
Efficient Pattern Search in Large Traces through
Successive Refinement?

Felix Wolf1, Bernd Mohr2, Jack Dongarra1, and Shirley Moore1

1 University of Tennessee, ICL
1122 Volunteer Blvd Suite 413

Knoxville, TN 37996-3450, USA
{fwolf,dongarra,shirley}@cs.utk.edu

2 Forschungszentrum Jülich, ZAM
52425 Jülich, Germany
b.mohr@fz-juelich.de

Abstract. Event tracing is a well-accepted technique for post-mortem
performance analysis of parallel applications. The expert tool supports
the analysis of large traces by automatically searching them for exe-
cution patterns that indicate inefficient behavior. However, the current
search algorithm works with independent pattern specifications and ig-
nores the specialization hierarchy existing between them, resulting in a
long analysis time caused by repeated matching attempts as well as in
replicated code. This article describes an optimized design taking advan-
tage of specialization relationships and leading to a significant runtime
improvement as well as to more compact pattern specifications.

1 Introduction

Event tracing is a well-accepted technique for post-mortem performance analysis
of parallel applications. Time-stamped events, such as entering a function or
sending a message, are recorded at runtime and analyzed afterward with the
help of software tools. For example, graphical trace browsers, such as vampir [1],
allow the fine-grained investigation of parallel performance behavior using a
zoomable time-line display. However, in view of the large amounts of data usually
generated, automatic analysis of event traces can provide the user with the
desired information more quickly by automatically transforming the data into a
more compact representation on a higher level of abstraction.

The expert performance tool [9] supports the performance analysis of mpi
and/or openmp applications by automatically searching traces for execution
patterns that indicate inefficient behavior. The performance problems addressed
include inefficient use of the parallel programming model and low cpu and mem-
ory performance. expert is implemented in Python and its architecture consists

? This work was supported in part by the U.S. Department of Energy under Grants
DoE DE-FG02-01ER25510 and DoE DE-FC02-01ER25490 and is embedded in the
European IST working group APART under Contract No. IST-2000-28077



of two parts: a set of pattern specifications and an analysis unit that tries to
match instances of the specified patterns while it reads the event trace once
from the beginning to the end. Each pattern specification represents a different
performance problem and consists of a Python class with methods to identify
instances in the event stream. Although all pattern classes are organized in a spe-
cialization hierarchy, they are specified independently from each other resulting
in replicated code and prolonged execution time whenever a pattern implemen-
tation reappears as part of another more specialized version.

This article describes an optimized design and search strategy leading to
a significant speed improvement and more compact pattern specifications by
taking advantage of specialization relationships. The design shares information
among different patterns by looking in each step for more general patterns first
and then successively propagating successful matches to more specialized pat-
terns for refinement. We evaluate two implementations of the new design, one in
Python and one in C++.

The article is outlined as follows: Section 2 describes related work. In Sec-
tion 3, we outline expert’s overall architecture together with the current search
strategy in more detail. After that, we explain the successive-refinement strategy
in Section 4. Section 5 presents experimental results, followed by our conclusion
in Section 6.

2 Related Work

The principle of successive refinement has also been used in the kappa-pi [3]
post-mortem trace-analysis tool. kappa-pi first generates a list of idle times
from the raw trace file using a simple metric. Then, based on this list, a recur-
sive inference process continuously deduces new facts on an increasing level of
abstraction.

Efficient search along a hierarchy is also a common technique in online perfor-
mance tools: To increase accuracy and efficiency of its online bottleneck search,
Paradyn stepwise refines its instrumentation along resource hierarchies, for ex-
ample, by climbing down the call graph from callers to callees [2]. Fürlinger
et al. [6] propose a strategy for online analysis based on a hierarchy of agents
transforming lower-level information stepwise into higher-level information.

Ideas based on successive refinement can also be found in performance-
problem specification languages, such as asl [4] and javapsl [5], which is basi-
cally a Java version of asl. Both use the concept of metaproperties to describe
new performance problems based on existing ones.

3 Overall Architecture

expert is part of the kojak trace-analysis environment [8,9] which also in-
cludes tools for instrumentation and result presentation (Figure 1). Depending
on the platform and the availability of tools, such as built-in profiling interfaces
of compilers, the application is automatically instrumented and then executed.

2



During execution, the program generates a trace file in the epilog format to
be automatically postprocessed by expert. epilog is able to represent region
entry and exit events, mpi point-to-point and collective communications, as well
as openmp fork-join, synchronization, and work-sharing operations.

User 
Program

Instrumentation /
Execution

EPILOG

Trace File

EXPERT

EARL

CUBE
Display

Analysis
Results

Post-Mortem Analysis

Fig. 1. The kojak trace-analysis environment.

To simplify pattern specification, expert uses the earl library [8] to access
individual events. earl provides a high-level interface to the event trace with
random-access capabilities. Events are identified by their relative position and
are delivered as a set of attribute values, such as time and location. In addition to
providing random access to single events, earl simplifies analysis by establishing
links between related events, such as a link pointing from a region exit event
to its corresponding enter event, and identifying event sets that describe an
application’s execution state at a given moment, such as the set of send events
of messages currently in transit. earl is implemented in C++ and provides both
a C++ and a Python interface. It can be used independently of expert for a
large variety of trace-analysis tasks.

expert transforms event traces into a compact representation of performance
behavior, which is essentially a mapping of tuples (performance problem, call
path, location) onto the time spent on a particular performance problem while
the program was executing in a particular call path at a particular location.
Depending on the programming model, a location can be either a process or
a thread. After the analysis has been finished, the mapping is written to a file
and can be viewed using cube [7], which provides an interactive display of the
three-dimensional performance space based on three coupled tree browsers.

3.1 Current Search Strategy

There are two classes of search patterns, those that collect simple profiling infor-
mation, such as communication time, and those that identify complex inefficiency
situations, such as a receiver waiting for a message. The former are usually de-
scribed by pairs of enter and exit events, whereas the latter are described by more
complex compound events usually involving more than two events. All patterns
are arranged in a hierarchy. The hierarchy is an inclusion hierarchy with re-
spect to the inclusion of execution-time interval sets exhibiting the performance
behavior specified by the pattern.

expert reads the trace file once from the beginning to the end. Whenever an
event of a certain type is reached, a callback method of every pattern class that

3



has registered for this event type is invoked. The callback method itself then
might access additional events by following links or retrieving state information
to identify a compound event representing the inefficient behavior. A compound
event is a set of events hold together by links and state-set boundaries and
satisfying certain constraints.

3.2 Example

The example of a process waiting for a message as a result of accepting mes-
sages in the wrong order illustrates the current search strategy. The situation
is depicted in Figure 2. Process A waits for a message from process B that is
sent much later than the receive operation has been started. Therefore, most of
the time consumed by the receive operation of process A is actually idle time
that could be used better. This pattern in isolation is called late-sender and is
enclosed in the spotted rectangle. expert recognizes this pattern by waiting for
a receive event to appear in the event stream and then following links computed
by earl (dashed lines in Figure 2) to the enter events of the two communication
operations to determine the temporal displacement between these two events
(idle time in Figure 2).

time

pr
oc

es
se

s

Enter

Exit

Send

Receive

MessageA

B

C

idle time

MPI_Send

MPI_Recv

Link

Fig. 2. Idle time as a result of receiving messages in the wrong order.

Looking at this situation in the context of the other message sent from process
C to A allows the conclusion that the late-sender pattern could have been avoided
or at least alleviated by reversing the acceptance order of these two messages.
Because the message from C is sent earlier than that from B, it will in all
probability have reached process A earlier. So instead of waiting for the message
from B, A could have used the time better by accepting the message from C
first. The late-sender pattern in this context is called late-sender / wrong-order.
expert recognizes this situation by examining the execution state computed by
earl at the moment when A receives the message from B. It inspects the queue
of messages (i.e., their send events) sent to A and checks whether there are older
messages than the one just received. In the figure, the queue would contain the
event of sending the message from C to A.

4



This combined situation is a specialization of the simple late-sender. How-
ever, in spite of this relationship, both of them are currently computed indepen-
dently. Whenever a receive event is reached, the late-sender callback follows links
to see whether there is a receiver waiting unnecessarily. In addition, the callback
method responsible for detecting the combined late-sender / wrong-order situa-
tion first checks the message queue for older messages and, if positive, tries to
identify a late-sender situation as well - resulting in a part of the work done
twice.

3.3 Profiling Patterns

A similar problem occurs with patterns collecting profiling information. Here,
every pattern filters out matching pairs of enter and exit events that form re-
gion instances satisfying certain criteria, such as invocations of synchroniza-
tion routines, to accumulate the instances’ durations. Here also, a large fraction
of the work is done more than once, when for example, one pattern accumu-
lates communication time while a specialization of it accumulates collective-
communication time.

4 Successive Refinement

The new search strategy is based on the principle of successive refinement. The
basic idea is to pass a compound-event instance, once it has been detected by a
more general pattern, on to a more specialized pattern, where it can be reused,
refined, and/or prepared for further reuse. In the previous version, patterns have
only been able to register for primitive events, that is, events as they appear in
the event stream, as opposed to compound events consisting of multiple primitive
events. The new design allows patterns also to publish compound events that
they have detected as well as to register for compound events detected by others.

Figure 3 shows three pattern classes in expert’s pattern hierarchy. The hier-
archical relationships between the three classes are expressed by their parent()
methods. The register() methods register a callback method with the analysis
unit to be invoked either upon a primitive event or a compound event. Descrip-
tions of valid compound-event types for which a callback can be registered are
stored in a developer map and can be looked up there manually. At runtime, the
callback methods may return either a valid compound-event instance or None.
If a valid instance is returned, the analysis unit invokes all callbacks subscribing
for this type of compound event and a data structure holding the instance is
supplied as an argument to theses callbacks.

The class P2P registers the method recv() as callback for a primitive receive
event. recv() returns a compound event representing the entire receive operation
(recv op) including the receive event and the events of entering and leaving
the mpi call. This corresponds to the left gray bar on the time line of process
A in Figure 2. The LateSender class registers the method recv op() for the
compound event returned by recv() and tries there to identify the remaining

5



01 class P2P(Pattern):
02 [...]
03 def register(self, analyzer):
04 analyzer.subscribe(’RECV’, self.recv)
05 def recv(self, recv):
06 [...]
07 return recv_op
08
09 class LateSender(Pattern):
10 [...]
11 def parent(self):
12 return "P2P"
13 def register(self, analyzer):
14 analyzer.subscribe(’RECV_OP’, self.recv_op)
15 def recv_op(self, recv_op):
16 if [...]
17 return ls
18 else:
19 return None
20
21 class LateSendWrOrd(Pattern):
22 [...]
23 def parent(self):
24 return "LateSender"
25 def register(self, analyzer):
26 analyzer.subscribe(’LATE_SENDER’, self.late_sender)
27 def late_sender(self, ls):
28 pos = ls[’RECV’][’pos’]
29 dest_id = ls[’RECV’][’loc_id’]
30 queue = self._trace.queue(pos, -1, dest_id)
31 if queue and queue[0] < ls[’SEND’][’pos’]:
32 loc_id = ls[’ENTER_RECV’][’loc_id’]
33 cnode_id = ls[’ENTER_RECV’][’cnodeptr’]
34 self._severity.add(cnode_id, loc_id, ls[’IDLE_TIME’])
35 return None

Fig. 3. Late-sender / wrong-order pattern based on successive refinement.

parts of the late-sender situation, as depicted in the spotted rectangle in Figure 2.
In the case of a positive result, the successfully matched instance is returned and
passed on to the LateSendWrOrd class. It is supplied as the ls argument to the
late sender() method, which has previously been registered for this type of
compound event. ls is a Python dictionary containing the various constituents
of the compound event, such as the receive event and the enter event of the
receive operation, plus calculated values, such as the idle time lost by the receiver.
The method examines the queue to see whether there are older messages that
could have been received before the late message. If positive, the idle time is
accumulated.

The difference from the old version (not shown here) is that the results are
shared among different patterns so that situations that appear again as part of
others are not computed more than once. The sharing works in two ways. First, if
a compound event is successfully matched, it is passed along a path in the pattern
hierarchy and is refined from a common to a more specialized situation by adding
new constituents and constraints. Second, since subscribers on a deeper level of
the hierarchy are not invoked if the match was already unsuccessful on a higher
level, negative results are shared as well, which increases the search efficiency

6



even further by suppressing matching attempts predicted to be unsuccessful.
In contrast, the old version might, for example, try to match the late-sender
situation twice: the first time as part of the late-sender pattern and the second
time as part of the late-sender / wrong-order pattern even if the simple late-
sender pattern was already unsuccessful. In addition to being more efficient, the
new design is also more compact since replicated code has been eliminated.

The profiling patterns mentioned in Section 3.3 offered a similar opportunity
for optimization. Previously, every profiling pattern had to do both: accumu-
lating time and hardware-counter values and then filtering based on call-path
properties. The new design performs accumulation centrally by calculating a
(call path, location) matrix for the execution time and every hardware counter
recorded in the trace. After the last event has been reached, the matrices are
distributed to all profiling-pattern classes where the filtering takes place. Be-
cause now the accumulation is done once for all patterns and because filtering is
done only once per call path as opposed to once per call-path instance, the new
version is again much more efficient.

5 Evaluation

We evaluated our new strategy using five traces from realistic applications, three
from pure mpi codes and two from hybrid openmp/mpi codes (Table 1). For
one of the applications, the sweep3d asci benchmark, we ran the original mpi
version monitoring also cache-miss values and a hybrid version without hardware
counter measurements. The second and the third rows of the table contain the
number of cpus used to generate the traces as well as the trace-file sizes in
millions of events. Please refer to [8] for further details about the codes.

Table 1. Execution times of the old and the new implementation.

trace cx3d sweep3d-hw sweep3d remo

Type mpi mpi mpi hybrid hybrid

No. of cpus 16 8 16 16 16

Events [106] 19.7 1.9 0.4 4.7 11.1

Old Python [min] 332.0 30.9 4.8 60.3 285.1

New Python [min] 42.0 12.5 1.7 14.6 22.0

New C++ [min] 44.0 13.9 2.3 6.8 2.5

New Python [speedup] 7.9 2.5 2.8 4.1 13.0

New C++ [speedup] 7.6 2.2 2.1 8.9 114.0

We compared two implementations of our new strategy, one in Python and
one in C++, against the old Python implementation. The test platform was
an ibm aix system with a Power4+ 1.7 GHz processor. The first three rows
below the event numbers list the plain execution times in minutes, the last two

7



rows give speedup factors in relation to the old version for a more convenient
comparison.

In all examples the new strategy implemented in Python achieved a speedup
of at least a factor of 2.5 and in many cases the speedup was even much higher
(13.0 maximum). Although the C++ version obtained significant additional
speedup for hybrid traces (e.g., 114.0 vs. 13.0 for remo), it was surprisingly
unable to deliver any additional performance in the analysis of pure mpi traces,
which we hopefully can improve in the near future.

6 Conclusion

The benefit of our new design is twofold: a significant runtime improvement by
avoiding repetition of detection work on the one hand and less redundant and
therefore more compact pattern specifications on the other hand. In particular
the latter achievement will allow us to extend the set of patterns more easily in
the future. An integration of the underlying concepts into the asl [4] specification
language might help share these results with a broader community. The kojak
software is available at http://www.fz-juelich.de/zam/kojak/.

References

1. A. Arnold, U. Detert, and W. E. Nagel. Performance Optimization of Parallel
Programs: Tracing, Zooming, Understanding. In R. Winget and K. Winget, editors,
Proc. of Cray User Group Meeting, pages 252–258, Denver, CO, March 1995.

2. H. W. Cain, B. P. Miller, and B. J. N. Wylie. A Callgraph-Based Search Strategy
for Automated Performance Diagnosis. In Proc. of the 6th International Euro-Par
Conference, volume 1999 of Lecture Notes in Computer Science, Munich, Germany,
August/September 2000. Springer.

3. A. Espinosa. Automatic Performance Analysis of Parallel Programs. PhD thesis,
Universitat Autonoma de Barcelona, September 2000.

4. T. Fahringer, M. Gerndt, B. Mohr, G. Riley, J. L. Träff, and F. Wolf. Knowledge
Specification for Automatic Performance Analysis. Technical Report FZJ-ZAM-IB-
2001-08, ESPRIT IV Working Group APART, Forschungszentrum Jülich, August
2001. Revised version.

5. T. Fahringer and C. Seragiotto Júnior. Modelling and Detecting Performance Prob-
lems for Distributed and Parallel Programs with JavaPSL. In Proc. of the Confer-
ence on Supercomputers (SC2001), Denver, Colorado, November 2001.

6. K. Fürlinger and M. Gerndt. Distributed Application Monitoring for Clustered SMP
Architectures. In Proc. of the 9th International Euro-Par Conference, Klagenfurt,
Austria, August 2003.

7. F. Song and F. Wolf. CUBE User Manual. Technical Report ICL-UT-04-01, Uni-
versity of Tennessee, Innovative Computing Laboratory, Knoxville, TN, 2004.

8. F. Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes.
PhD thesis, RWTH Aachen, Forschungszentrum Jülich, February 2003. ISBN 3-00-
010003-2.

9. F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP
applications. Journal of Systems Architecture, 49(10-11):421–439, 2003. Special
Issue “Evolutions in parallel distributed and network-based processing”.

8

http://www.fz-juelich.de/zam/kojak/

	Efficient Pattern Search in Large Traces through Successive Refinement
	Felix Wolf (University of Tennessee), Bernd Mohr (Forschungszentrum Jülich)

