
Design of Interactive Environment for Numerically Intensive
Parallel Linear Algebra Calculations∗

Piotr Luszczek† Jack Dongarra

January 1, 2004

Abstract

Problem Solving Environments have a well established
position as an essential tool for computational science.
We focus our attention in this article on how to provide
parallel computation capabilities to such environments
that would allow for seamless access to hardware and soft-
ware resources for numerical linear algebra. Instead of
focusing on a particular implementation, we present an
exploration of the design space of such an interactive en-
vironment and consequences of particular design choices.
We also show tests of a prototype implementation of our
ideas with emphasis on the performance perceived by the
end user.

1 Introduction

Numerical linear algebra may well be regarded as the
most basic and thus essential component of problem solv-
ing environments (PSE) that focus on numerical calcula-
tions. In this article, we intend not to focus on the user tool
for accessing the parallel numerical capabilities we pro-
pose, but rather, on exploration of the design space avail-
able for such PSEs. To the user tool we refer as a host en-
vironment – there are plenty of such environments already
in existence, whether commercial or freely available to
the public. The challenge is, we believe, in seamlessly
integrating parallel computing capabilities with these en-
vironments.

∗This work is partially supported by the DOE LACSI – Subcontract
#R71700J-29200099 from Rice University and by the NSF NPACI –
P.O. 10181408-002 from University of California Board of Regents via
Prime Contract #ASC-96-19020.

†Corresponding author’s email: luszczek@cs.utk.edu

Even though this paper focuses on properly designed
basic operations on matrices and vectors, the applicability
of our arguments exceeds by far the scope of pure numer-
ical linear algebra on dense matrices. Appropriate design
of basic objects and their manipulations invites easy in-
troduction of additional features such as sparse linear and
eigenvalue solvers. This is particularly important when
dealing with the complexity of parallel programming.

2 Related Work

Exhaustive survey of interactive environments for scien-
tific computing deserves an article on its own. Therefore,
we give only references to what we believe are the most
relevant efforts that are related to numerical linear alge-
bra. Python is a programming language by allows for
very much interactive style of development and exper-
imentation [1]. There exist numerous libraries that ex-
tend Python’s numerical capabilities, the most popular in-
clude Numeric[2], Numarray1, SciPy2, MatPy3, and Sci-
entificPython4. Just for completeness’ sake, we should
also mention a similar framework for Perl called The
Perl Data Language5 with its shell for interactive work
called perldl. Commonly known environments for in-
teractive numerical calculations are Matlab [3], Octave6,
Scilab [4], Interactive Data Language [5], and Rlab (no
longer maintained) 7. Also, there exist environments

1http://www.stsci.edu/resources/software hardware/numarray/
2http://www.scipy.org/
3http://matpy.sourceforge.net/
4http://starship.python.net/˜hinsen/ScientificPython/
5http://pdl.perl.org/
6http://www.octave.org/
7http://rlab.sourceforge.net/

1

that primarily focus on symbolic calculations but also
allow for numerical computations – they are surveyed
elsewhere [6]), here we only mention a few: Mathemat-
ica [7], Maple [8], Macsyma [9], Maxima [10]. Finally,
there exist relatively many parallel extensions to Mat-
lab 8 despite some scepticism dating back to 1995 about
memory model (storage and parallel distribution of ma-
trix data), granularity (most common Matlab tasks can-
not be parallelized), and business situation (not enough
market demand) [11]. Out of these extensions, Mat-
lab*P [12, 13, 14] seems to be the most vigorous one
riching its third major release version at the time of this
writing.

3 LFC Overview in the Context of
Parallel Solving Environments

LAPACK for Clusters (LFC) [15] is one of the projects
of the Self-Adapting Numerical Software (SANS) frame-
work [16]. It is intended to meet the challenge of develop-
ing next generation software by automated management
of complex computing environments while delivering to
the end user the full power of flexible compositions of the
available algorithmic alternatives. LFC, in particular, au-
tomates the process of resource discovery and selection,
data distribution, and execution of parallel numerical ker-
nels for linear algebra calculations. As such we believe it
is suitable for the interactive environment that we describe
in this article.

4 Network Model

In our design, we consider primarily a client-server ar-
chitecture as shown in Figure 1. An alternative would
be to require the user to always operate on the computa-
tional server and rely on its capabilities – not only com-
putational (which is the server’s primary use) but also for
example graphical (for data visualization). The latter (all-
in-one) solution is inflexible as it limits the user to the
functionality of the server. The limitation is not present
in the scenario from Figure 1 because there exists clear
separation of functionality and the server only needs to

8http://supertech.lcs.mit.edu/˜cly/survey.html

provide high performance computing capabilities (leav-
ing other features to the client or possibly other servers).

Along the same lines goes reasoning behind placing the
object logic on the client rather the server (which only
holds, presumably large, object data). It simplifies the de-
sign of the server and makes it possible to use it on a wider
variety of platforms. The client, on the other hand, may
leverage existing technologies (programming languages
or libraries) for remote management of computational ob-
jects.

Lastly, we decide not to use any technology for trans-
parent network access (such as remote procedure or object
method invocation) due to, again, requirements (mostly
software-related) that the server would have to meet in or-
der to properly support such technology. Nevertheless, it
is an interesting extension to consider, especially from the
perspective of code developers (rather than the end users)
that would want to add extra functionality to our system.

5 Object-Oriented Features

Regardless of the host environment, it is natural to regard
parallel matrices and vectors as objects (rather than, for
example, regions of memory) and adhere to object-based
design principles. The benefits of such a choice range
from a trivial encapsulation of matrix dimensions (they
become object attributes and don’t have to be specified
explicitly) to more profound possibility of code reuse: the
same script written and tested in a single-processor mode
may be reused for parallel matrix objects – the calcula-
tions will be done in parallel. To simplify the exposition,
(almost exclusively) only matrix objects are mentioned in
the following passage, however, the arguments that we
make equally apply to either matrix or vector objects.

The first decision to make is to choose either 0-
based (first matrix entry is row 0 and column 0) or 1-based
indexing scheme. There exist pros and cons for either of
them and there is plenty of code in production use that
requires us to implement both. The problem cannot be
easily solved by following the convention of the host en-
vironment and let the server adapt to the currently used
convention. Such a solution does not allow for:

• code migration between two host environments that
use conflicting indexing schemes and

2

user objects’ datashell

user objects

client server

network ���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: Network model of the computational environment for interactive calculations with parallel capabilities.

• porting of an existing code from a system of non-
conformant indexing.

Therefore, we allow for both types of indexing to be used
in whichever way it is possible within the constraints of
the syntax of the host environment. While probably not
as popular, a general form of indexing is used in some
systems (for example Fortran 90) – the user can specify
the range of allowed indices. More generally we allow
indexing ranges to be specified as three values: first index,
last index and the stride. This is already available in many
interactive systems for numerical calculations.

A related problem is how the end of a range is speci-
fied. This may be illustrated with an array declaration (of
size N) in Fortran:

REAL A(N)

and in C:

float A[N];

While both declarations use N as the upper bound speci-
fier, Fortran uses it inclusively (the allowed indices are 1,
2, . . ., N) and C uses it exclusively (allowed indices are 0,
1, . . ., N-1). Similarly, Matlab uses inclusive convention
and Python uses exclusive one. Since, there is no single
scheme used across different host environments we need
to provide for both.

An important decision to make is to decide whether ma-
trix objects should operate with copy or view semantics.
The most common situation when this decision has to be
made is during submatrix operations. Consider an m by n
matrix A partitioned as follows:

A = [A1 A2]

where A1 and A2 are m by n1 and m by n2 matrices, respec-
tively, with n1 +n2 = n. A common way (across different
host environments) to refer to A1 is A[:,:n1]. The ques-
tion is whether such a reference should create a copy of
the appropriate portion of A or, instead, only produce an
alias (a view). There is no good answer to this question
because there exist situations where either the former or
the latter solution is preferable. Different systems solve
this problem differently: Matlab and Python use the copy
semantics while Fortran 90 uses the view semantics (with
the caveat that some compilers make a copy upon calling
a function if an array alias is used and when the function
returns, the result is copied back to the original location).
It is possible to have a copy semantics with performance
of view semantics using the copy-on-write technique: ini-
tially, only an alias is created, and when subsequent code
attempts to write data to the alias, a copy is made (this
technique has a shortcoming, though: when only a small
portion is aliased and the original is no longer needed, all
the data of the original need be kept rather than just the

3

aliased portion). Most likely, end users will opt for copy
semantics, while developers will prefer the view seman-
tics. Therefore, we choose to allow both in our system.

While some environments have only one numeric data
type for calculations, it is much more desirable to have
many of them for customization of memory requirements,
arithmetic semantics (fixed-point versus floating-point),
and interfaces to external data sources or sinks. The flex-
ibility of multiple data types comes at the price of resolv-
ing issues with mixed-type operations. Automatic vari-
able casting is a feature of almost any programming lan-
guage in wide spread use. An expression like x + y is
handled correctly even if x and y are variables of differ-
ent numerical type. The most common behavior in such a
case is to promote (type-cast to the larger type) one of
the values and then perform calculations. The promo-
tion rule works well for statically typed languages where
it is always possible to specify the type of the result and
even types of arguments (by type-casting them explicitly).
Most PSEs use some form of dynamic typing and there-
fore it is harder to ensure correct type for the result. An-
other issue is the fact that variables in PSEs refer to more
complex objects (matrices and vectors in the case of our
system). That complexity allows for wider range of pos-
sibilities in dealing with mixed-type operations. The two
major issues to consider are the memory allocation (pro-
motion could potentially require a few times more space
to be used) and tensor-rank change (an outer product of
two vectors produces a matrix: A = xxT – a different data
type all together). Another example to consider is a sit-
uation when single-precision floating-point arithmetic is
desired (may be due to storage constraints) and by ac-
cident (a bug or just a bad language design) a double-
precision result is produced in the midst of long calcula-
tions. If the promotion rule was used then any subsequent
operation with this double-precision value would intro-
duce double-precision results which in turn would cre-
ate even more double-precision values – clearly not what
was desired in the first place. Making downcasting (type-
casting to the smaller type) the default behavior is not
an option either as it would, among other arguments, be
counter-intuitive for many novice users. Any solution in
between those two extremes might be more desirable but
would still not work properly in some situations. There-
fore, we opt for providing means for ensuring appropriate
kind of automatic casting.

The type of PSE that we are describing deals with ten-

sors of different ranks:

• 0 – numerical values,

• 1 – vectors of numerical values, and

• 2 – matrices of numerical values.

Such environments add a unique aspect to the type-casting
problem described above: reduction of tensor rank (an
object property, as opposed to matrix rank – a numeri-
cal property). Consider a common operation that reduces
tensor rank – a vector dot-product of the form:

α = yT x

It is trivial to claim that the result (α) should be a tensor
of rank 0 if x, and y are tensors of rank 1. In general,
when vectors have at least two rows and matrices have at
least two rows and columns then predicting the rank of
the result is easy. However, if those assumptions do not
hold true than the rank cannot be inferred. Let’s consider
a general case of matrix-matrix multiply:

C = AB

where: A is m by k, B is k by n, and C is m by n. If either m
or n is 1 then the multiply reduces the tensor rank by 1.
If k is 1 than the reduction is by 2. However, the type
of the result cannot be changed even if potential tensor
rank reduction occurs. The reason being common usage
scenarios. In particular, if a matrix algorithm (such as an
iterative method or a dense linear solver) is formulated in
terms of submatrices (so called block algorithm) then it
is expected to work even if the submitraces degenerate to
single values (block size is 1) – 1 by 1 matrices. There
is no general way of detecting when type change should
follow tensor rank reduction. Therefore, we choose not
to perform the type change by default since this facilities
interactive work. However, an option should be included
to allow type change during debugging sessions.

6 Host Environment Integration

In order to integrate our system with existing PSEs we
consider the following features to be the most relevant:

1. networking capabilities,

2. name spaces, and

4

3. object-orientation.

In the following we give a review of how these features
are supported in some of the existing environments and
what can be done if they are missing.

Networking capabilities are the most essential for our
system since we envision communication between the
client and the server to be done over some kind of net-
work. Even though this requirement may be loosened
a bit by using other means of inter-process communica-
tion we do not consider it at the moment. Out of the host
environments that we initially target, networking is fully
supported in Python with fairly complete implementation
of the Unix socket API (Application Programming Inter-
face). Maple, Mathematica, Matlab, and Octave require
an extension written in a native language (most commonly
C) to be able to use sockets – this creates a portability
problem since the native part of the interface has to be
written and tested for every computing platform we wish
to support. Another issues is that each host environment
has its own way for writing extensions. Luckily, most of
the aforementioned environments support Java so this is
the way to write just one code and use it in many envi-
ronments. Finally, since Octave does not support Java as
of this writing, an extension can be written using system
calls such as: system(), popen(), popen2(), fork(),
exec(), pipe(), dup2(), and waitpid(). These calls
are all available from the Octave command line or scripts.
The external program that is called (with, say, system())
may be written in Java so that we can reuse the code from
other environments. Matlab also has a similar capabil-
ity (namely: system(), dos(), unix(), and perl()).

Support of name spaces is an important but not essen-
tial feature that we would like to use. The most common
way of dealing with lack of name spaces is by prefix-
ing each function name with a common string indicative
of function origin. This prevents name clashes between
global names and allows many contributors to introduce
new capabilities. Python offers more sophisticated way of
dealing with this problem – it has a hierarchical module
system comparable to that of ISO C++ and Java. Matlab
comes close to it by implementing functions only relevant
in the context of one particular class of objects (they are
commonly referred to object methods but in Matlab have
invocation syntax just like regular functions). For all other
environments we need to use the prefixing trick.

Object-orientation is an important feature as it allows,
among others, for a simple statement like a+b to be inter-
preted differently depending on what a and b are: it might
result in adding two numbers together or it might (as it
is in our case) result in addition of two matrices on a re-
mote server. Most of the host environments that we know
are object-based – they provide ability to create and ma-
nipulate built-in objects (such as matrices or vectors) but
do not allow to create new ones. Matlab is somewhat
more advanced in that respect as it allows for creation of
new objects and overloading of functions and operators
for them. However, it does not support the full life cycle
of an object – in particular it does not notify user-defined
objects when they are about to be garbage-collected. This
is an important capability in the presence overloaded op-
erators since they tend to produce anonymous temporary
objects – there is no way to reclaim their storage even
manually. This problem can be somewhat alleviated by
using Java from within Matlab since JVM (Java Virtual
Machine) implements garbage collection with cyclic de-
pendency detection and allows for objects to execute code
when they are about to be garbage collected. Python,
aside from being a good interactive environment, is an
object-oriented language so this is probably the best tar-
get for our environment. In other environments we need
to resort to function syntax – it takes a lot from expres-
siveness but still allows to use the functionality that we
offer.

7 Parallel Execution

Creating an interactive environment for parallel compu-
tations has many design challenges even if limited to nu-
merical linear algebra. The first issue to resolve is the
fact that vectors and matrices most often have different re-
quirements for data layout: vector computations are likely
to benefit from 1-D layout while for matrices 2-D distri-
bution is preferable. We believe that a novice user of our
environment would not know (or care to know) the differ-
ence between the two and therefore would benefit from
some form of automation in this respect so that vectors
and matrices may be used without worrying about their
parallel properties. A good solution for such a scenario
seems to be distributing vectors in 1-D fashion and ma-
trices in 2-D. In case when a matrix and vector are to be
used together (e.g. in matrix-vector multiplication), the

5

vector needs to be made conformant to the matrix’ layout
to perform the operation efficiently. Such a solution in-
volves relatively small communication penalty. For more
advanced users, full control of data distribution is the way
to go as these users know the consequences of data distri-
bution for parallel computation.

Another aspect to consider is execution synchroniza-
tion between the client and the server. Some of the litera-
ture on the subject uses the term lazy evaluation to refer to
one of the possible scenarios [17]. This term was loosely
borrowed from functional languages where it refers to a
way of evaluating (potentially infinite) expression lists. In
the context of parallel PSEs it was used to mean that only
every other remote request is blocking the client until the
server’s completion. In the client-server and parallel lit-
erature, generalization of this way of communication is
simply referred to as asynchronous: the client submits a
request to the server and doesn’t block while the server is
processing the request. Asynchronous mode, in our opin-
ion, is not good for an interactive environment since it
splits the call process into two phases: submission and
completion requests. It is not the way existing sequential
environments operate – their behavior is equivalent to a
synchronous mode (each request is blocked on the client
side until the server fulfills the request). This mode is also
more intuitive for most of the users. A mid-way solution
is transactional processing: the user starts a transaction
by making a special call, then all the transaction requests
are submitted, and then the call finalizing the transaction
is made which blocks until all the transaction requests
are served. It differs from the asynchronous mode by
not executing all the transaction requests when they are
submitted, but rather, sending them all in one batch – the
server has more information to order them for better per-
formance. Finally, we do not consider using threads in the
host environment as a separate case – in a sense it can be
regarded as a type of asynchronous system when a syn-
chronous request blocks only one thread and the polling
for completion takes place by inter-thread signaling.

8 Miscellaneous Issues

An important aspect of any numerical system is compli-
ance with the IEEE 794 standard [18]. While the stan-
dard is commonly accepted by many hardware vendors
it is still rare to find fully (or at least mostly) compli-

ant product. While the full standard compliance is hard
to achieve, there exist a few aspects of the standard that
are often quoted as essential. Amongst those, the most
contentious issues include raising an exception when cal-
culation produces or involves infinities or NaNs (Not-a-
Number). While the standard is clear about usage and
behavior of QNaNs (Quiet NaN) and SNaNs (Signaling
NaNs) – the end users seem to be divided as to which
should be chosen as the default. We are bound here
by what is the typical behavior of the host environment
and what is available on the server (to what extend it
complies with the standard). Some environments have
a way of dealing with non-conformant hardware or sys-
tem libraries, e.g. in Python, floating-point exceptions are
caught by a Unix signal handler. However, the POSIX
standard leaves the behavior of the SIGFPE signal (float-
ing point exception) not fully defined and therefore, in
general, the signal handling function cannot return. To re-
turn the control back to the offending code the setjmp()
and longjmp() functions are used. Of course, this trick
won’t help if no signal is raised upon illegal calculations.

There exist a few options for data storage and transfer
that we consider useful. Certainly, users will have some
data sets stored locally on their client machines. These
local data need to be transferred to the server for manipu-
lation. However, data transfers are, in general, quite slow
and therefore only explicit requests will move the data be-
tween the server and the client. During calculation, the
best place for data would be the server while at the end,
the results need to be transfered back to the client (in case
the server does not provide reliable storage capabilities).
In the meantime, the data is prone to be lost due to hard-
ware or software crashes so at some point fault-tolerance
should be considered. Another likely scenario is down-
loading data from an external source. A very helpful ex-
tension is support for scientific data formats.

Security is an important asset of any software piece,
especially the kind we are considering – that provides
server-like capabilities. In this area, we only intend to
leverage existing solutions with initial focus on the port-
forwarding feature of ssh(1). It seems relevant in the
presence of firewalls and NATs (Network Address Trans-
lation) that prevent connections to all but few selected
ports.

High level interface to complex parallel software li-
braries requires flexible and yet convenient way of denot-
ing algorithms. Most relevant are the number and type of

6

keystrokes that the user has to enter in order to be able to
express his intentions. And while simplicity encourages
experimentation, flexibility allows for more functionality
to be added easily (for example as user contributions) af-
ter the PSE has been created. This becomes particularly
important in the context of changing the behavior of a
computational environment; two main configuration types
need to be considered:

1. Global and

2. Local.

The global type includes: configuration files (dot-files
in Unix parlance), command line options, and global pro-
gram variables. In a sense, all of them provide a similar
type of customization with different timing and scoping.
However, since a PSE may be regarded as a language, it
is important to maintain its semantic consistency. There-
fore, global configuration is a valid solution when there
is only one default setting mandated as a standard. For
example, it might be possible to specify whether integer
division rounds down or up, but the round-down behav-
ior should be the default one and as such it should guar-
antee the proper behavior of all programs. With this as-
sumption at hand, the user could conveniently change the
rounding setting for one particular code while maintain-
ing default setting for all others. Similarly, library devel-
opers would not have to be bothered by including support
for both types of rounding; only the default (round-down)
could be considered, and it is the user’s responsibility to
use the library with the default setting or otherwise bear
the consequences. Of course, when using high quality li-
braries, a warning would be issued or the non-default case
would be handled by a different algorithm.

Relevant local configuration types include: object at-
tributes, shadow objects or explicit syntax. The first two
are somewhat similar as shadow objects are just aliases
of their originals with some of the attributes changed. For
example if A is a square matrix, A.I (a shadow object of A)
could indicate inverse of A but creating A.I would not
immediately produce a numerical inverse of A but rather,
LU decomposition would be used whenever A.I is multi-
plied by a matrix or vector. Compared to object attributes,
shadow objects are more explicit. From clarity standpoint,
object attributes (and to a lesser extend shadow objects)
are not as good as explicit syntax (e.g. function call) but
are far more succinct and more suitable for interactive and

Hardware specifications
CPU type Pentium 4

Intel Xeon
CPU clock rate 2.4 GHz
System bus clock rate 0.4 GHz
L1 data cache 8 Kbytes
L1 instruction cache 12 Kbytes
L2 unified cache 512 Kbytes
Main memory 1 GBytes
Network Gigabit Ethernet

NIC: Intel e1000

Table 1: Parameters of the Dell Precision 530s machine
used in the tests.

high level environments.

9 Implementation

At the moment, the basic infrastructure of our design has
been implemented and successfully applied to a dense
matrix factorization and iterative solution method in Mat-
lab and Python environments. We expect to reach more
mature stage of the software upon publication of this arti-
cle since the work on the project is on-going. Our prelimi-
nary tests show that the overhead of remote execution can
be offset when problem sizes become prohibitive for a se-
quential environment and it is possible to reap the benefits
of parallel computation.

Table 1 shows hardware configuration used in our tests.
MPICH 1.2.4 was used as the MPI implementation. Fig-
ure 2 shows the timing results for our tests that were per-
formed on a non-dedicated system. The objective was to
solve in double precision floating-point arithmetic a sys-
tem of linear equations of the following form:

Ax = b, (1)

where A is n by n real matrix (A ∈ Rn×n), and x and b are
n-dimensional real vectors (b,x ∈ Rn). The values of A
and b are known and the task is to find x satisfying (1).
LU decomposition was first used to factor A:

LU = PA, (2)

where:

7

 0

 5

 10

 15

 20

 25

 30

 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
to

 s
ol

ut
io

n

Matrix size

ATLAS 1 CPU
LFC 4 CPUs

Python 4 CPUs

Figure 2: Comparison of time to solution of a system of linear equations of varying size with different methods.

8

• L is a lower triangular matrix with unitary diagonal,

• U is an upper triangular matrix with arbitrary diago-
nal,

• P is a row permutation matrix.

Solution to (1) was then obtained in two steps:

y = L−1Pb (3)

x = U−1y (4)

Three scenarios were used to obtain a solution:

• sequential computation using an optimized program-
ming library,

• parallel computation using an optimized program-
ming library,

• remotely controlled parallel computation with syn-
chronous calls.

For the first scenario, ATLAS [19, 20] library was used
on a single CPU. In particular, the functional equivalent of
LAPACK’s [21] DGESV() routine was used that performs
LU decomposition in-situ – no data copying is involved.
The second scenario utilized two dual-CPU machines that
performed computations on a 2 by 2 process grid with
LFC’s equivalent of ScaLAPACK’s [22] PDGESV() rou-
tine. Again, no data copying was involved. Finally, the
third scenario used the same hardware and software as
the second one but the execution initiation and timing
was done on a remote computer running Python inter-
preter. The round-trip time between the client and one
of the nodes of the computational server grid (as mea-
sured by the ping program) was about 82 milliseconds
– a value representing a 16-hop connection (as measured
by the tracepath program) through wireless access point
and an ADSL line. In this scenario, a copy was made
of the system matrix to store its LU factors computed
by PDGESV(): x = A−1b was written as x = A.I * b but
the inverse of A was not calculated explicitly but rather the
LU decomposition of a copy of A was used. It’s a trade-off
between convenience and optimality (the optimal notation
being for example pgesv(A, x, b)) and we intended for
our tests to reveal how much this convenience costs.

Analysis of Figure 2 show two important matrix sizes
for our testing environment: the size for which paral-
lel execution is faster than sequential execution (3000 in

our case) and the size for which the matrix copy over-
head (discussed above) is negligible (4000 in our case).
The graph shows counter-intuitive effect of copy-free
solve being slower than the solve with copy overhead –
this is to be expected on a non-dedicated system and is
more likely to occur the longer the solution time is. An-
other effect worth noting for matrices larger than 4500 is
the unexpected increase of time to solution for the remote
execution. Very likely explanation is a sudden surge in the
load of the network that connects the client and server. As
mentioned above, in our tests the network was a part of
the Internet and in general is not reliable and cannot be
dedicated for the time of experiment.

10 Future Work

It is conceivable that the implementation might exhibit it-
self as a OGSA-compliant service. For maximum flexibil-
ity however, such a service would not be running on the
server. The service would be running on a proxy server
capable of OGSA interaction. This proxy server would
interact with the actual computational server through a
simplified protocol. This is much like NetSolve’s three-
tier approach [23].

An interesting direction to pursue is creation of com-
pilation system so that it is possible to translate existing
scripts to a stand-alone executable. Such capability pro-
vides opportunity to have a client-server environment for
experimentation and debugging while the compiled exe-
cutable could be used on systems with only batch queue
access where setting up a server is not possible.

References

[1] Bill Venners. Programming at Python speed: A
conversation with Guido van Rossum, 27 January
2003. Available at http://www.artima.com/
intv/speed.html.

[2] Paul F. Dubois, Konrad Hinsen, and J. Hugunin. Nu-
merical python. Computers in Physics, 10(3), May-
June 1996.

[3] Mathworks Inc. MATLAB 6 User’s Guide, 2001.

[4] Claude Gomez, editor. Engineering and Scientific
Computing with Scilab. Birkhäuser, Boston, 1999.

9

[5] Liam E. Gumley. Practical IDL Programming. Mor-
gan Kaufmann Publishers, 1 edition, July 2001.

[6] E. Schrüfer. EXCALC – a package for calculations
in modern differential geometry. In D. V. Shirkov,
V. A. Rostovtsev, and V. P. Gerdt, editors, Proc. IV
Int. Conf., Computer Algebra in Physical Research,
pages 71–80, Dubna, U.S.S.R., 1990. World Scien-
tific, Singapore, 1990.

[7] S. Wolfram. Mathematica: A System for Doing
Mathematics by Computer. Addison-Wesley, Read-
ing, Mass., 1988.

[8] B. W. Char et al. Maple V, Language Reference
Manual. Springer, 1991.

[9] R. H. (Richard H.) Rand. Computer algebra in ap-
plied mathematics: an introduction to MACSYMA.
Number 94 in Research notes in mathematics. Pit-
man Publishing Ltd., London, UK, 1984.

[10] Paulo Ney de Souza, Richard J. Fateman, Joel
Moses, and Cliff Yapp. The Maxima book. See
http://maxima.sourceforge.net/, 2003.

[11] Cleve Moler. Why there isn’t parallel Matlab. Math-
works Newsletter, 1995. Cleve’s corner.

[12] Long Yin Choy and Alan Edelman. Matlab*p 2.0:
A unified parallel matlab. Technical report, Mas-
sachusetts Institute of Technology, January 2003.
URI: http://libraries.mit.edu/dspace-mit/
.

[13] Long Yin Choy. MATLAB*P 2.0: Interactive
supercomputing made practical. Master’s thesis,
Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technol-
ogy, September 2002.

[14] Parry Jones Reginald Husbands. Interactive Super-
computing. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, February 1999.

[15] Zizhong Chen, Jack Dongarra, Piotr Luszczek, and
Kenneth Roche. Self-adapting software for numer-
ical linear algebra and LAPACK for clusters. Par-
allel Computing, 29(11-12):1723–1743, November-
December 2003.

[16] Jack J. Dongarra and Victor Eijkhout. Self adapt-
ing numerical algorithms for next generation ap-
plications. International Journal of High Per-
formance Computing Applications, 17(2):125–132,
2003. ISSN 1094-3420.

[17] Boyana Radenska Norris. An environment for inter-
active parallel numerical computing. Technical Re-
port UIUCDCS-R-99-2123, University of Illinois,
Urbana, Illinois, November 1999.

[18] ANSI/IEEE Standard 754-1985. Standard for binary
floating point arithmetic. Technical report, Institute
of Electrical and Electronics Engineers, 1985.

[19] R. Clint Whaley, Antoine Petitet, and Jack J. Don-
garra. Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Computing,
27(1-2):3–35, 2001.

[20] Jack J. Dongarra and Clint R. Whaley. Automat-
ically tuned linear algebra software (ATLAS). In
Proceedings of SC’98 Conference. IEEE, 1998.

[21] E. Anderson, Z. Bai, C. Bischof, Suzan L. Black-
ford, James W. Demmel, Jack J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, and Danny C. Sorensen. LAPACK User’s
Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, Third edition, 1999.

[22] L. Suzan Blackford, J. Choi, Andy Cleary, Ed-
uardo F. D’Azevedo, James W. Demmel, Inder-
jit S. Dhillon, Jack J. Dongarra, Sven Hammarling,
Greg Henry, Antoine Petitet, Ken Stanley, David W.
Walker, and R. Clint Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1997.

[23] Sudesh Agrawal, Jack Dongarra, Keith Seymour,
and Sathish Vadhiyar. NetSolve: Past, present, and
future – a look at a grid enabled server. In F. Berman,
G. Fox, and A. Hey, editors, Grid Computing: Mak-
ing the Global Infrastructure a Reality. Wiley Pub-
lisher, 2003.

10

