
JLAPACK|Compiling LAPACK Fortran to Java

David M. Doolin� Jack Dongarrazy Keith Seymourz

December 29, 1998

Abstract

The JLAPACK project provides the LAPACK numerical subroutines translated from their
subset Fortran 77 source into class �les, executable by the Java Virtual Machine (JVM)
and suitable for use by Java programmers. This makes it possible for Java applications or
applets, distributed on the World Wide Web (WWW) to use established legacy numerical
code that was originally written in Fortran. The translation is accomplished using a special
purpose Fortran-to-Java (source-to-source) compiler. The LAPACK API will be considerably
simpli�ed to take advantage of Java's object-oriented design. This report describes the research
issues involved in the JLAPACK project, and its current implementation and status.

1 Introduction

Real programmers program in Fortran, and can do so in any language. |Ian Graham,
1994 [1]

Popular opinion seems to hold the somewhat erroneous view that Java is \too slow" for numer-
ical programming. However, the Java Linpack benchmark [2] has recorded excellent oating point
arithmetic speeds (68.6 Mop) on a PC resulting from Just-In-Time (JIT) compilation of Java class
�les. Also, there are many small to intermediate scale problems where speed is not an issue. For
instance, physical quantities such as permeability, stress and strain are commonly represented by
ellipsoids [3, 4], a graphical representation of an underlying tensor. The tensor is mathematically
represented by an SPD matrix. Ellipsoid axes are computed from the root inverse of the matrix
eigenvalues, directed along the eigenvectors. A LAPACK eigenproblem subroutine such as SSYTRD,
available as a Java class �le, provides a portable solution with known reliability. Since future execu-
tion speeds of Java will increase as JIT and native code compilers are developed, the scale of feasible
numerical programming will increase as well.

The JLAPACK project provides Application Programming Interfaces (APIs) to numerical li-
braries from Java programs. The numerical libraries will be distributed as class �les produced by a
Fortran-to-Java translator, f2j. The f2j translator is a formal compiler that translates programs
written using a subset of Fortran 77 into a form that may be compiled or assembled into Java
class �les. The �rst priority for f2j is to translate the BLAS [5, 6, 7] and LAPACK [8] numerical
libraries from their Fortran 77 reference source code to Java class �les. The subset of Fortran 77
translated by f2j matches the Fortran source used by BLAS and LAPACK. These libraries are estab-
lished, reliable and widely used linear algebra packages, and are therefore a reasonable �rst testbed
for f2j. Many other libraries of interest are expected to use a very similar subset of Fortran 77.

A similar previous translation e�ort provided LAPACK in the C language, using the f2c pro-
gram [9], and has proven to be very popular and widely used. The BLAS and LAPACK class �les
will be provided as a service of the Netlib repository. f2j also provides a base for a more ambitious

�Department of Civil and Environmental Engineering, University of California, Berkeley
yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831
zDepartment of Computer Science, University of Tennessee, Knoxville

1

e�ort translating a larger subset of Fortran, and perhaps eventually any Fortran source into Java
class �les.

The JLAPACK project is composed of three phases:

1. Phase 1: Writing a Fortran compiler front end to tokenize (lexically analyze), parse and
construct an abstract syntax tree (AST) for Fortran 77 input �les.

2. Phase 2: Generating Java source and Jasmin opcode for use with the JVM from the AST.

3. Phase 3: Testing, documenting and distributing BLAS and LAPACK class �les.

All phases are now complete with respect to the initial design criteria (for Java source). Signi�cant
progress has been made in the translation to Jasmin opcode, which is roughly 50% complete. The
Phase 3 testing for BLAS and LAPACK resulted in some changes to the initial code design, requiring
the Fortran front-end to be signi�cantly extended.

2 Design of the f2j compiler

Design issues come in two categories: (1) software design, (2) software implementation. Software
design speci�es how Fortran translates to Java independent of any implementation. This includes
dealing with general issues such as translating Fortran intrinsics (e.g., sqrt, dabs) to Java meth-
ods (e.g., Math.sqrt, Math.abs), and LAPACK speci�c decisions about array access and argument
passing. The software implementation executes the translation. f2j is written as a formal compiler
consisting of a lexical analysis and parser front end, and a code generation back end. The parser
consists of a yacc speci�cation, which is translated to C by bison, a parser generator. The rest of
the code is written in C. The following notes provide a general overview of the f2j software design
and implementation.

2.1 Translating LAPACK Fortran to Java

2.1.1 Basic argument passing

Parameters passed to the LAPACK driver routines consist of arrays, oating point numbers, integers,
and arrays of one or more characters. Arrays are objects in Java and are passed by reference similar
to how they are passed in Fortran. Character arrays are similar to String objects in Java, which
are passed by reference (details in x2.1.4). Primitive types such as integers and oats are passed by
value only in Java and by reference only in Fortran. Since objects require more overhead than
primitives, the number of primitives passed as objects should be minimized.

All primitives that are documented as \input/output" or \output" variables in the LAPACK
code can be handled by wrapping the value in a class de�nition and instantiating an object for
initializing the value. A simple experiment showed that instantiating an object of type Double
requires 280 bytes in Java (Sun Microsystems JDK-1.1), but a simple wrapper such as

class DoubleWrapper {

double d;

}

only requires 56 bytes. Using the appropriate object variables (input/output and output variables)
should not be an excessive burden on the user: programmers calling LAPACK from C must declare,
initialize and pass a pointer to these variables.

2.1.2 Array access

Arrays in Java di�er from arrays in Fortran in several ways. In Java, arrays are objects that contain
methods as well as data, thus increasing overhead. In Fortran, arrays are named contiguous blocks

2

of memory. Java allows arrays as large 255 dimensions; Fortran allows a maximum of 3 dimensions.
Array indices must start at 0 in Java but can start at any arbitrary integer, say -43, in Fortran.
Java is implemented as row major access, Fortran as column major access. Fortran also allows
sections of arrays to be passed as subarrays.

For instance, in Fortran a reference to an arbitrary point in an array may be passed to a
subroutine. A call such as matmult(A(i,j), B(i,j)) would pass in the arrays A and B to the
matmult procedure, which would start indexing the arrays A and B at the location i, j. Java would
dereference and pass the value in the array at position i, j. Similarly, one can pass in a single
reference that marks a location in a particular array, which is declared 2D when typed in the called
subroutine. These and similar conventions allow numerical analysts to construct e�cient algorithms.

In the JLAPACK subroutines, all arrays are declared 1D. For JLAPACK vectors, array access
is identical to Fortran. Since the vector may be accessed at a point other than the initial point, an
index is passed along with the array. For 2D arrays, the index is passed as a parameter indicating an
o�set from the 0th element. The leading dimension is also passed as a parameter. To enable future
optimization by minimizing index arithmetic, arrays are accessed in column order in JLAPACK.

For example, a Fortran call such as matrixop(A(i,j,), LDA) would be translated to Java as
matrixop(A, i+j*LDA, LDA), where i, j are the array indices, and LDA is the previously declared
leading dimension. The matrixopmethod would receive arguments thusly: (double [] A, int k,

int LDA), k indicating the o�set. Elements in the subarray starting at the location i, j would
be accessed by A[k + m + n*LDA], where m, n are loop counters. In column order access, part of
the index arithmetic could be moved outside the inner loop, reducing the number of operations per
iteration.

Three timing loops (Appendix B) written to compare the execution speed of 1D versus 2D
arrays returned mean speeds (n = 32) of 482 for 2D arrays, 592 for 1D row access arrays and 462
for 1D column access arrays. The column access array moved an index product term to a dummy
variable between the outer and inner loops. Single dimension arrays also provide an easy way to deal
with assumed-size array declarators (asterisks) in Fortran. Subroutine and function arguments in
Fortran must be typed after the arguments are declared, as the following code illustrates:

SUBROUTINE DLASSQ(N, X, INCX, SCALE, SUMSQ)

...

DOUBLE PRECISION X(*)

But DLASSQ is called from DLANSB with the 2D array AB:

CALL DLASSQ(N, AB(L, 1), LDAB, SCALE, SUM)

Since there is no similar syntax in Java, 1D arrays provide equivalent functionality.

2.1.3 Translating functions and subroutines

Translating functions and subroutines from Fortran to Java can be broken down into various cases:

� Subroutines and functions declared EXTERNAL are assumed, for the purpose of translating
BLAS and LAPACK, to be BLAS or LAPACK calls. These are translated during the code
generation pass of f2j. Note that these are tailored to LAPACK: the generated code assumes
one static method per class.

� Some functions and subroutines in BLAS and LAPACK correspond to methods intrinsic to
Java. The LSAMEN procedure, which compares characters independent of case, is an example
corresponding to the Java regionMatches method.

� Functions declared INTRINSIC in the BLAS and LAPACK Fortran source are mapped
to the corresponding Java method using a table initialized in a header �le. In the event
that a Fortran intrinsic procedure has no Java correspondence (e.g., complex arithmetic
operations), such methods will have to be programmed in Java.

3

2.1.4 Translating characters and strings

LAPACK uses alphabetic characters as ags to control the behavior of some subroutines and char-
acter arrays to print out diagnostic information such as which subroutines or functions encountered
an error. Java uses String objects instead of character arrays. For the purpose of translating LA-
PACK into Java, all Fortran character variables, whether single characters or character arrays,
are translated to Java String objects. Subroutines in LAPACK, such as LSAME which compares
characters independent of case, can be emulated with methods intrinsic to the native Java String
class.

2.1.5 The PARAMETER keyword

The PARAMETER declaration in Fortran is translated to a public static final declaration
in Java.

2.1.6 Variable initialization and SAVE statements

One problem that has cropped up for emitting Java source code is the INCX problem. INCX is passed
in as a parameter to certain routines and used to set the values of variables KX. The problem occurs
after the following test:

if (INCX <= 0)

{

KX = 1 - (N - 1) * INCX;

} // Close if()

else if (INCX != 1)

{

KX = 1;

} // Close else if()

KX is not initialized, and is not required to be initialized according to the Fortran77 speci�cation.
The problem occurs when INCX = 1. The Java compiler refuses to compile any code following this
that uses KX. A solution is implemented in the compiler by setting the value of KX to zero. Since
variable initialization is implementation dependent in Fortran, the f2j implementation initializes all
integer variables to zero. Additionally, we can simplify the code generator by emitting all variables
as static, similar to the way f2c handles variable declarations. This also means that the code
generator can ignore SAVE statements since every variable is already declared static.

2.1.7 Methods versus functions and subroutines

f2j treats names that are not recognized as intrinsics or local variables as functions or subroutines
available in the netlib packages. For instance, the function ddot is translated to Ddot.ddot(), that
is, the method ddot of the class Ddot. This is not a portable solution and will break if the called
function is not in the BLAS or LAPACK packages or otherwise recognized by f2j.

In Fortran functions, the function name may be initialized to a value as a variable would be,
then the function name is the implicit argument when return is called. Fortran functions return
a typed (double, etc.) value. Subroutines are analogous to void functions. Both are handled by
methods in Java.

2.1.8 GOTO Translation

It is preferable to translate Fortran programs to Java source code rather than Jasmin opcode
for many reasons, but there has been a major obstacle to doing this: the GOTO statement. The
Fortran GOTO is hard to translate to Java source code because Java does not support a goto

4

statement at all. The developers of the Java language deliberately omitted the goto statement
because they felt it would simplify the language and eliminate some common misuses of the goto

[10]. Their replacement for the goto includes the multi-level break and continue statements. This
section describes our approach to translating Fortran to Java source code while still allowing the
use of GOTOs.

For our purposes, a GOTO statement in Fortran falls into one of two categories: (1) one that
can be translated into an equivalent Java construct free of GOTOs (such as while, break, continue,
etc.) or (2) one that cannot be translated into such a construct.

First, we examine some examples from the �rst category. The following segment of code from
dlamch.f shows a simulated while loop written using an IF statement and a GOTO.

10 CONTINUE

IF(C.EQ.ONE) THEN

A = 2*A

C = DLAMC3(A, ONE)

C = DLAMC3(C, -A)

GO TO 10

END IF

To recognize this type of construct, f2j looks for two characteristics: (1) an IF statement with a
labeled CONTINUE preceding it and (2) a GOTO statement at the end of the IF block whose target
is the top of the IF block. Nested simulated while loops are recognized by pushing the label of the
most enclosing IF block on a stack and comparing the destination of an enclosed GOTO with that
label. The label is then popped o� after emitting the IF block. The Java translation for the above
loop would be:

while (c == one) {

a = 2*a;

c = Dlamc3.dlamc3(a,one);

c = Dlamc3.dlamc3(c,-a);

} // Close if()

Frequently Fortran programs contain GOTO statements within DO loops. This includes many
di�erent situations, but we may roughly categorize them as follows:

� The GOTO branches to the CONTINUE statement of this DO loop.

� The GOTO branches to the CONTINUE statement of some other enclosing DO loop.

� The GOTO branches to the statement following this DO loop.

� The GOTO branches to the statement following some other enclosing DO loop.

� The GOTO branches somewhere else (this equates to the second category of GOTO statements
as described above).

The �rst two cases correspond to Java's continue and labeled continue respectively. In Java,
the labeled continue is used in cases where there are multiple nested loops and the programmer
needs to distinguish which loop to continue. The following code segment from idamax.f shows a
GOTO that can be translated to a Java continue statement.

do 30 i = 2,n

if(dabs(dx(i)).le.dmax) go to 30

idamax = i

dmax = dabs(dx(i))

30 continue

5

Detecting this kind of construct is similar to detecting a simulated while loop. Each time f2j starts
generating a loop, the label of that loop's CONTINUE statement is pushed onto a stack. Then
when a GOTO is encountered, f2j examines the stack to determine if the GOTO is branching to
the CONTINUE statement of an enclosing DO loop. The di�erence between translating continue
statements and simulated while statements is that with continue statements, we need to examine
all labels on the stack, not just the top. Notice in the following Java translation that even though
we could have generated an unlabeled continue statement, we chose to generate labeled continue

statements in all cases to help ensure clarity.

forloop30:

for (i = 2; i <= n; i++) {

if (Math.abs(dx[(i)- 1]) <= dmax)

continue forloop30;

idamax = i;

dmax = Math.abs(dx[(i)- 1]);

} // Close for() loop.

The third and fourth cases from above correspond to Java's break and labeled break respectively.
f2j does not currently detect or translate these cases, but they would be handled very similarly to
the translation of continue statements. The main exception is that labeled break statements in Java
may \break out" of any enclosing statement, while labeled continue statements are restricted to
loops (while, for, or do). Thus, there may be a much wider range of constructs in which a GOTO
can be converted to a labeled break. The following segment of code is a modi�ed version of the
previous segment from idamax.f in which the GOTO now branches to the statement following the
DO loop.

do 40 i = 2,n

if(dabs(dx(i)).le.dmax) go to 50

idamax = i

dmax = dabs(dx(i))

40 continue

50 a = 1

Future versions of f2j will translate the \go to 50" to a break statement.
The �nal case from the above list (that is, the GOTO branches somewhere else) has been the

most di�cult to deal with - it does not correspond to any equivalent Java construct. Our goal is
to restructure as many Fortran constructs containing GOTOs as possible into equivalent Java
constructs. But there will always be some GOTOs that cannot be translated in this way. To handle
these cases, we have developed a method to insert GOTO statements into Java bytecode (see �gure
1).

First, we use f2java to translate the Fortran code to Java. GOTOs are automatically translated
as calls to a dummy class. So, go to 100 would be translated as Dummy.go to(100). The labels
in the Fortran source are also translated as calls to the dummy class (for example, the label 100
becomes Dummy.label(100) in the Java source).

Next we compile the java �le as usual (using javac).
At this point, we could run the resulting class �le (bytecode), but instead of branching, the

Dummy methods would be called. The program would, almost invariably, run incorrectly. The
dummy calls act only as placeholders in the bytecode to signify where real goto instructions should
be inserted. We have developed a bytecode translation tool to perform these insertions. Since JVM
instructions have variable widths (and for other reasons), we must parse the class �le in order to
identify the dummy method calls. For this, we borrowed parsing code from javab, a bytecode
parallelizing tool [11]. After the bytecode has been parsed, we scan it for calls to Dummy.label(),
recording the label and address in a hash table. We then zero the entire instruction sequence for the
method call so that the resulting bytecode does not attempt to call Dummy.label() (in the JVM, a
zero byte corresponds to the nop instruction - i.e., it does nothing). On the second pass, we scan for

6

 if(Math.abs(dx[(i)-1]) <= dmax)
 Dummy.go_to("Idamax",50);
 idamax = i;
 dmax = Math.abs(dx[(i)-1]);
}

Java Source

for(i = 2; i <= n; i++) {

Java Compiler
javac

101011010101011010110101

110000101000110101001101

100100111001010001010011

100100010101001111001011

Class File

Transformer
Bytecode

101011010101011010110101

110000000000000000000000

100100000001010001010011

100100000000000000001011

New Class File

Figure 1: Translation of GOTO statements

calls to Dummy.go to(). For each call, we look up the target label of the goto in the hash table to
obtain the actual bytecode address of the label. Then we may replace the Dummy.go to() method
invocation with an actual goto instruction. Since the method invocation instruction sequence is
longer than the goto instruction, we zero out the remaining bytes.

So far, this method has been successful in translating GOTO statements in the BLAS=LAPACK
source code and testing routines. There may be some cases in which \hacking" the compiler-produced
bytecode as we have done will produce unexpected results, possibly putting the JVM into an unusual
state. The Java compiler generates code under certain assumptions, one example of which is that
the program should not branch to a statement within a loop from outside the loop. Our GOTO
translation method has the potential to violate these assumptions, although we have not yet come
across a speci�c instance in the BLAS or LAPACK source.

2.1.9 The Need for Code Restructuring

Even though we now have a way to translate any arbitrary GOTO statement into Java source, there
is still another problem caused by Java's lack of a goto statement. Consider the following segment
of code from ddot.f:

7

if(incx.eq.1.and.incy.eq.1)go to 20

c

[...code for unequal increments...]

c

ddot = dtemp

return

c

c code for both increments equal to 1

c

20 m = mod(n,5)

The �rst line of code checks whether both increments are equal to 1 and if so, skips the section of
code to deal with unequal increments. We can see by looking at the Fortran code (and so can the
Fortran compiler) that statement 20 can be reached. However, looking at the Java source code
produced by f2j, it is easy to see why the Java compiler does not recognize that fact:

if (incx == 1 && incy == 1)

Dummy.go_to("Ddot",20);

[...code for unequal increments...]

ddot = dtemp;

return ddot;

Dummy.label("Ddot",20);

m = (n)%(5) ;

When the Java compiler analyzes this program, it views the call to Dummy.go to as a normal method
call. So, as far as javac is concerned, execution resumes with the code immediately following the
method call. Since the segment of code following the method call ends with a return statement,
javac determines that any statements following the return cannot be reached. Normally this would
be a perfectly reasonable determination, but in this case we know that the call to Dummy.go to will
really cause the program to branch to statement 20.

Currently, there are a few ways to handle this. We could manually change the Fortran

source code such that the IF expression is reversed and put the equal increments code ahead of the
unequal increments code. There are code restructuring tools that can recognize and restructure these
constructs automatically, removing the GOTO in the process. We could restructure the Java source
code after translation (not a great idea). Future versions of f2j may have some code restructuring
ability built in, so that they can generate correct Java source code without the need for manual
restructuring or external tools. Our current approach is to generate one \real" return statement at
the end of the function or subroutine, with a unique label. All other return statements are translated
into dummy gotos, with the target being the \real" return. Using this approach, the java compiler
views all return statements as function calls, so it no longer thinks that subsequent statements
cannot be reached. This approach is much simpler and less error-prone than code restructuring.

2.1.10 DATA Statements

Fortran DATA statements are generated as variable declarations combined with initializations.
They must be combined since all variables are now generated as static class variables and therefore
cannot have separate assignment statements mixed in. For example, the following DATA statement:

integer z(4)

DATA z/1,2,3,4/

would be translated to Java as:

8

static int [] z = {1 , 2 , 3 , 4 };

Some DATA statements would be di�cult to translate in this way. For example, when an array
element is used in several DATA statements:

integer X(10)

integer Y

DATA X(3),X(8)/1,2/

DATA Y/123/

DATA X(5)/44/

We cannot generate declarations on a statement-by-statement basis since, in this case, we would
redeclare X:

static int [] x = { 0, 0, 1, 0, 0, 0, 0, 2, 0, 0 };

static int y = 123;

static int [] x = { 0, 0, 0, 0, 44, 0, 0, 0, 0, 0 };

We could attempt to consolidate all DATA statements related to the array X and generate one
declaration:

static int [] x = { 0, 0, 1, 0, 44, 0, 0, 2, 0, 0 };

Instead, we take a simpler approach. Using static initialization blocks, f2j can assign the values to
the individual array elements one-by-one:

static int [] x = new int [10];

static {

x[(3)- 1] = 1;

x[(8)- 1] = 2;

}

static int y = 123;

static {

x[(5)- 1] = 44;

}

2.1.11 EQUIVALENCE Statements

The EQUIVALENCE statement is one of the most di�cult Fortran language features to translate into
Java. We do not have a general solution nor do we expect to develop one, however we can support
a limited form of equivalence as long as the following two conditions are met:

� The data types of the variables to be equivalenced must be exactly the same.

� If the variables are arrays, the indices, if present, must be 1.

The second condition prohibits the beginning of one array being equivalenced to the middle of
another array. Arrays of di�erent dimensions may be equivalenced, though, provided that they have
the same data type.

2.1.12 Input/Output

Since our primary focus at this stage in the development of f2j is to produce a reliable Java imple-
mentation of BLAS=LAPACK, we have not emphasized the translation of Input/Output statements
such as WRITE, READ, FORMAT, etc. However, it has been necessary to partially implement

9

WRITE=FORMAT and unformatted READ in order to compile and execute the BLAS and LA-
PACK test routines. File descriptors are ignored, as are �eld widths in FORMAT statements. Thus,
the output often will not look exactly the same once the program is converted to Java, but it is close
enough to verify that the numerical routines are working. Until the BLAS=LAPACK class libraries
are tested and released, we do not plan to extend the implementation of I=O statements beyond
what is necessary for testing the numerical code. To fully implement Fortran I=O in Java would
probably require taking a similar approach to that used in f2c (possibly involving porting libI77

to Java).

2.1.13 COMMON Blocks

As with Input=Output, our primary motivation for implementing COMMON blocks is to get the
test routines translated. The BLAS and LAPACK source �les do not use COMMON blocks, but
they occur quite frequently in the test routines. Since our goal is to produce a reliable, thoroughly
tested Java implementation of the BLAS and LAPACK libraries, it is very important to get the test
routines running. Thus, f2j must provide some basic level of translation for COMMON statements.

The following segment of code from dblat1.f, the level 1 BLAS tester, illustrates a typical use
of the COMMON statement:

INTEGER ICASE, INCX, INCY, MODE, N

LOGICAL PASS

COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS

Each COMMON block in the Fortran source is translated to a separate Java class:

public class dblat1_combla

{

static int icase = 0;

static int n = 0;

static int incx = 0;

static int incy = 0;

static int mode = 0;

static boolean pass = false;

}

Multiple COMMON blocks are supported and variables need not have the same names in each
common block declaration. However, if the variables names do di�er, f2j attempts to merge the
names into one. Thus, if one common block has many di�erent declarations, the merged names
could become large. This is generally not a problem with the BLAS and LAPACK testers, but could
become cumbersome with other code. Eventually, we may change to a di�erent scheme, in which
we choose one set of variable names to use consistently for every common block declaration.

2.1.14 Reserved words in Java

The Java language has over 50 reserved words, so it is inevitable that a Fortran program will have
a variable with the same name as a Java keyword. Such a variable name cannot be retained because
the Java source would not compile. Therefore, f2j maintains a table of all the Java keywords. When
it comes across a variable name matching one of these keywords, it must transform the name into a
new unique name that does not conict with any Java keyword or any other currently de�ned variable
name. Since f2j currently generates all Fortran variable names in lowercase, any conicting name
can be transformed by converting the �rst letter to uppercase (e.g. try becomes Try).

2.1.15 Object Wrappers and Optimization

As mentioned in section 2.1.1, we must encapsulate primitives in object wrappers in order to emulate
pass-by-reference. However, wrapping every scalar would result in much lower performance than

10

using the primitive types, but it is simple to implement in the code generator and it allows f2j
to generate correct Java code automatically. Looking at the LAPACK source code, it is apparent
that most of the scalar parameters are not modi�ed within the routines. Our experience shows
that a substantial performance gain can be realized by optimizing the use of object wrappers in the
generated code. To perform this \optimization", we added another pass to the translator. This extra
pass starts at the head of the abstract syntax tree and analyzes every variable in each program unit
to determine which variables must be wrapped. The determination is made based on the following
rules:

� If the variable is a parameter to the current program unit and it is on the LHS of an assignment
statement, then it must be wrapped.

� If the variable is a parameter to the current program unit and it is an argument to a READ
statement, then it must be wrapped.

� If the variable is an argument to some function and that function modi�es the corresponding
formal parameter as described in the �rst two rules, then it must be wrapped.

To optimize a given program unit in this way requires �rst optimizing all units that this one calls
because we need to know whether the function parameters are wrapped or not.

Wrapping scalars in objects brings up a parameter passing issue. Consider the following function
declaration:

double precision function ddot(n,dx,incx,dy,incy)

double precision dx(*),dy(*)

integer n,incx,incy

Assuming for a moment that n, incx, and incy are all modi�ed within ddot, the declaration would
be translated into Java as:

public static double ddot (intW n, double [] dx, int _dx_offset, intW incx,

double [] dy, int _dy_offset, intW incy)

As the Java code illustrates, the integer arguments are translated to object references to provide the
pass-by-reference functionality discussed previously (intW is the name of the integer wrapper). The
two double precision vectors are translated as <array reference, o�set> pairs (see section 2.1.2). Let
us suppose that in some call to ddot, some of the integer parameters are constants. For example:

X = DDOT(5,SX,1,SY,1)

To correctly translate this function call, f2j must know the data types of the arguments that ddot
expects so that the constants can be wrapped in the appropriate objects. This would not be such a
problem in languages like Fortran and C, but with Java's strict typechecking, the resulting Java
code will not compile unless all the data types match exactly. This, and other issues, necessitated
the integration of a simple type analysis phase into f2j.

The previous paragraph illustrated the need for checking function arguments when passing
constants, but that is not the only case in which typechecking is required. Let us consider the
example Fortran subroutine call from section 2.1.2, matrixop(A(i,j,), LDA). But in this case,
imagine that matrixop is actually de�ned as follows:

SUBROUTINE MATRIXOP(A, LDA)

DOUBLE PRECISION A

INTEGER LDA

Given this de�nition, the translation of the subroutine call provided in section 2.1.2 (matrixop(A,
i+j*LDA, LDA)) would be incorrect and the resulting Java code would fail compilation. If f2j did not
know the data types of the arguments expected by matrixop, it would have to assume that an array
subsection was expected and pass the <array reference, o�set> pair, as shown above. However,

11

if f2j can determine that matrixop expects scalar arguments, the subroutine call can be generated
correctly by passing the array item itself: matrixop(a[i+j*LDA],LDA).

Java only passes objects and arrays (which technically are considered objects) by reference.
Thus, f2j could implement scalar pass by reference in either of two ways: (1) by wrapping the
scalar element in an object or (2) by using a single element array containing the scalar value. Some
quick timings indicate that accessing a class element is around 10% faster than accessing an array
element, while accessing a primitive is around 20% faster than accessing a class element. Examining
the instructions produced by the Java compiler (Sun JDK 1.1) shows why this is the case. The
following is the code to access the �rst element of an array:

aload_1

iconst_0

iaload

The code to access a class element:

aload_1

getfield intW/val I

The code to access a primitive:

iload_1

2.1.16 Passing array elements by reference

In the previous section, we mentioned an example of a Fortran call, matrixop(A(i,j,), LDA),
to a subroutine declared as follows:

SUBROUTINE MATRIXOP(A, LDA)

DOUBLE PRECISION A

INTEGER LDA

That example illustrated the need to determine whether an array should be passed as an <array
reference, o�set> pair or as an array element. As mentioned before, the array element should
be passed. However, the Java method call we suggested, matrixop(a[i+j*LDA],LDA), is not the
complete answer. It does not take into account the fact that in Fortran the array element is
passed by reference while in Java it is passed by value. We take a simplistic approach to solving this
problem. Before the call, we encapsulate the array element in an object. That object is then passed
to the subroutine. After the call, we assign the object's value back to the array element.

tmp = new doubleW(a[i+j*LDA]);

Matrixop.matrixop(tmp,LDA);

a[i+j*LDA] = tmp.val;

This would work �ne for subroutines, since in Fortran there may be only one subroutine call per
line. Function calls, however, may be embedded in other calls or in other constructs making such
assignments inconvenient. Therefore, we create an adapter to the function. An adapter merely
encapsulates the real function call and the assignment statements into one method. For example,
instead of calling matrixop directly, now we call an adapter for matrixop:

matrixop_adapter(a,i+j*LDA,LDA);

Then we declare the adapter as follows:

private static void matrixop_adapter(double [] arg0 , int arg0_offset ,intW arg1)

{

doubleW _f2j_tmp0 = new doubleW(arg0[arg0_offset]);

Matrixop.matrixop(_f2j_tmp0,arg1);

arg0[arg0_offset] = _f2j_tmp0.val;

}

12

Alternately, We could have de�ned the matrixop method twice in the Matrixop class, with the
second declaration acting as the adapter. However, depending on the parameters, there could be
several adapters for one function or subroutine and we did not want to add to the size of the library
any more than necessary. Placing the adapters in the calling class allows us to only generate those
adapters that will be used, rather than generating all possible adapters that could ever be used.

2.1.17 Type Analysis

Section 2.1.15 mentioned the need for type analysis in f2j by giving two examples of Fortran code
that would not translate correctly otherwise. However, f2j does not implement typechecking, per
se. That is, not in the traditional sense of the word. It does not attempt to warn the user of
any type mismatches or other semantic errors. What f2j really does is fully traverse the AST and
assign type information to every node, which is then used during code generation. This usually
requires propagating type information from child nodes back up the tree to the parent nodes. Once
the type assignment pass has completed, the code generator can use this information to compare
arguments=parameters and generate the correct function calls. In order for the code generator to
compare the actual arguments in a function call to the parameters expected by the function, the
function must be parsed and analyzed by f2j. This means that to generate correct Java code, it is
sometimes necessary to append external functions and subroutines to the Fortran program that
f2j is translating. This is because the function=subroutine declaration needs to be parsed and stored
in a hash table. If f2j needs to generate a function call, but cannot �nd the parameter information
in the hash table, it will \guess" about the expected data types. That is the reason we say that it
is \sometimes" necessary to append the function { because sometimes f2j will guess correctly and
other times it will not. To eliminate the need for appending all the functions into one �le, we may
extend the f2j parser to deal with multiple �les provided on the command line.

Parameter passing is not the only situation in which we might need to use information gained
during the type analysis phase. Consider the following segment of code from dlamch.f:

INTEGER LBETA, LT

DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2

*

[...]

*

LBETA = C + QTR

*

[...]

Java does not allow assigning a double precision value to an integer variable without an explicit cast.
Consequently, when f2j generates an assignment statement, it needs to determine the data type of
the right hand side expression and the data type of the left hand side variable. If the data types
di�er, f2j must generate an explicit cast, as follows:

int lbeta;

double c, qtr;

[...]

lbeta = (int) (c+qtr);

[...]

2.1.18 Functions as Arguments

Fortran allows passing the name of a function or subroutine as an argument to another function or
subroutine. In Java, however, passing a method as an argument is not possible. The recommended
way to achieve the same e�ect in Java is by using interfaces. The prototype of the method to be
passed is placed in an interface. The data type of the parameter in the called method should be the
name of the interface. The method to be passed must be in a class that implements the interface.

13

The problem with using this approach in f2j-generated code is one of naming. When compiling
a function that takes another function as a parameter, f2j does not know the name of the original
function, only the name of the local parameter. So f2j cannot decide how to call the method.

Instead of using interfaces, we chose to use the reection mechanism built into version 1.1 of the
Java language. Reection allows a Java program to discover information about an object (such as
public methods and public class variables) at run-time. The �rst method in all f2j-generated classes
is the translated Fortran routine. After that, the only other methods that should be contained in
the class are adapters (see section 2.1.16). Therefore, the generated Java code can get a reference
to the correct method by simply using reection to access the �rst method in the class.

With this technique, the code in the calling method is simple. The user just passes a new
instance of the class containing the method:

Sort.sort(x, 0, new Comp());

It is necessary to create a new instance of the class because reection requires a reference to the
object. All methods in f2j-generated classes are static and normally there is not already an instance
of the class, so we create one on-the-y.

The code in the called method is a little more complex since it has to perform the reection.
First, the routine gets a reference to the method:

public static void sort (int [] a, int _a_offset, Object cfun) {

java.lang.reflect.Method _cfun_meth = cfun.getClass().getDeclaredMethods()[0];

Note that the data type of the class is Object because f2j does not know what kind of object is going
to be passed in. Before calling the method, the arguments must be placed into an array of Object.
Since this may take several statements and the original call may be embedded in some construct like
a conditional expression, f2j generates an adapter function. The �rst argument to the adapter is the
reference to the method. The remaining arguments mirror the parameters of the original function.

if(cfun_methcall(_cfun_meth,a[(i)- 1+ _a_offset],a[(j)- 1+ _a_offset]) > 0)

Then the adapter makes the actual call:

private static int cfun_methcall(java.lang.reflect.Method _funcptr,

int _arg0 , int _arg1)

throws java.lang.reflect.InvocationTargetException,

java.lang.IllegalAccessException

{

Object [] _funcargs = new Object [2];

int _retval;

_funcargs[0] = new Integer(_arg0);

_funcargs[1] = new Integer(_arg1);

_retval = ((Integer) _funcptr.invoke(null,_funcargs)).intValue();

return _retval;

}

2.2 Implementation of the f2j compiler

The program f2c is a horror, based on ancient code and hacked unmercifully. Users
are only supposed to look at its C output, not at its appalling inner workings. |Stuart
Feldman [9]

14

The f2j compiler system was written in ANSI C, using a C parser generated by the Bison parser
generator. The code was written from scratch after determining that existing Fortran tools such
as f2c and g77 would be di�cult to modify. Similarly, the Bison grammar was derived from the
Fortran 77 standard since available parse �les would have needed extensive rewriting to produce
an abstract syntax tree (AST). The BLAS and LAPACK source code are assumed to be syntactically
correct Fortran. Comments in the compiler source are written as complete sentences, starting with
a capital letter and ending with a period. Comments from the Fortran source are preserved in
the translation as Java comments. The f2java executable may generate either Java source code or
Jasmin opcode, depending on the command-line options (-java or -jas).

2.2.1 Lexing Fortran

It should be noted that tokenizing Fortran is such an irregular task that it is frequently
easier to write an ad hoc lexical analyzer for Fortran in a conventional program-
ming language than it is to use an automatic lexical analyzer generator. |Alfred Aho,
1988 [12]

Lexing Fortran is somewhat di�cult because keywords (e.g., IF, DO, etc.) are not reserved.
Thus keywords can also be used as variable names. To properly lex Fortran, each statement must
be examined for context, which requires lookahead. Sale published an algorithm for lexing Fortran
in CACM in the 1960's. Fortunately, once Fortran is lexed, it is fairly easy to parse.

In general, the f2j lexer aspires to be a Fortran speci�c variant of the lex lexical analysis tool.
The compiler uses global variables so that the parser's yyparse procedure can communicate with the
lexer's yylex procedure. Global variables, such as yytext and yylval, are typed in the header �le
f2j.h, and declared extern in the functions that use them. Line numbers are counted and provided
in error messages to help identify the erroneous statement.

Lexing in f2j is a two phase process consisting of a scan phase and a lexical analysis phase. The
scan phase removes whitespace and comments, catenates continued lines together, marks the end of
�le and implements Sale's algorithm (Appendix A) to determine context. The lexical analysis phase
implements a custom-written yylex procedure to provide tokens to the parser, yyparse, which is
generated by the Bison parser generator. yylex implements a scan phase at the beginning of every
Fortran statement by calling several procedures to manipulate the statement input string from the
source �le into a valid Fortran statement. The statement is scanned, lexed, and the next token,
along with its lexical value, is made available to the parser.

At the beginning of every Fortran input statement, prelex() is called to read a line from the
Fortran input �le, disposing of comment lines until a valid line is found. Once a valid line is found,
the line bu�er is passed to check continued lines(), which does a look-ahead to the sixth column
of the next line. If there is a \continuation" character in the sixth position, the next line is read
and catenated to the previous line, incrementing the (global) �le pointer. If there is no continuation
character, the �le pointer is reset for the next call to prelex().

Once check continued lines() returns a complete statement, collapse white space() re-
moves all spaces, tabs and newlines from the statement. Extra newlines embedded between contin-
ued lines would result in a parse error since newlines are used as Fortran's statement delimiter.
This is done in a loop, incrementing a character pointer that is dereferenced to compare characters.
After all whitespace is removed, one newline is catenated to the very end of the statement which can
be passed as a token to the parser. collapse white space() also changes characters into upper
case, with the exception of Fortran character arrays, enclosed between tick (') marks, that are
passed back as literal text in the statement bu�er as well as in the text bu�er. Also, Sale's algorithm
(Appendix A) is implemented to determine context. Once the white space is removed, prelex()
increments the line number and control passes back to yylex().

In the lexical analysis phase, statements are scanned for tokens according to the context deter-
mined from the prepass. The yylex() procedure calls one of three scanning procedures, keyscan(),

15

name scan(), or number scan() to extract tokens from statements. keyscan() takes tables of key-
words or symbols de�ned as part of the Fortran language language, along with the statement
bu�ers returned from the prepass. name scan and number scan() only take the statement bu�er
arguments. All scanning routines modify the statement bu�ers and return tokens along with any
lexical values present.

The keyscan() routine takes one of three tables de�ned in an initialization header �le. The
tables contain either keywords, types or symbols. The appropriate table is chosen by context deter-
mined from the prepass. Table scanning is accomplished by determining the length of the word or
symbol string, then string comparing to determine a match. A successful match advances a character
pointer to the end of the new token, which is returned along with any lexical value. The remaining
string is copied into the statement bu�er. The lexical values are determined from the matching
source code text bu�er. The tables are split into three types: one for Fortran key words (IF, DO,
etc.), one for Fortran types (REAL, INTEGER, etc.), and one for symbols (+, =, etc.).

The name scan() function is called if there is no context for a key word, and if the character
pointed to by the statement bu�er is alphabetic. name scan() loops over the characters in the
statement bu�er, advancing a character pointer until a non-alphanumeric character is seen. Then
the statement and text bu�ers are updated and the NAME token is passed back to yylex(). The
lexical value is copied into the global union variable yylval for use by yyparse() when NAME is
reduced.

The number scan() procedure addresses some other lexical questions associated with Fortran,
such as the look-ahead needed to determine whether the characters \123" reduce to an integer in
the relational operation 123.EQ.I. This is accomplished by advancing a character pointer over the
statement bu�er while the current character is a digit or any of the characters in the set fD, d, E,
e, .g. Encountering a \." during the loop causes the required look-ahead to determine whether the
number is an integer or a oating point number. Encountering any of the letter D, d, E, or e invokes
more look-ahead to determine the sign of the associated exponent. The procedure returns tokens
and values similarly to name scan().

2.2.2 Parsing Fortran

One may reasonably ask why anyone would use Fortran today, since experts seem to
agree that the language is obsolete|Stuart Feldman, 1979 [13]

The Fortran grammar has been described as neither LL or LR, or LL and not LR, or LR and
not LL, or both LL and LR. All answers are partly correct. Fortran was written before the notion
of regular expressions, and before context-free grammars were derived. Fortran predates Knuth's
[14] derivation of LR parsing by about 10 years. Fortunately, the LAPACK subset of Fortran 77
may be parsed LR(1), once the lexical structure has been determined.

The yacc grammar was written using the Fortran77 standard [15]. The grammar was im-
plemented using the Bison parser generator, a yacc work-alike distributed by the Free Software
Foundation. Bison generates an ANSI C parser, which helps ensure platform independence. The
Fortran source code is parsed into an abstract syntax tree (AST) consisting of tagged union nodes
implementing the equivalent Java structures. The AST allows easy lookup and connection between
non-adjacent nodes if future code restructuring is desired. The AST can be passed by its root node
to separate type-checking, code optimizing and code generation procedures.

The compiler uses global variables to communicate between the lexer and the parser because
the Bison generated parser routine yyparse() is automatically generated and takes no arguments.
Global variables are declared in the f2j.h header �le and as extern in the functions that use them.
In the parser, tokens that are associated with a lexical value are immediately reduced to store the
value. Since Bison reduces on in-line actions, in-line actions are avoided when possible.

The abstract syntax tree (AST) contains a single node type consisting of an enum statement
naming Fortran constructions (e.g., do loop), a union of structs to store data for each type of
Fortran construction, pointers to attach the nodes, and a token value. Some of the structs in the

16

union, such as that used for assignments, can also be used for expressions during the parsing pass.
The node would be assigned the appropriate tag (enum variable) because code generation procedures
are necessarily di�erent for assignment statements and expressions. The pointers are used to doubly
link statement blocks, or in the case of expressions, parent from child nodes to parent nodes. Since
Bison is an LR parser, linked lists are built in reverse, and must be switched for in-order traversal.
The switching is done before sublists are attached to the main part of the program, and for the main
program, directly after the �nal grammar reduction before the code generation routines are invoked.

The AST contains data for all Fortran program units contained in the input �le. Each
Fortran program unit consists of statement blocks, which are composed of one or more Fortran
statements. The statement blocks are connected into a doubly linked list, reecting Fortran's
procedural control of ow.

The statement block may consist of a single statement, or a group of statements in a control
structure such as a do-loop or if-then-else block. Statements within the scope of such structures
are linked as a sublist within the block instead of sequentially along the main ow of the program.
Expressions are parsed into a tree, whose root node is attached in the appropriate location along
the ow of the program or control structure, as appropriate.

2.2.3 Code generation

Java code After the parser constructs an AST, the root of the tree is passed to code generation
procedures to generate Java source code or Jasmin opcode. Since the Fortran source is assumed
syntactically and semantically correct, the tree is recursively traversed without formal semantic
checking. The Java source code generation is done in two passes. The �rst pass performs basic type
assignment and the second pass emits the source code.

Jasmin opcode For Jasmin source, two passes are done: the �rst to assign opcode by type and
context, the second pass to emit opcode. Jasmin opcode di�ers from from Java source primarily in
3 di�erent ways: (1) The operator syntax is post�x instead of in�x; (2) branching must be handled
explicitly; and (3) arithmetic operations are performed by type speci�c instructions, that is di�erent
instructions are used to add integers than to add oats.

The most challenging aspect of generating opcode for Jasmin is correctly implementing execution
branching. Branching takes the form jump -> labelwhere the jump may be a result of a comparison
of two values on the stack, or simply a goto statement. Labels are the target of all jumps. Di�erent
control ow structures have di�erent requirements for labeling. Appendix C illustrates branching
constructions in Jasmin generated by the f2jas program.

3 Using the f2j compiler

Synopsis

Usage: f2java [-java/-jas] [-p package name] [-w] [-i] [-s] <filename>

The f2j system currently consists of C source �les that are compiled into a single executable:
f2java. This executable can generate either Java or Jasmin code depending on the command-line
arguments: -java for Java source code or -jas for Jasmin opcode.

Using f2java from the command line requires only the �lename of the Fortran program to
translate. By default, the Fortran program is translated to Java source code, but the -jas switch
will direct f2java to generate Jasmin opcode instead. The name of the Fortran �le is transformed
into the class name, with appropriate capitalizations following established Java programming con-
ventions. Thus, the LAPACK driver dgesv.f is translated to Dgesv.java.

The -p option allows the user to specify a package name for the generated source code. For
example,

17

Fortran
source

Java
source

JVM
Opcode

.class
file

javac

Java
assembler

(jasmin)

.class
file

f2java −java

f2java −jas

Figure 2: Translation strategies in the f2j project

f2java -p org.netlib.blas file.f

would generate a �le named File.java, as usual, with the following package speci�cation:

package org.netlib.blas;

The package option is used when generating Java source that will be part of a library. For
example, when translating ddot.f, which will be part of the Java BLAS library, we would specify
\-p org.netlib.blas".

The -w option turns o� the optimization of wrappers, as discussed in section 2.1.15. By default,
wrapper usage is optimized. With -w speci�ed, every scalar variable will be wrapped in an object.

The -i option causes f2j to generate a high-level interface to each subroutine and function. The
interface provides a more Java-like API to the underlying numerical routines.

The -s option causes f2j to simplify the interfaces by removing the o�set parameter and using
a zero o�set. It isn't necessary to specify the -i ag in addition to the -s.

4 User interface to JLAPACK

In JLAPACK, the API is separated into the user API, and the low-level API.
The user-level interfaces are built on top of the low-level routines. This separation provides

several bene�ts. User supplied 2D arrays can be turned into 1D arrays, then back to 2D arrays.
O�set and leading dimension arguments can be omitted to simplify the calling sequence. Certain
variables must be wrapped in objects to emulate pass-by-reference, though.

The lower level interface consists of the same procedural type calls as in LAPACK. At this level,
the driver routines are called as static methods. Since the static methods \shadow" the class name,
the syntax for calling a driver is easy to remember. For example, calling dgesv will be done in
JLAPACK by Dgesv.dgesv(... arglist ...).

Consult http://www.cs.utk.edu/f2j/docs/html/packages.html for up to date documenta-
tion on both APIs.

18

5 Current status of project

The JLAPACK project has now completed all three Phases (Fortran front-end, code generation,
and testing) with respect to the initial design criteria. We are not putting much emphasis on the
Jasmin code generator anymore since we can translate GOTO statements into Java source.

The current implementation of f2j performs Java source code generation, and partial Jasmin
opcode generation. The generated Java code will compile as long as all dependencies compile.
Levels 1, 2, and 3 BLAS, the LAPACK routines, and the BLAS=LAPACK testers all meet this
criterion and will compile and run in the JVM.

Implicit typing of variables can be done in Fortran. By default, variable names starting with
I, J, K, L, M or N are integer variables [16] unless explicitly typed otherwise. However, f2j assumes
all variables in the Fortran source are explicitly typed.

The parser now handles multiple program units (function, subroutine, program) per input �le,
however only one �lename may be supplied on the command line at a time. Extending f2j to handle
an arbitrary number of �les would be worthwhile since the code generator needs to be able to view
the function declarations of all the functions and subroutines called by a program unit.

Currently, f2j does not do any memory recovery. All allocated memory is kept by the program
and returned to the operating system only when the program exits. For the BLAS and LAPACK
translation, this is not a large issue. Any future extensions to f2j, such as the ability to specify an
arbitrary number of �les, should address this issue.

The current version of f2j translates certain DATA statements. Our primary motivation for
implementing DATA statements was to successfully translate the BLAS testers. Consequently, the
set of DATA statements f2j supports directly corresponds to the set of DATA statements used in
the BLAS testers. Future versions of f2j may fully support DATA statements.

6 Recommendations

The parser generator yacc was developed in the 1970's and reects the programming practices of
its day. For instance, the actual parser produced by yacc is not easily readable due to the number
of goto statements. As the parser takes no arguments, it must interact with its associated lexer
using global variables. The extent of global variable use in the f2j compiler has reached a point of
diminishing returns. The code generation routines should be rewritten to reference a structure that
keeps count of all relevant variables such as the name of the current program, line numbers, label
numbers, etc.

Rewriting the type assignment and code generation routines for emitting Jasmin opcode involves
determining exactly how many global variables are used, writing an appropriate structure and passing
the structure along through recursive calls. The structure should be declared and initialized in the
initialization routine called by main() before the parser starts to work.

Previous versions of f2j have used a single pass code generator for Java source and a two pass
generator for Jasmin source. Currently, f2j uses at least two passes for both target languages, the
�rst pass traversing the tree to determine type information and another pass generating the code.
For obvious reasons, the code generation passes must remain distinct, but the type assignment passes
could be combined into one common function.

Many of the Fortran intrinsic functions have been mapped to their Java equivalents, but there
are still many remaining to be mapped.

As previously mentioned, it would be a good idea to extend f2j to allow multiple �le names on
the command line.

The table used to avoid conicts between Fortran variables and Java reserved keywords should
be updated to reect the new version of the Java Development Kit (1.1).

Most of the work to date on the f2j system has been designed from the \bottom up." Functions
performed by the lexer, parser and code generator were factored into independent procedures and
implemented as building blocks to construct the compiler. Midway through Phase 2, user interface

19

design issues necessitated a \top down" approach, that is, designing JLAPACK from the potential
users point of view.

One of Java's strengths is that its numerical syntax is similar to C, Fortran, and BASIC.
Since the mechanics of implementing array access di�er between Java and Fortran, it seems at
once natural and desirable to shield JLAPACK users from the internal workings of the JLAPACK
code. Two ways of doing this are: (1) provide completely new wrappers to the driver routines using
object-oriented conventions; (2) provide the user with a data speci�cation and a set of auxiliary
routines. The speci�cation would expose the user to the structure expected by JLAPACK for data.
The auxiliary routines would allow the user to ignore the speci�cation and transform Java 2D arrays
in row order to 1D column order arrays. Option (1) is preferable from a design standpoint, but
option (2) is much easier to implement, parallels existing LAPACK documentation, and should
expose pitfalls to be avoided in a later implementation of (1).

7 Summary

Fortran still excels for numerical programming, and is not likely to be challenged anytime in the
foreseeable future. Indeed, more powerful versions of the Fortran language (HPF, F90) have been
developed. The numerical libraries originally developed in Fortran, such as BLAS and LAPACK,
are de facto reference implementations of speci�c numerical algorithms.

Translating Fortran directly to Java probably won't provide optimal execution speeds. How-
ever, it is a convenient �rst step. The issue addressed with JLAPACK is not whether it is possible
to derive algorithms implemented in Java that provide the same e�ciency as existing algorithms
written in Fortran. This hasn't been resolved. In some cases, a di�erent algorithm, derived to
take advantage of Java's strengths, may provide near Fortran speeds when used with a JIT or
compiled to native code. The issue is \how do we express, in Java, algorithms that are well known
and understood, reliable, e�cient and thoroughly debugged, currently written in Fortran." The
f2j compiler is a �rst step in this direction.

Since these algorithms are applicable for a broad range of problems over a broad range of scales,
providing reliable implementations in other languages such as C and Java provides a great bene�t to
the numerical computing user community. While numerical analysts may �nd Fortran the most
e�cient language for algorithm development, engineers and scientists in other disciplines may need
to use a di�erent language, such as Java, for application development. The numerical algorithm,
instead of being the point of the program, is a tool useful for accomplishing its speci�ed task.

The f2j compiler provides an excellent base upon which to build a more general compiler that
translates a larger subset of Fortran into Java. For performance reasons, it may still be necessary
to have some user control over how variables are passed and arrays accessed, but there are no formal
obstacles, other than fully implementing the EQUIVALENCE statement. Such a tool could also
perform code restructuring using the information implicit in the abstract syntax tree constructed
during parsing. The popularity of the f2c translator indicates that f2j will be a popular and useful
tool.

Acknowledgments

Clint Whaley was very helpful in working out array access issues. Susan Blackford helped with key
concepts in the LAPACK software library such as variable referencing and the role of the machine
constants (dlamch) subroutines. James Giles of Ricercar Software provided critical parts of the
algorithm (Sale's) used to properly lex Fortran. John Levine provided an implementation of a
Fortran lexer that was useful for designing the current lexer. Josef Grosch (CoCoLabs) provided
a long list of ambiguities in the Fortran 90 speci�cation, which helped construct the f2j grammar
and would be very useful for any extension of the f2j compiler.

20

References

[1] I. Graham. Object Oriented Methods. Addison-Wesley, Berkeley, CA, 2d edition, 1994.

[2] J. Dongarra and R. Wade. Linpack Benchmark { Java Version. [Online] Available
http://www.netlib.org/benchmark/linpackjava, April 1996.

[3] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Engle-
wood Cli�s, New Jersey, 1969.

[4] J. C. S. Long, J. S. Remer, C. R. Wilson, and P. A. Witherspoon. Porous Media Equivalents
for Networks of Discontinuous fractures. WRR, 18:645{658, 1982.

[5] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran Usage. ACM Transactions on Mathematical Software, 5:308{325, 1979.

[6] J. Dongarra, J. Du Croz, S Hammarling, and R. Hanson. An Extended Set of Fortran Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.

[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.

[8] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Second Edi-
tion. SIAM, Philadelphia, PA, 1995.

[9] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer. A Fortran-to-C converter.
Computing Science Technical Report No. 149, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[10] Sun Microsystems Inc. The Java Language Environment. Sun Microsystems, Mountain View,
CA, 1995.

[11] A. Bik and D. Gannon. Exploiting Implicit Parallelism in Java. In Concurrency, Practice and
Experience, volume 9(6), pages 579{619, 1997.

[12] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Publishing Company, Reading, MA, 1988.

[13] S. I. Feldman. Implementation of a portable Fortran 77 compiler using modern tools. ACM
SIGPLAN Notices, 14:8:98{106, 1979.

[14] D. E. Knuth. On the translation of languages from left to right. Information and Control,
8:6:607{639, 1965.

[15] American National standards Institute. American National Standards Institute programming
language FORTRAN. X3.9-1978, ANSI, New York, New York, 1978.

[16] M. Boillot. Understanding FORTRAN 77 with Structured Problem Solving. West Publishing
Company, New York, 2d edition, 1987.

21

A Sale's algorithm

Sale's algorithm (Giles, pers. communication) was published in CACM in the sixties - with an update
for Fortran 77 republished in the eighties. Sale's algorithm requires a prepass of each statement to
determine whether or not the statement begins with a keyword. The prepass is simple and can be
done while scanning to remove comments and white space, and catenating continuation statements
together, prior to normal lexical processing.

During the prepass, any characters in a Hollerith, character string (that is, between quotes or
apostrophes), and any characters between matching parenthesis are ignored. Those characters are
irrelevant to the purpose of the prepass. Of the remaining characters, the scanner must keep track
of whether there are any equal signs (=) and whether there are any commas (,). Given the results
of the prepass, the lexer should work according to the following rules, illustrated with examples.

1. If there was neither a comma nor an equal sign, the statement must begin with a keyword:

REAL X No comma or equal sign, so a keyword must be �rst and lexer should �nd the REAL
keyword;

FORMAT(I5,F10.3) No comma or equal sign (none outside parenthesis), lexer should �nd
keyword FORMAT.

2. If there was an equal sign, but not a comma, the statements must not begin with a keyword:

REAL X = 5 No comma, but an equal sign, so no keyword is allowed, lexer should �nd
identi�er REALX;

FORMAT(I5) = 7 An equal sign, lexer �nds identi�er FORMAT;

DO 10 I = 1.10 Famous, no comma but equal sign is present, identi�er DO10I found.

3. If there was a comma (equal sign or not), the statement must begin with a keyword:

DO 10 I = 1, 10 Both comma and equal sign, keyword DO found.

However, there are still exceptions, This is resolved by collecting more information during the
Sale's prepass. If the statement contains parenthetical lists or expressions, look at the �rst non-blank
character after the close of the �rst parenthetical list/expression and record whether it's a letter.
Now add two more rules to the lexer:

4. If there was a letter following a parenthetical, then the statement must begin with the keyword
IF (very speci�c rule).

IF(LOGFLG) X = 5.0 Has an equal sign, but begins with keyword!

5. If there is such a letter, but no equal sign, the statement must end with the keyword THEN
(another very speci�c rule).

IF(LOGFLG) THEN No comma or equal, so IF keyword is found, but there is a second
keyword.

Another lexically ambiguous situation occurs with the FUNCTION keyword. To resolve this,
it must be known whether this is the �rst statement of a procedure, or whether it's a subsequent
statement. If this is the �rst statement in the source, or if it's the �rst statement after an END
statement, then the form with an identi�er inside the parenthesis is a FUNCTION declaration. In
all other circumstances, the statement declares an array.

6. This will always declare an array.

INTEGER FUNCTION A(5) An array declaration FUNCTIONA of length 5 (this is not
ambiguous).

22

7. If this is the �rst statement in the source, or if it's the �rst statement after an END statement,
a function is declared.

INTEGER FUNCTION A(I) Either an array or a function is declared.

Except for the keywords inside of an I/O control list (not implemented in f2j), these rules specify
how to �nd all Fortran 77 keywords. Except for THEN and FUNCTION, all non-I/O keywords must
be the �rst token of the statement they're in (with the caveat that they can be the �rst token of the
sub-statement controlled by a logical IF - to which rules 1 to 3 still apply).

Sale's algorithm resolves many of the issues that are frequently cited as major di�culties of
lexically scanning Fortran. The algorithm can be implemented during a prepass to quickly identify
most of the information that would normally require lookahead when during lexing. From there on,
Fortran can be quickly and e�ciently parsed with the same compiler tools used for more modern
languages. The algorithm is easy to code, fast, and the rest of Fortran's syntax is fairly regular once
resolved in the lexer.

B Timing array index operations

Three timing loops were written in Java to investigate the relative execution speed resulting from
initializing a square matrix, n = 500. The �rst loop initialized a 2D array, the second a 1D array
with row order indexing, the third a 1D array with column order indexing. In the third loop (column
order), the index product term was assigned to a dummy variable between the outer and inner loops.
The timing was done by storing the system time (in milliseconds) before the loop, then taking the
di�erence with system time returned after the loop. Garbage collection was forced before each timing
call in an attempt to provide an identical execution environment for each loop.

The results of two experiments of 32 trials each are shown in Table B. The �rst experiment
initialized arrays with the integer constant 1; the second with a double constant generated by raising
a double to the power of another double. The 1D column order was the fastest, followed by the 2D
and the 1D row order. The time di�erences reect the both the number of statements and the time
required to execute statements initializing the matrix within the inner loop. Disassembling the class
�le for the integer testing code (ArrayOps.java) shows that the 2D and 1D column order matrix
indexing requires 6 instructions, while the 1D row order requires 8, due to the product term located
within the index. Di�erences between the 2D and 1D column order are assumed due to variations
in time required to execute di�erent JVM instructions.

2D 1D (row) 1D (column)
integer 480 592 462
double 2127 2268 2116

Table 1: Execution speed of array index operations depends on the number and type of instructions
required to index.

As would be expected, the time di�erences between initializing an integer and double is signi�-
cant only in a relative sense. The absolute values of the di�erences are very similar. A better timing
loop would measure time required for a matrix-matrix operation such as C = AB.

The following Java source code implements timing for index operations in two dimensional arrays
that are accessed by di�erent indexing methods. Although initializing array elements is a simple
operation, the code could easily be extended to implement matrix-matrix operations.

/* This class performs a some simple timing for array

operations.

*/

//

23

import java.lang. *;

public class ArrayOps

{

public static void main (String[]args)

{

System.out.println (" 2D 1D 1D2");

for (int i = 0; i < 33; i++)

{

twoD ();

oneD ();

oneD2 ();

System.out.println ();

}

}

public static void twoD ()

{

System.gc ();

long time = System.currentTimeMillis ();

int i, j;

double[][] A = new double[500][500];

for (i = 0; i < 500; i++)

{

for (j = 0; j < 500; j++)

{

A[i][j] = Math.pow (3.14159, 2.718);

}

}

System.out.print (" " + (System.currentTimeMillis () - time));

}

public static void oneD ()

{

System.gc ();

long time = System.currentTimeMillis ();

int i, j, LDA;

double[] A = new double[500 * 500];

LDA = 500;

for (i = 0; i < 500; i++)

{

for (j = 0; j < 500; j++)

{

A[i + j * LDA] = Math.pow (3.14159, 2.718);

}

}

System.out.print (" " + (System.currentTimeMillis () - time));

}

public static void oneD2 ()

{

24

System.gc ();

long time = System.currentTimeMillis ();

int i, j, LDA;

double[] A = new double[500 * 500];

LDA = 500;

for (j = 0; j < 500; j++)

{

int k = j * LDA;

for (i = 0; i < 500; i++)

{

A[i + k] = Math.pow (3.14159, 2.718);

}

}

System.out.print (" " + (System.currentTimeMillis () - time));

}

} // End class file.

//

The class �le of the ArrayOps class was disassembled into Jasmin opcode to examine the in-
structions required by the JVM to implement each type of array access method.

;

; Output created by D-Java (mailto:umsilve1@cc.umanitoba.ca)

;

;Classfile version:

; Major: 45

; Minor: 3

.source ArrayOps.java

.class public synchronized ArrayOps

.super java/lang/Object

; >> METHOD 1 <<

.method public static main([Ljava/lang/String;)V

.limit stack 2

.limit locals 2

.line 13

getstatic java/lang/System/out Ljava/io/PrintStream;

ldc " 2D 1D 1D2"

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

.line 14

iconst_0

istore_1

goto Label2

.line 16

Label1:

invokestatic ArrayOps/twoD()V

.line 17

25

invokestatic ArrayOps/oneD()V

.line 18

invokestatic ArrayOps/oneD2()V

.line 19

getstatic java/lang/System/out Ljava/io/PrintStream;

invokevirtual java/io/PrintStream/println()V

.line 14

iinc 1 1

Label2:

iload_1

bipush 33

if_icmplt Label1

.line 11

return

.end method

; >> METHOD 2 <<

.method public static twoD()V

.limit stack 6

.limit locals 5

.line 25

invokestatic java/lang/System/gc()V

.line 26

invokestatic java/lang/System/currentTimeMillis()J

lstore_0

.line 28

sipush 500

sipush 500

multianewarray [[D 2

astore 4

.line 31

iconst_0

istore_2

goto Label4

.line 33

Label1:

iconst_0

istore_3

goto Label3

.line 35

Label2:

aload 4

iload_2

aaload

iload_3

ldc2_w 3.14159

ldc2_w 2.718

invokestatic java/lang/Math/pow(DD)D

dastore

.line 33

iinc 3 1

Label3:

26

iload_3

sipush 500

if_icmplt Label2

.line 31

iinc 2 1

Label4:

iload_2

sipush 500

if_icmplt Label1

.line 38

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuffer

dup

ldc " "

invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V

invokestatic java/lang/System/currentTimeMillis()J

lload_0

lsub

invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;

invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 23

return

.end method

; >> METHOD 3 <<

.method public static oneD()V

.limit stack 6

.limit locals 6

.line 43

invokestatic java/lang/System/gc()V

.line 44

invokestatic java/lang/System/currentTimeMillis()J

lstore_0

.line 46

ldc 250000

newarray double

astore 5

.line 47

sipush 500

istore 4

.line 48

iconst_0

istore_2

goto Label4

.line 50

Label1:

iconst_0

istore_3

goto Label3

.line 52

Label2:

27

aload 5

iload_2

iload_3

iload 4

imul

iadd

ldc2_w 3.14159

ldc2_w 2.718

invokestatic java/lang/Math/pow(DD)D

dastore

.line 50

iinc 3 1

Label3:

iload_3

sipush 500

if_icmplt Label2

.line 48

iinc 2 1

Label4:

iload_2

sipush 500

if_icmplt Label1

.line 55

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuffer

dup

ldc " "

invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V

invokestatic java/lang/System/currentTimeMillis()J

lload_0

lsub

invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;

invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 41

return

.end method

; >> METHOD 4 <<

.method public static oneD2()V

.limit stack 6

.limit locals 7

.line 60

invokestatic java/lang/System/gc()V

.line 61

invokestatic java/lang/System/currentTimeMillis()J

lstore_0

.line 63

ldc 250000

newarray double

astore 5

.line 64

28

sipush 500

istore 4

.line 65

iconst_0

istore_3

goto Label4

.line 67

Label1:

iload_3

iload 4

imul

istore 6

.line 68

iconst_0

istore_2

goto Label3

.line 70

Label2:

aload 5

iload_2

iload 6

iadd

ldc2_w 3.14159

ldc2_w 2.718

invokestatic java/lang/Math/pow(DD)D

dastore

.line 68

iinc 2 1

Label3:

iload_2

sipush 500

if_icmplt Label2

.line 65

iinc 3 1

Label4:

iload_3

sipush 500

if_icmplt Label1

.line 73

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuffer

dup

ldc " "

invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V

invokestatic java/lang/System/currentTimeMillis()J

lload_0

lsub

invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;

invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 58

return

29

.end method

; >> METHOD 5 <<

.method public <init>()V

.limit stack 1

.limit locals 1

.line 8

aload_0

invokenonvirtual java/lang/Object/<init>()V

return

.end method

C JVM instructions for Fortran

The following tables illustrate Fortran syntax expressed in terms of JVM instructions.

Logical if Fortran logical if statements take the form of a test=statement on one line. If the test
is true, the statement is executed, if false, execution passes to the statement on the next line. This
is implemented in jasmin by reversing the relational operator (RO) to skip the conditional execution
if true. For example, consider the following code.

Fortran source Jasmin target

if (x .lt. 3) y = 1

return

; Logical `if' statement.

ldc 3 ; 3

iload 0 ; x

if_icmpge Label1

ldc 1 ; 1

istore 1 ; = y

Label1:

return

The Fortran source requires setting y = 1 if x < 3, then returning. In the JVM, if x � 3, we
jump directly to the return at Label 1, else executions \falls through" the test and 1 is assigned to
y before returning. One unique label is required for each logical if statement.

Do loops Implementing Fortran do loops is done by �rst initializing the loop index, testing the
index against the stop value, jumping back to executable statements, then incrementing the loop
counter and testing its value. The following demonstrates.

30

Fortran source Jasmin target

do 10 j = 1, 20

y = y + 1

10 continue

; Initialize counter.

ldc 1 ; 1

istore 4 ; = j

goto Label2

Label1:

; Executable statements.

iload 2 ; y

ldc 1 ; 1

iadd ; +

istore 2 ; = y

; Increment counter.

iinc 4 1 ; Increment counter j.

Label2:

; Compare, jump to Label1 to iterate.

ldc 20 ; 20

iload 4 ; j

if_icmplt Label1

For nested loops, the procedure is quite similar. The interior loops are just treated as executable
statements by the exterior loop.

Fortran source Jasmin target

do 30 j = 1, 321

do 20 i = 1, 54

y = z - 1

20 continue

; do loop.

; Initialize counter.

ldc 1 ; 1

istore 3 ; = i

goto Label5

Label4:

; Executable statements.

iload 1 ; z

ldc 1 ; 1

isub ; -

istore 2 ; = y

; Increment counter.

iinc 3 1 ; Increment counter i.

Label5:

; Compare, jump to Label4 to iterate.

ldc 54 ; 54

iload 3 ; i

if_icmplt Label4

; Increment counter.

iinc 4 1 ; Increment counter j.

Label6:

; Compare, jump to Label3 to iterate.

ldc 321 ; 321

iload 4 ; j

if_icmplt Label3

Each instance of a do loop requires two unique labels.

31

Block if Fortran and Java share the same behavior for block if constructions, i.e. if-else-if
statements, only one test may be successfully evaluated. The remaining are skipped, execution
continues at the �rst statement after the last else-if block, or default else if present.

Fortran source Jasmin target

if (i .lt. 40) then

i = j

else if (j .lt. 50) then

p = 1234

else if (j .ge. 60) then

p = q

else if (x .gt. z) then

x = z

else

p = d * q

endif

return

; Block `if' statement.

ldc 40 ; 40

iload 1 ; i

if_icmpge Label1

iload 2 ; j

istore 1 ; = i

goto Label5: ; Skip remainder.

Label1:

ldc 50 ; 50

iload 2 ; j

if_icmpge Label2

ldc 1234 ; 1234

istore 4 ; = p

goto Label5: ; Skip remainder.

Label2:

ldc 60 ; 60

iload 2 ; j

if_icmplt Label3

iload 5 ; q

istore 4 ; = p

goto Label5: ; Skip remainder.

Label3:

iload 7 ; z

iload 6 ; x

if_icmple Label4

iload 7 ; z

istore 6 ; = x

goto Label5: ; Skip remainder.

Label4:

iload 0 ; d

iload 5 ; q

imul ; *

istore 4 ; = p

Label5:

return

It appears from this code that each if, else if and else require a unique label. That is, a block if
requires as many unique labels as exist if, else if and else statements in the block.

D To do list

Although all three Phases of the f2j compiler are complete, there are still some aspects of the system
that should be done or would help by being done. The following list details some of these.

1. f2j currently only handles one �le at a time. Allowing multiple �les could probably be imple-
mented rather easily, but each should be freed before parsing in new �les.

32

2. The front-end parser and lexer are adequate for the BLAS and LAPACK libraries, but they
really should be updated in order for f2j to be useful for a wide variety of libraries.

3. Need compiler to "automatically" �gure how which package the routine should go into, and
which �les to import. This can be hacked by using the preprocessor, or by command line
switches, etc. Also, may help to switch over to Solaris for development. That way some simple
java tools can be used to control compiling, etc.

4. Write an error handling routine for yyparse to indicate the approximate location of parse errors
in the input �le. Lex & yacc book has example. Note that the hook for this is in the lexer;
line are counted.

5. Fix the in-line RELOP action in a similar way to Name <=> NAME, etc. In fact, all in-line
actions should be removed from the grammar �le.

6. Add code to the 'prelex()' routine to check whether there is six spaces of white at the beginning
of each non-continued statement.

7. Testing toolset: suite of tools to test the lexer, parser and functionality of translated source
code. So far I have two csh scripts: blascheck and lapackcheck written to see how well src
in the blas and lapack directories lex and parse.

8. Fix the IF-ELSE shift=reduce error in the parser.

9. The JVM uses a stack, for which the number of local variables and the stack depth must be
calculated in advance. There needs to be an algorithm derived for this, keeping the track of
the following data:

� Number of locals has be at least the same as the number of arguments, more if doubles
are used, even more if with typed variables.

� The size of the stack can be calculated by keeping a running total of operations that a�ect
the stack.

E Known bugs f2java, f2jas

These are the known bugs in f2j. There are undoubtedly others.

� Fortran character strings used as arguments to subroutine calls appear to work sometimes,
but not other times. That is, one call using say, ..., 'DGFT', ... might translate to the
appropriate Java code ..., "DGFT", ..., other times just a pair of commas is emitted: ...,,...

� If the last line of the input �le begins with a TAB, the parser generates an error.

� The development of the Jasmin code generator has lagged far behind that of the Java code
generator. There have been so many changes to the AST that the Jasmin code generator is
now broken.

� Similarly, the VCG-compatible graph generator is broken, too.

33

