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Domain Overlap for Iterative Sparse Triangular
Solves on GPUs

Hartwig Anzt, Edmond Chow, Daniel B. Szyld, and Jack Dongarra

Abstract Iterative methods for solving sparse triangular systems are an attractive
alternative to exact forward and backward substitution if an approximation of the
solution is acceptable. On modern hardware, performance benefits are available
as iterative methods allow for better parallelization. In this paper, we investigate
how block-iterative triangular solves can benefit from using overlap. Because the
matrices are triangular, we use “directed” overlap, depending on whether the matrix
is upper or lower triangular. We enhance a GPU implementation of the block-
asynchronous Jacobi method with directed overlap. For GPUs and other cases where
the problem must be overdecomposed, i.e., more subdomains and threads than cores,
there is a preference in processing or scheduling the subdomains in a specific order,
following the dependencies specified by the sparse triangular matrix. For sparse
triangular factors from incomplete factorizations, we demonstrate that moderate
directed overlap with subdomain scheduling can improve convergence and time-
to-solution.

1 Introduction

Sparse triangular solves are an important building block when enhancing Krylov
solvers with an incomplete LU (ILU) preconditioner [28]. Each iteration of the
solver requires the solution of sparse triangular systems involving the incomplete
factors. Exact solves with sparse triangular matrices are difficult to parallelize
due to the inherently sequential nature of forward and backward substitution.
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Level scheduling strategies [28] aim at identifying sets of unknowns that can be
computed in parallel (called “levels”), but these sets are often much smaller than
the parallelism provided by the hardware. Particularly on manycore architectures
like graphics processing units (GPUs), level-scheduling techniques generally fail to
exploit the concurrency provided.

At the same time, the incomplete factorizations are typically only a rough
approximation, and exact solutions with these factors may not be required for
improving the convergence of the Krylov solver. Given this situation, interest has
developed in using “approximate triangular solves” [7]. The concept is to replace
the exact forward and backward substitutions with an iterative method that is
easy to parallelize. Relaxation methods like the Jacobi method provide parallelism
across vector components, and can be an attractive alternative when running ILU-
preconditioned Krylov methods on parallel hardware. For problems where only
a few steps of the iterative method applied to the sparse triangular systems are
sufficient to provide the same preconditioning quality to the outer Krylov method,
the approximate approach can be much faster [14, 15]. A potential drawback of this
strategy, however, is that disregarding the dependencies between the vector compo-
nents can result in slow information propagation. This can, in particular, become
detrimental when using multiple local updates for better cache reuse [6]. In this
paper, we investigate improving the convergence of approximate sparse triangular
solves by using overlap strategies traditionally applied in domain decomposition
methods. Precisely, we enhance a block-iterative method with restricted Schwarz
overlap, and analyze the effect of non-uniform overlap that reflects the information
propagation dependencies. The findings gained are then used to realize overlap in a
GPU implementation of block-asynchronous Jacobi.

The remainder of the paper is structured as follows. Section 2 provides some
background on sparse triangular solves, block-asynchronous Jacobi, and different
types of Schwarz overlap with the goal of setting the larger context for this work.
In Sect. 3, the benefits of restricted additive Schwarz and directed overlap are
investigated for different synchronization strategies, and with specific focus on
sparse triangular systems arising from incomplete factorization preconditioners.
Section 4 gives details about how we realized overlap in the GPU implementation.
In Sect. 5, we analyze the convergence and performance improvements we achieved
by enhancing block-asynchronous Jacobi with restricted overlap. We conclude in
Sect. 6.

2 Background and Related Work

2.1 Sparse Triangular Solves

Due to their performance-critical impact when used in preconditioned Krylov
methods, much attention has been paid to the acceleration of sparse triangular
solves. The traditional approach tries to improve the exact solves. The most common
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strategies are based on level scheduling or multi-color ordering [2, 21–23, 30]. A
more disruptive approach is to use partitioned inverses [1, 27], where the triangular
matrix is written as a product of sparse triangular factors, and each triangular
solve becomes a sequence of sparse matrix vector multiplications. Also, the use
of sparse approximate inverses for the triangular matrices were considered [9, 17].
The solution of the triangular systems is then replaced by the multiplication with
two sparse matrices that are approximating the respective inverses of the triangular
factors. With the increase in parallelism that is available in hardware, iterative
approaches to solving triangular systems become tantalizing, as they provide much
finer grained parallelism. In situations where an approximate solution is acceptable,
which often is the case for incomplete factorization preconditioning, iterative
triangular solves can accelerate the overall solution process significantly, even if
convergence is slightly degraded [7, 14]. With regard to the increased parallelism
expected for future hardware systems, iterative triangular solves are also attractive
from the standpoint of fault-tolerance [8].

2.2 Jacobi Method and Block-Asynchronous Iteration

Classical relaxation methods like Jacobi and Gauss-Seidel use a specific update
order of the vector components, which implies synchronization between the distinct
iterations. The number of components that can be computed in parallel in an
iteration depends on whether the update of a component uses only information
from the previous iteration (Jacobi type) or also information from the current
iteration (Gauss-Seidel type). Using newer information generally results in faster
convergence, which however reduces the parallelism: Gauss-Seidel is inherently
sequential and requires a strict update order; for Jacobi, all components are updated
simultaneously within one iteration [7]. If no specific update order is enforced,
the iteration becomes “chaotic” or “asynchronous” [13, 18]. In this case, each
component update takes the newest available values for the other components. The
asymptotic convergence of asynchronous iterations is guaranteed if the spectral
radius of the positive iteration matrix, �.jMj/, is smaller than unity [18]. This is a
much stronger requirement than needed for Jacobi, however it is always fulfilled
for sparse triangular systems [7, 14]. The fine-grained parallelism and the lack
of synchronization make asynchronous methods attractive for graphics processing
units (GPUs), which themselves operate in an asynchronous-like fashion within one
kernel operation [24]. In particular, the special case where subsets of the iteration
vector are iterated in synchronous Jacobi fashion and asynchronous updates are
used in-between the subsets can efficiently be realized on GPUs [3]. The potential
of this “block-asynchronous Jacobi” on GPU hardware was investigated in [6].
Block asynchronous Jacobi was also considered as smoother for geometric multigrid
methods [5], and evaluated in a mixed-precision iterative refinement framework [4].
In [7], block-asynchronous Jacobi was employed as an iterative solver for sparse
triangular systems arising from incomplete factorization preconditioning. Precisely,
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the benefits of replacing exact sparse triangular solves with approximate triangular
solves were demonstrated for an ILU-preconditioned Krylov solver running on
GPUs. This work ties on the findings presented therein by enhancing the block-
asynchronous Jacobi method with overlap strategies.

2.3 Overlapping Domains and Restricted Additive Schwarz

The idea of improving information propagation by overlapping blocks originated
with domain decompositions methods. In these methods, a large domain is split
into subdomains, where local solution approximations are computed. A global
solution is generated by iteratively updating the local parts and communicating
the components of the solutions in the domain intersections. Increasing the size
of these intersections usually accelerates the information propagation [32, 34]. In
the alternating Schwarz method, the subdomains are processed sequentially in a
fixed order. The additive Schwarz method performs subdomains solves in parallel.
To avoid write conflicts in the overlap region, the update of the global solution
must be implemented carefully. One approach that has proven to be very effective
is “Restricted additive Schwarz” (RAS) proposed in [12], where each processor
restricts the writing of the solution to the local subdomain, and discards the part
of the solution in the region that overlaps other subdomains. The convergence
properties of RAS are analyzed in [19]. An initial asynchronous approach for an
additive Schwarz method is presented in [20]. The underlying idea is very similar
to the work presented in this paper, however it starts with a physical domain
decomposition problem and then allows for asynchronism in the update order.
In contrast, the approach we present starts from an arbitrary linear system that
is interpreted as a domain decomposition problem with domain sizes induced by
the GPU thread block size used in the block-asynchronous Jacobi method. Some
theoretical convergence results for asynchronous iterations with overlapping blocks
can also be found in [33].

3 Random-Order Alternating Schwarz

3.1 Domain Overlap Based on Matrix Partitioning

In domain decomposition methods for solving partial differential equations (PDEs),
the subdomains are usually contiguous, physical subdomains of the region over
which a solution is sought. In this work, however, we adopt a black-box-solver
setting, where no details about the physical problem or domain are available.
This is a reasonable premise as many software packages must accommodate this
situation. We note that in this case, incomplete factorization preconditioners are
often employed, as they work well for a large range of problems.
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Fig. 1 Algebraic Schwarz overlap for a 5-point stencil discretization of the Laplace problem in
2D. The unknowns of the original subdomain are marked as blue squares, the overlap of level one
is derived from the matrix structure and indicated by red circles. The left figure shows uniform
overlap, the right figure shows top-down overlap

For a matrix problem, we call a subdomain the set of unknowns corresponding
to a partition of unknowns (e.g., partitioning of the unknown vector) which may not
correspond to a physical subdomain even if the problem comes from a PDE. Here,
the overlap for the distinct subdomains cannot be derived from the physical domain,
but has to be generated from the dependency graph of the matrix. This strategy was
first proposed in [11]. We use the terminology introduced therein by calling this
kind of overlap “algebraic Schwarz overlap”. Algebraic Schwarz overlap of level 1
is generated by including all unknowns that are distant by one edge to the subdomain
when solving the local problem. Recursively applying this strategy results in overlap
of higher levels: for level o overlap, all unknowns distant by at most o edges are
considered. See Fig. 1 for an illustration of algebraic Schwarz overlap.

In a first experiment, we analyze the effect of overlap for a block-iterative solver.
The target problem is a finite difference discretization of the Laplace problem in 3D.
The discretization uses a 27-point stencil on a 8�8�8 grid, resulting in a symmetric
test matrix where 10,648 edges connect 512 unknowns. The block-iterative method
splits the iteration vector into 47 blocks that we call “subdomains” to be consistent
with domain decomposition terminology. On each subdomain, the local problem is
solved via 2 Jacobi sweeps. Subdomain overlap is generated as algebraic Schwarz
overlap. Restricted Schwarz overlap only updates the components part of the
original subdomain. The motivation for restricting the results also in sequential
subdomain updates is the GPU architecture we target in the experimental part of
the paper. There, multiple subdomains are updated in parallel. All experiments in
this section are based on a MATLAB implementation (release R2014a) running in
double precision.

Figure 2 shows how restricted alternating Schwarz using level 1 overlap improves
the convergence rate when solving the above Laplace problem. Each subdomain
is updated once in a global iteration, and the results are averaged over 100 runs.
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Fig. 2 Convergence of the restricted alternating Schwarz using 2 Jacobi sweeps as local solver
on the subdomains applied to the Laplace test problem. The subdomain updates are scheduled in
Gauss-Seidel order (solid lines), or in a random order (dashed lines)

The solid lines are for sequential top-down subdomain scheduling (Gauss-Seidel),
the dashed lines are for a random update order. In the remainder, we call the
latter “random-order restricted alternating Schwarz”. Random subdomain schedul-
ing results in slower average convergence, but the improvement obtained from
restricted Schwarz overlap is of similar quality. We note that extending the original
subdomains with overlap increases the computational cost, as on each subdomain a
larger local problem has to be solved. For this test problem, level 1 overlap increases
the total number of floating point operations for one global sweep by a factor of 6.68.
This issue is not reflected in Fig. 2 showing the convergence with respect to global
iterations. The increase in the computational cost does however typically not reflect
the increase in execution time, as in a parallel setting also the communication plays
an important role. In the end, the interplay between hardware characteristics, the
linear system, and the used decomposition into subdomains determines whether the
time-to-solution benefits from using overlapping subdomains [31].

3.2 Directed Overlap

The purpose of using overlap is to propagate information faster across the local
problems. More overlap usually results in faster convergence. However, it can be
expected that not all the information propagated provides the same convergence
benefits:

1. It can be expected that propagating information in the dependency direction of
the unknowns may provide larger benefit.
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2. For non-parallel subdomain updates, propagating information from subdomains
already updated in the current iteration may provide larger benefit than informa-
tion from the previous iterate.

A non-directed or bidirected dependency graph (structurally symmetric matrix)
makes it impossible to benefit from scheduling the subdomains in dependency order.
For each dependency that is obeyed, the opposite dependency is violated. In this
case, the optimization of the information propagation boils down to propagating
primarily information from subdomains that have already been updated in the
current iteration. For the sequential subdomain scheduling in top-down Gauss-
Seidel order, domain overlap pointing opposite the subdomain scheduling order
propagates information from already updated subdomains. Overlap pointing in
the scheduling direction propagates information of the previous iteration. Hence,
bottom-up overlap may carry “more valuable” information than overlap pointing
top-down. For the remainder of the paper we use the term “directed overlap” if the
original subdomain is extended only in a certain direction:

• “Top-down overlap” means that the original subdomain is extended by unknowns
adjacent in the graph representation of the matrix that have larger indexes, i.e.,
are located closer to the end of the iteration vector.

• “Bottom-up overlap” means that the original subdomain is extended by
unknowns adjacent in the graph representation of the matrix that have smaller
indexes, i.e., are located closer to the top of the iteration vector.

We note, that in case the problem originates from a discretization of a partial
differential equation, the concept of directed overlap does in general not correspond
to a direction in the physical domain. An example where the directed overlap
has a physical representation is a 1-dimensional physical domain in combination
with consecutive numbering of the unknowns. More generally, if a domain in
an n-dimensional space is divided into (possibly overlapping) subdomains with
boundaries which do not intersect each other, consecutive numbering allows for
a physical interpretation. For a visualization of directed overlap, see the right side
of Fig. 1.

The advantage of extending the subdomains only in one direction compared to
uniform overlap is that the computational cost of solving the local problems grows
slower with the overlap levels.

Figure 3 compares the convergence of block-Jacobi using different restricted
Schwarz overlap strategies for a sequential top-down subdomain scheduling. All
overlap strategies result in faster convergence than the overlap-free block-Jacobi.
However, significant difference in the convergence rate can be observed: the top-
down overlap fails to propagate new information, and propagating information from
subdomains not yet updated in the global iteration provides only small convergence
improvement. The uniform overlap treats information from adjacent unknowns
equally, independent of whether the respective subdomain has already been updated
in the current iteration or not. The resulting convergence improvement comes at
a 6.68 times higher computational cost, as elaborated previously. Using directed
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Fig. 3 Convergence of the sequential restricted alternating Schwarz using top-down subdomain
scheduling and different overlap strategies. The test matrix is the Laplace problem introduced in
the beginning of the section

overlap pointing bottom-up increases the computational cost only by a factor
3.34. For this test case, the bottom-up overlap provides the same convergence
improvement like the uniform overlap. The lower computational cost makes this
strategy superior. Although disregarding overlap in direction of “old” neighbors
may in general result in a lower convergence rate than uniform overlap, this test
validates the expectation that propagating new information provides higher benefits
when solving a symmetric problem.

For a random update order, it is impossible to define an overlap direction that
propagates information only from already updated subdomains. On average, the
effects of using overlap pointing bottom-up and overlap pointing top-down equalize,
and the resulting convergence rate is lower than when using uniform overlap, see
Fig. 4.

The situation changes as soon as we look into structurally non-symmetric
matrices with a directed dependency graph. While propagating information from
freshly updated subdomains may still be preferred, the dependencies have a much
more important role for convergence. Obviously, these dependencies should also
be considered in the subdomain scheduling. Then, it is possible to choose directed
overlap that benefits twofold: information gets propagated in dependency directions;
and this information comes from subdomains that have already been updated in the
current iteration.

For a non-symmetric matrix, it is impossible to always find a subdomain
update order that obeys all dependencies. A scenario where this is possible,
however, is the solution of sparse triangular systems and sequential component
updates. The resulting algorithm is nothing other than forward and backward
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Fig. 4 Convergence of the sequential random-order restricted alternating Schwarz for different
overlap strategies. The test matrix is the Laplace problem introduced in the beginning of the section

substitution. Subdomains containing multiple unknowns are available if components
are independent and only depend on previously updated components. The strategy
of identifying these subdomains and updating the components in parallel is known
as level scheduling [29]. Unfortunately, the subdomains are often too small to allow
for efficient parallel execution. Also, the components are usually not adjacent in
the iteration vector, which results in expensive memory access patterns. But also
when using subdomains coming from a decomposition of the iteration vector, it
is often possible to identify an overall dependency direction. Some dependencies
might be violated, but aligning the subdomain scheduling to the triangular system’s
dependency direction usually results in faster convergence [7].

In the scenario of random subdomain scheduling, the idea of orienting overlap
opposite the update order fails, but overlap may still be adjusted to the dependency
graph. Bottom-up overlap propagates information in dependency direction for a
lower triangular system, top-down overlap obeys the dependencies for an upper
triangular system.

In Fig. 5, the convergence of the different overlap strategies is compared for a
lower and an upper sparse triangular system. The systems arise as incomplete LU
factorization without fill-in (ILU(0)) for the previously considered Laplace problem.
On each subdomain, two Jacobi sweeps are used to solve the local problem. The
sequential subdomain updates are scheduled in a random order, and the results
are averaged over 100 runs. Despite ignoring the benefits of orienting the overlap
towards already updated subdomains, the convergence of the restricted alternating
Schwarz using directed overlap opposite the dependency direction matches the
convergence of uniform overlap. Propagating information opposite the dependency
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Fig. 5 Convergence of the sequential random-order restricted alternating Schwarz using 2 Jacobi
sweeps as local solver on the subdomains. The test cases are the sparse triangular systems arising
as incomplete LU factorization without fill-in (ILU(0)) of the Laplacian problem

direction does not provide noticeable benefits compared to the non-overlapping
block-iterative solver.

4 Restricted Overlap on GPUs

We now want to evaluate whether using restricted Schwarz overlap can improve
iterative sparse triangular solves on GPUs. The hardware characteristics however
require some modification of the approach suggested in Sect. 3. On GPUs, operation
execution is realized via a grid of thread blocks, where the distinct thread blocks
apply the same kernel to different data [24]. The distinct thread blocks all have the
same “thread block size”, which is the number of compute threads in one thread
block. Multiple thread blocks can be executed in concurrent fashion. The number
of thread blocks handled in parallel depends on the thread block size, requested
shared memory, and the characteristics of the used GPU hardware. This setting
suggests to assign each thread block to one subdomain. If the subdomain size
matches the thread block size, all the unknowns in a subdomain can be handled
in parallel by the distinct compute threads, which is the desired setting for using
Jacobi sweeps as local solver. For non-overlapping subdomains of equal size, this
mapping works fine. Extending the subdomains with algebraic Schwarz overlap
however becomes difficult, as the overlap for distinct subdomains may differ in
size. Fixing the thread block size to the largest subdomain results in idle threads
assigned to smaller subdomains; smaller thread block sizes fail to realize the Jacobi
sweeps in parallel fashion. An additional challenge comes from the solution of the
local problem being based on local memory. On GPUs, this is the shared memory
of the distinct multiprocessors. Due to the limited size, it is impossible to keep
the complete iteration vector in shared memory, but the unknowns of the local
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problem (original subdomain and overlap) have to be stored in consecutive fashion.
As these components are in general not adjacent in the global iteration vector, an
additional mapping is required. This increases pressure on the memory bandwidth,
the typically performance-limiting instance in this algorithm. Also, the scattered
access to the components of the algebraic Schwarz overlap in the global iteration
vector results in expensive memory reads [24].

Given this background, we relax the mathematical validity of the overlap in favor
of higher execution efficiency. Precisely, replace the algebraic Schwarz overlap with
“block-overlap”. For a given decomposition of the iteration vector, block overlap is
generated by extending the subdomains in size such that the subdomains adjacent in
the iteration vector overlap. Similar to the algebraic Schwarz overlap, unknowns can
be part of multiple subdomains. However, it also is possible that not all components
in a subdomain are connected in the dependency graph. The restricted Schwarz
setting avoids not only write conflicts, but also ensures that structurally disconnected
overlap is not written back to the global iteration vector. Compared to the algebraic
Schwarz overlap, two drawbacks can be identified:

• Block overlap can miss important dependencies if the respective unknowns are
not included in the block-extension of the subdomain.

• Components part of the block overlap but not structurally connected to the
original subdomain increase the cost of the local solver, but do not contribute
to the global approximation.

These handicaps become relevant for matrices with significant entries distant to
the main diagonal. For matrices where most entries are reasonably close to the
diagonal, the higher execution efficiency on GPUs may outweigh the drawbacks.
Sparse triangular systems as they arise in the context of approximate incomplete
factorization preconditioning often have a Reverse Cuthill-McKee (RCM) ordering,
as this ordering helps in producing accurate incomplete factorization precondition-
ers [10, 16]. At the same time, RCM ordering reduces the matrix bandwidth, which
makes block overlap more attractive (more matrix entries captured in the overlap
regions).

To match the thread block size of the non-overlapping block-iterative solver,
we shrink the original subdomains, and fill up the thread block with overlap. We
note that shrinking the original subdomain size and restricting the writes requires a
higher number of subdomains for covering the iteration vector. The corresponding
higher number of thread blocks reflects the increased computational cost when using
block overlap. If subdomains adjacent in the iteration vector are scheduled to the
same multiprocessor, overlapping subdomains allows for temporal and spacial cache
reuse [15]. The data is loaded into the fast multiprocessor memory only once, and
can then be reused for the overlap of an adjacent subdomain. Figure 6 visualizes the
strategy of mapping thread blocks to subdomains for the case of non-overlapping
subdomains (left), and the case of directed bottom-up overlap (right), respectively.
Note that in the latter, the overlap threads of each thread block only read the data for
the local problem (r), but do not write back the local solution to the global iteration
vector.
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Fig. 6 Mapping thread blocks to the subdomains in case of non-overlapping subdomains (left)
and bottom-up overlap (right). In the latter case, only the threads at the lower end of each thread
block write back the solution update (r+w), the threads at the upper end only read the data in for
the local problem (r)

On GPUs, multiple thread blocks are executed in concurrent fashion. For large
problems there however exist more subdomains than can be handled in parallel. We
call this case an “overdecomposition”: not all subdomains are updated simultane-
ously, and the update order impacts the convergence of the block-iterative method.
Unfortunately, GPUs generally do not allow insight or modifications to the thread
block execution order. However, backward-engineering experiments reveal that for
the used GPU architecture, the thread blocks are usually scheduled in consecutive
increasing order [15]. For sparse triangular solves, this property can be exploited to
improve the information propagation by numbering the thread blocks in dependency
direction [7]. The fact that this scheduling order cannot be guaranteed gives the
solver a block-asynchronous flavor, and requires to report all experimental results as
average over multiple runs. As the block overlap is mathematically inconsistent with
algebraic Schwarz overlap, we avoid the term “restricted additive Schwarz”, but
refer to the implementation as “block-asynchronous Jacobi with restricted overlap”.

5 Experimental Results

5.1 Test Environment

The experimental results were obtained using a Tesla K40 GPU (Kepler microarchi-
tecture) with a theoretical peak performance of 1,682 GFlop/s (double precision).
The 12 GB of GPU main memory, accessed at a theoretical bandwidth of 288 GB/s,
was sufficiently large to hold all the matrices and all the vectors needed in the
iteration process. Although all operations are handled by the accelerator, we mention
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Table 1 Characteristics of the sparse lower triangular ILU(0) factors employed in the experimen-
tal tests

Matrix Description Size n Nonzeros nz nz=n Condition number

U
FM

C

BCSSTK38 Stiffness matrix, airplane
engine component

8;032 116;774 14:54 6.87e+08

CHP Convective thermal flow
(FEM)

20;082 150;616 7:50 7.90e+05

CONSPH Concentric spheres (FEM) 83;334 1;032;267 12:39 6.81e+06

DC Circuit simulation matrix 116;835 441;781 3:78 6.54e+10

M_T1 Structural problem 97;578 4;269;276 43:74 4.78e+10

STO 3D electro-physical
duodenum model

213;360 1;660;005 7:78 1.38e+07

VEN Unstructured 2D Euler
solver (FEM)

62;424 890;108 14:26 1.85e+07

LAP 3D Laplace problem (27-pt
stencil)

262;144 3;560;572 13:58 9.23e+06

for completeness that the host was being an Intel Xeon E5 processor (Sandy Bridge).
The implementation of all GPU kernels is realized in CUDA [25], version 7.0 [26],
using a thread block size of 256. For non-overlapping subdomains, this thread block
size corresponds to the size of the subdomains; for overlapping subdomains the size
is split into subdomain and overlap. Double precision computations were used.

For the experimental evaluation, we consider solving with the incomplete
factorizations of different test matrices, including all problems tested in [7] to show
the potential of iterative sparse triangular solves. The test matrices are general
sparse matrices from the University of Florida matrix collection (UFMC), and a
finite difference discretization of the 3D Laplace problem with Dirichlet boundary
conditions. For the discretization, a 27pt stencil on a 64 � 64 � 64 mesh is used,
resulting in structurally and numerically symmetric matrix. We consider all matrices
in RCM ordering to reduce the matrix profile, as this increases the effectiveness of
overlapping matrix rows that are nearby, as well as the effectiveness of incomplete
factorizations. Table 1 lists the characteristics of the lower triangular matrices from
the incomplete factors. The sparsity plots of these triangular matrices are shown in
Fig. 7. We report all experimental results as the average over 100 runs to account for
nondeterministic scheduling effects on the GPU in the block-asynchronous Jacobi
solver.

5.2 Sparse Triangular Solves

Figures 8 and 9 show convergence and timing results for the lower sparse triangular
factors coming from incomplete factorizations of the selected UFMC matrices and
the Laplace matrix. The figures on the left side show convergence of the residual
norm with respect to iterations, while the figures on the right side relate the residual
norm to the execution time. The GPU thread block scheduling was set to promote
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Fig. 7 Sparsity plots of the sparse lower triangular factors listed in Table 1

top-down subdomain scheduling for information propagation in the dependency
direction. In addition, bottom-up overlaps of different sizes were used, which also
accounts for the dependency direction of lower triangular matrices. The notation
used in the figures relates the size of the overlap to the thread block size, i.e.,
25 % overlap means that each thread block of size 256 contains a subdomain of
size 192 and 64 overlap components. For 25 % overlap, the number of thread blocks
necessary to cover the complete iteration vector increases by one third compared to a
non-overlapping decomposition using a subdomains size of 256. The computational
cost, i.e., the number of thread blocks being scheduled, increases by the same factor.

We first make some overall observations. From Figs. 8 and 9, we observe a range
of behaviors for the different problems. In most of the cases, the use of overlap
improves the convergence rate. The exceptions are the STO and VEN problems, for
which there is very little effect due to overlap, and M_T1 where overlap can actually
make convergence worse. For the problems where overlap improves convergence
rate, there is still the question of whether or not computation time is improved, since
overlap increases the amount of work. The best timings may come from a small or
a moderate amount of overlap (rather than a large amount of overlap), balancing the
extra computational effort with improved convergence rate.

For the CHP problem, a small convergence improvement can be achieved by using
overlap, and this improvement grows, as expected, with the size of the overlap.
However, when considering the GPU execution time, overlap is always worse than
non-overlap for this problem. On the other hand, for the DC problem, overlap can
improve convergence rate significantly. In addition, overlap does not significantly
increase computational cost, as this matrix is very sparse compared to the other test
matrices.
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Fig. 8 Convergence (left) and residual-performance (right) of the block-asynchronous Jacobi
using 2 Jacobi sweeps as local solver on the subdomains. The test cases are the sparse lower
triangular systems arising as incomplete LU factorization without fill-in (ILU(0)) for the UFMC
problems
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Fig. 9 Convergence (left) and residual-performance (right) of the block-asynchronous Jacobi
using 2 Jacobi sweeps as local solver on the subdomains. The test cases are the sparse lower
triangular systems arising as incomplete LU factorization without fill-in (ILU(0)) for the UFMC
problems and the LAP problem
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For the STO and VEN problems, overlap makes little or no improvement to
convergence, as already mentioned. The STO matrix is a large matrix compared to
the others, and overlap of adjacent rows in the matrix may introduce few additional
couplings in the dependency direction, i.e., many off-diagonal entries are too far
from the main diagonal for block overlap to include them. For these large matrices,
a decomposition into physical subdomains would be better.

For the BCSSTK38 problem, overlap accelerates the overall solution process. The
best results are achieved for 13 % and 25 % overlap. Overlap is beneficial also for
the CONSPH problem, but the convergence improvement (left side) is not reflected
in the time-to-solution metric. Only moderate overlap (see results for 3 % and 13 %,
respectively) accelerate the solution process. From the figures, we see that for most
problems, 50 % overlap has the worst execution time, but the best execution time is
given by 3–25 % overlap.

The M_T1 problem is an example for which overlap degrades the convergence
rate. For this problem, the matrix has a block structure that is easily captured by
non-overlapping subdomains, but this structure is not well-matched by overlapping
subdomains. Again for this problem, a decomposition into physical subdomains
would be better.

Finally, for the LAP problem, convergence can be improved by using overlap.
Again, the best solver is not the one using the most overlap, but the one using
3 % overlap. This is a typical pattern for block overlap: moderate overlap helps
in faster information propagation, but large overlap includes too many structurally
disconnected components that increase the computational cost, but do not aid in
accelerating convergence.

6 Summary and Future Work

We investigate the potential of enhancing block-iterative methods with restricted
Schwarz overlap. For systems carrying a nonsymmetric dependency structure,
pointing the overlap opposite the dependencies propagates the information in
dependency direction. This improves the convergence rate. We propose a GPU
implementation where we relax the consistency to algebraic Schwarz overlap
in favor of higher execution efficiency. For sparse triangular factors arising as
incomplete LU factors we analyze the convergence and performance benefits
achieved by enhancing block-asynchronous Jacobi with directed overlap of different
size. Depending on the matrix structure, restricted overlap can improve time-to-
solution performance.

In the future, we will look into optimizing the block overlap used in the GPU
implementation to the matrix structure. Adapting the overlap size to the location
of the most significant off-diagonal entries improves convergence at moderate cost
increase. This optimization makes the block overlap more similar to algebraic
Schwarz overlap, and will in particular work for problems with a finite element
origin.
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