second restart strategy is to monitor the approximate preconditioned
residual norm until it drops below a given threshold, commonly related to the
value after the prior restart. The simplest threshold is a fixed, scalar value. Note
that if the approximated norm stops decreasing, such as for MGS, this criterion
will not be met until GMRES is restarted. Thus, the scalar thresholds must be
carefully chosen when using MGS. More advanced threshold selection may be
effective, but we have not explored any yet.

Inspired by the problematic case of the second strategy, the third strategy
is to detect when the Arnoldi residual norm stops improving. Obviously, this
approach is only valid if the norm stops decreasing when GMRES has stalled.
Additionally, GMRES can stagnate during normal operation, resulting in itera-
tions of little or no improvement, which may cause premature restarts.

The final strategy is to detect when the orthogonalized basis becomes linearly
dependent. This relates to the third strategy but uses a different approach. For
the basis matrix Vk computed in the kth inner iteration, let Sk = (I+Uk)

−1
Uk,

where Uk is the strictly upper part of VH
k Vk [18]. Then, the basis is linearly

dependent if and only if ‖Sk‖2 = 1. It has been conjectured that MGS-GMRES
converges to machine precision when the Krylov basis loses linear indepen-
dence [20,19]. This matrix can be computed incrementally, appending one col-
umn per inner iteration, requiring 2nk+2k2 FLOP per iteration. Estimating the
2-norm for a GMRES-iteration with i iterations of the power method requires
an additional i(2k2 + 3k) FLOP by utilizing the strictly upper structure of the
matrix.

4 Experimental Results

First, Sec. 4.1 shows accuracy and rate of convergence results to verify the results
in Sec. 2 and to better understand the strategies proposed in Sec. 3. Next, Sec. 4.2
compares the performance of our mixed-precision approach and double-precision
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GMRES. Based on the results in Sec. 2, we focused on computing the residual
and updating x in double-precision and computing everything else in single-
precision. This choice of precisions has the advantage that it can be implemented
using uniform-precision kernels and only casting the residual to single-precision
and the error-correction back to double precision. Note that in this approach,
the matrix is stored twice, once in single-precision and once in double-precision;
this storage requirement may be able to be improved by storing the high-order
and low-order bytes of the double-precision matrix in separate arrays [14].

Matrices were stored in Compressed Sparse Row format and preconditioned
with incomplete LU without fill in. So, the baseline, double-precision solver re-
quires 24nnz +8nm+28n+8m2 +O(m) bytes while the mixed-precision solver
requires 24nnz + 4nm + 32n + 4m2 + O(m) where nnz is the number of ma-
trix nonzero elements, n is the number of matrix rows, and m is the maximum
number of inner iterations per restart. All of the tested matrices came from the
SuiteSparse collection [8] and entries of the solution vectors were independently
drawn from a uniform distribution between 0 and 1.

We used two implementations of GMRES: a configurable one for exploring
the effect various factors have on the rate of convergence, and an optimized one
for testing a limited set of factors for performance. Both implementations are
based on version 2.9.00 of the Kokkos performance portability library [9]. The
OpenMP backend was used for all tests. Furthermore, for performance results we
used the KokkosKernels library, with Intel’s MKL where supported, to ensure
that improvements are compared against a state-of-the-art baseline. The rate
of convergence tests were implemented using a set of custom, mixed-precision
kernels for ease of experimentation.

All experiments were run on a single node with two sockets, each containing
a ten-core Haswell processor, for a total of twenty-cores and 25MiB of combined
Level 3 cache. Performance tests were run with Intel C++ Compiler version
2018.1, Intel MKL version 2019.3.199, and Intel Parallel Studio Cluster Edi-
tion version 2019.3. The environment variables controlling OpenMP were set to:
OMP_NUM_THREADS=20, OMP_PROC_BIND=spread, and OMP_PROC_BIND=places.

4.1 Measurement of the Rate of Convergence

To verify the analysis of Sec. 2, we first demonstrate that each variable behaves
as predicted when stored in single-precision, while the rest of the solver compo-
nents remain in double-precision. Figure 1 shows the normwise backward error
after each inner iteration as if the solver had terminated, for GMRES solving a
linear system for the airfoil 2d matrix. This matrix has 14 214 rows, 259 688
nonzeros, and a condition of 1.8× 106. In the figure, the “Refinement Variables”
include the matrix when used for the residual, the right-hand side, the solution,
and the vector used to compute the non-preconditioned residual; the “Correc-
tion Variables” include the matrix when used to compute the next Krylov vector,
the non-preconditioned residual, the Krylov vector being orthogonalized, the or-
thogonal basis, the upper triangular matrix from the orthogonalization process,
and the vectors to solve the least-squares problems with Givens rotations. The
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Fig. 1. Rate of convergence results for the airfoil 2d matrix when restarting every
300 iterations for MGS (left) and CGSR (right) orthogonalization schemes

convergence when storing the preconditioner in single-precision was visually in-
distinguishable from the double-precision baseline and omitted from the figure
for the sake of clarity. Each solver was restarted after 300 iterations. All of the
solvers behaved very similarly until single-precision accuracy was reached, where
all of the solvers, except double-precision, stopped improving. After restarting,
the solvers with reduced precision inside the error correction started improving
again and eventually reached double-precision accuracy; however, the solvers
with reduced precision in computing the residual or applying the error correc-
tion were unable to improve past single-precision accuracy.

The convergence test was repeated with two mixed-precision solvers that use
reduced precision for multiple variables. The first used double precision only for
computing the residual and error correction, i.e., using single precision for lines 4-
23 of Alg. 1. The second was more limited, using single precision only to store A
for computing the next Krylov vector, the preconditioner M−1, and the Krylov
basis Vj from Alg. 1; these three variables make up most of the data that can be
stored in reduced precision. Figure 2 shows the normwise backward error after
each inner iteration for single, double, and mixed precisions solving a linear sys-
tem for the airfoil 2d matrix. After restarting, both mixed-precision GMRES
implementations were able to resume improvement and achieve double-precision
accuracy. This ability to converge while using reduced precision occurred for
all of the matrices tested, as can be seen in Sec. 4.2. Note that while limiting
the use of mixed precision can increase the amount of improvement achieved
before stalling, this improvement is limited and does not reduce the importance
of appropriately restarting. Additionally, the limited mixed-precision implemen-
tation requires several mixed-precision kernels, while the fully mixed-precision
implementation can be implemented using uniform-precision kernels by copying
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Fig. 2. Rate of convergence results for the airfoil 2d matrix when restarting every
300 iterations for MGS (left) and CGSR (right) orthogonalization schemes

Table 1. Number of iterations before the improvement stalls in mixed-precision MGS-
GMRES

Iterations Iterations Iterations Iterations
Matrix per Restart for 1st Stall for 2nd Stall for 3rd Stall

airfoil 2d 300 137 141 142
big 500 360 352 360

cage11 20 7 7 8
Goodwin 040 1250 929 951 924

language 75 23 21 21
torso2 50 28 27 25

the residual to single-precision and copying the error-correction back to double-
precision.

One interesting observation was that the number of iterations before improve-
ment stalled was approximately the same after each restart. Table 1 displays the
number of iterations before stalling after the first three restarts in the mixed-
precision MGS-GMRES. Stalling was defined here to be the Arnoldi residual
norm improving by less than a factor of 1.001 on the subsequent 5% of inner
iterations per restart. This behavior appears to hold for CGSR too but was
not quantified because stalled improvement cannot be detected in the Arnoldi
residual for CGSR.

Next, restart strategies based on the Arnoldi residual norm were tested. First,
Fig. 3 shows the convergence when restarted after a fixed improvement. Note
that for MGS, when the threshold is too ambitious, mixed-precision GMRES
will stall because of roundoff error before reaching the threshold, at which point
the approximated norm stops decreasing. However, the choice of restart thresh-
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Fig. 3. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES after a fixed improvement in the Arnoldi residual norm for MGS
(left) and CGSR (right) orthogonalization schemes, with vertical ticks to indicate when
restarts occurred

old becomes problematic when considering multiple matrices. Figure 4 shows the
same test applied to the big matrix, which has 13 209 rows, 91 465 nonzeros, and
an L2 norm of 4.4× 107. Note that the successful threshold with the most im-
provement per restart is two orders of magnitude less improvement per restart
than that of airfoil 2d. Next, Fig. 5 uses the first restart’s iteration count
as the iteration limit for the subsequent restarts when solving the airfoil 2d

system. Because only the choice of the first restart is important, a more am-
bitious threshold was chosen than for Fig. 3. Note that, except for when the
first restart was not triggered, this two-staged approach generally performed a
bit better than the simple threshold. Figure 6 shows the mixed restart strat-
egy for the big matrix. Note how the same thresholds were used for the big

test as the airfoil 2d test but were still able to converge and outperform the
matrix-specific, scalar threshold. This two-part strategy appears to behave more
consistently than the simple threshold.

Finally, we tested restarts based on the loss of orthogonality in the basis.
Because CGSR retains a high degree of orthogonality, this strategy was only
tested with MGS-GMRES. Fig. 7 shows the rate of convergence when restarting
based on the norm of the S matrix. The spectral norm was computed using 10
iterations of the power method. Additionally, the Frobenius norm was tested
as a cheaper alternative to the spectral norm, although it does not provide the
same theoretical guarantees. Interestingly, when using the spectral norm, a norm
of even 0.5 was not detected until improvement had stalled for a noticeable
period. Note that even the Frobenius norm, which is an upper bound on the
spectral norm, did not reach 1 until, visually, improvement had stalled for a few
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Fig. 4. Rate of convergence results for the big matrix when restarting mixed-precision
GMRES after a fixed improvement in the Arnoldi residual norm for MGS (left) and
CGSR (right) orthogonalization schemes, with vertical ticks to indicate when restarts
occurred
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Fig. 5. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES after a fixed improvement in the Arnoldi residual norm for the first
iteration and the same number of iterations thereafter for MGS (left) and CGSR (right)
orthogonalization schemes, with vertical ticks to indicate when restarts occurred. The
rate of convergence using just a fixed improvement threshold of 10−5 is added for
comparison’s sake
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Fig. 6. Rate of convergence results for the big matrix when restarting mixed-precision
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and the same number of iterations thereafter for MGS (left) and CGSR (right) orthog-
onalization schemes, with vertical ticks to indicate when restarts occurred. The rate of
convergence using just a fixed improvement threshold of 10−5 is added for comparison’s
sake

0 100 200 300 400
Inner Iterations

10−16

10−13

10−10

10−7

10−4

No
rm

wi
se
 B
ac
kw

ar
ds
 E
rro

r

0 100 200 300 400
Inner Iterations

Single
‖S‖≥0‖01

‖S‖≥0‖1
‖S‖≥0‖5

‖S‖≥0‖9
‖S‖≥1‖0

Do ble

Fig. 7. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES based on the spectral norm (left) or Frobenius norm (right) of the
S matrix, for MGS orthogonalization, with vertical ticks to indicate when restarts
occurred
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dozen iterations. The cause of this deviation from the theoretical results [18] is
unknown.

4.2 Performance

Finally, we looked at the effect of reduced precision on performance. Additionally,
in testing a variety of matrices, these tests provide further support for some of the
conclusions from Sec. 4.1. The runtimes include the time spent constructing the
preconditioner and making any copies of the matrix. In addition to comparing
the performance of mixed- and double-precision GMRES, we tested the effect of
reducing the precision of just the ILU preconditioner.

We first tested the performance improvement when other constraints force
GMRES to restart more often than required by mixed precision. For each of the
tested systems, we computed the number of iterations for the double-precision
solver to reach a backward error of 10−10. Then, we measured the runtime for
each solver to reach a backward error of 10−10 when restarting after half as many
iterations. All but 3 of the systems took the same number of iterations for MGS;
two systems took fewer iterations for mixed precision (ecl32 and mc2depi),
while one system took more iterations for mixed precision (dc1). CGSR added
one additional system that took more iterations for mixed precision (big). Fig-
ure 8 shows the speedup of the mixed-precision implementation and the single-
precision ILU implementation relative to the baseline implementation for each
of the tested matrices. For the mixed-precision implementation, the geometric
mean of the speedup was 19% and 24% for MGS and CGSR, respectively. For
the single-precision ILU implementation, those means were both 2%.

The second set of performance tests show what happens when GMRES is not
forced to restart often enough for mixed precision. All of the matrices from Fig. 8
that were restarted after fewer than 50 iterations were tested again, except they
were restarted after 50 iterations. For mixed-precision GMRES, the first restart
could additionally be triggered by an improvement in the Arnoldi residual by a
factor of 10−6 and subsequent restarts were triggered by reaching the number of
inner-iterations that caused the first restart. To ensure the mixed-precision solver
was not given any undue advantage, the other two solvers’ performance was taken
as the best time from three restart strategies: (1) the same improvement-based
restart trigger as mixed-precision GMRES; (2) after 50 iterations, or (3) after
an improvement in the Arnoldi residual by a factor of 10−8. Figure 9 shows the
new performance results. For the mixed-precision implementation, the geometric
mean of the speedup was -4% and 0% for MGS and CGSR, respectively. For the
single-precision ILU implementation, those means were 2% and 1% respectively.
The matrices for which the mixed-precision implementation performed worse
were exactly the matrices that did not require restarting when solved by the
double-precision implementation.
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Fig. 8. Speedup of the median runtime out of five tests for mixed-precision versus
double-precision restarted in half the number of iterations needed for double-precision,
for MGS (top) and CGSR (bottom) orthogonalization schemes, with error bars indi-
cating the minimum and maximum speedups

5 Conclusion

As a widely used method for solving sparse, non-symmetric systems of linear
equations, it is important to explore ways to improve the performance of GM-
RES. Towards this end, we experimented with the use of mixed-precision tech-
niques to reduce the amount of data moved across the cache hierarchy to improve
performance. By viewing GMRES as a variant of iterative refinement, we found
that GMRES was still able to achieve the accuracy of a double-precision solver
while using our proposed techniques of mixed-precision and restart initiation.
Furthermore, we found that the algorithm, with our proposed modifications, de-
livers improved performance when the baseline implementation already requires
restarting for all but one problem, even compared to storing the preconditioner
in single precision. However, our approach reduced performance when the base-
line did not require restarting, at least for problems that require less than 50
inner iterations.

There are a few directions in which this work can be further extended. The
first direction is to expand the implementation to a variety of systems that are
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Fig. 9. Speedup of the median runtime out of five tests for mixed-precision versus
double-precision restarted after 50 iterations or an improvement in the Arnoldi resid-
ual, for MGS (top) and CGSR (bottom) orthogonalization schemes, with error bars
indicating the minimum and maximum speedups

different from a single CPU-only node. For example, GPU accelerators provide
a significantly higher performance benefit than CPUs but involve a different
trade-off between computational units, memory hierarchy, and kernel launch
overheads. Thus, it would be beneficial to explore the use of mixed precision in
GMRES on these systems. Also important are the distributed memory, multi-
node systems that are used to solve problems too large to be computed efficiently
on a single node. In these solvers, the movement of data across the memory hi-
erarchy becomes less important because of the additional cost of moving data
between nodes. A related direction is to explore the use of mixed-precision tech-
niques to improve variants of GMRES. One particularly important class of vari-
ants is communication-avoiding and pipelined renditions for distributed systems,
which use alternative formulations to reduce the amount of inter-node commu-
nication. The last major direction is to explore alternative techniques to reduce
data movement. This can take many forms, including alternative floating-point
representations, such as half-precision, quantization, or Posits [15]; alternative
data organization, such as splitting the high- and low-order bytes of double-
precision [14]; or applying data compression, such as SZ [16] or ZFP [17].
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