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Abstract. The performance of the MPI’s collective communications is
critical in most MPI-based applications. A general algorithm for a given
collective communication operation may not give good performance on
all systems due to the differences in architectures, network parameters
and the storage capacity of the underlying MPI implementation. Hence,
collective communications have to be tuned for the system on which they
will be executed. In order to determine the optimum parameters of col-
lective communications on a given system in a time-efficient manner, the
collective communications need to be modeled efficiently. In this paper,
we discuss various techniques for modeling collective communications.
We also discuss a dynamic topology method that uses the tuned static
topology shape, but re-orders the logical addresses to compensate for
changing run time variations.

1 Introduction

There have been a number of attempts in the past to improve the performance
of the MPI collective communications for a given system. They either dealt with
the collective communications for a specific system or tried to tune the collective
communications for a given system based on mathematical models or both. Lars
Paul Huse’s paper on collective communications [2] studied and compared the
performance of different collective algorithms on SCI based clusters. MAGPIE
by Thilo Kielman et. al. [1] optimizes collective communications for clustered
wide area systems. Though MAGPIE tries to find the optimum buffer size and
optimum tree shape for a given collective communication on a given system,
these optimum parameters are determined using a performance model called the
parameterized LogP model. The MAGPIE model considered only a few network
parameters for modeling collective communications. For example, it did not take
into account the number of previously posted non-blocking sends, Isends, in
determining the network parameters for a given message size.

In our previous work [13], [14], we built efficient algorithms for different
collective communications and selected the best collective algorithm and seg-
ment size for a given {collective communication, number of processors, message
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size} tuple by experimenting with all the algorithms and all possible values for
message sizes. The tuned collective communication operations were compared
with various native vendor MPI implementations. The use of the tuned collec-
tive communications resulted in about 30%-650% improvement in performance
over the native MPI implementations. The tuning system uses the native MPI
point to point sends and receives and does not take advantage of any lower-level
communications like hardware-level broadcast etc.

Although efficient, conducting the actual set of experiments to determine the
optimum parameters of collective communications for a given system, was found
to be time-consuming. As a first step, the best buffer size for a given algorithm
for a given number of processors was determined by evaluating the performance
of the algorithm for different buffer sizes. In the second phase, the best algorithm
for a given message size was chosen by repeating the first phase with a known
set of algorithms and choosing the algorithm that gave the best result. In the
third phase, the first and second phase were repeated for different number of
processors. The large number of buffer sizes and the large number of processors
significantly increased the time for conducting the above experiments.

In order to reduce the time for running the actual set of experiments, the col-
lective communications have to be modeled effectively. In this paper, we discuss
the various techniques for modeling the collective communications. The reduc-
tion of time for conducting actual experiments is achieved at 3 levels. In the
first level, limited number of {collective communications, number of processors,
message size} tuple combinations is explored. In the second level, the number
of {algorithm, segment size} combinations for a given {collective communica-~
tion, number of processors, message size} tuple is reduced. In the third level, the
time needed for running an experiment for a single {collective communications,
number of processors, message size, algorithm, segment size} tuple is reduced by
modeling the actual experiment.

In Section 2, we give a brief overview of our previous work regarding the
automatic tuning of the collective communications. We illustrate the automatic
tuning with the broadcast communication. The results in Section 2 reiterate
the usefulness of the automatic tuning approach. These results were obtained
by conducting the actual experiments with all possible input parameters. In
Section 3, we describe three techniques needed for reducing the large number of
actual experiments. In Section 4, we discuss the dynamic topology method that
reorders the processes within a given topology for communication. In Section 5,
we present some conclusions. Finally in Section 6, we outline the future direction
of our research.

2 Automatically Tuned Collective Communications

A crucial step in our effort was to develop a set of competent algorithms. Table. 1
lists the various algorithms used for different collective communications.

While there are other more competent algorithms for collective communica-
tions, the algorithms shown in Table. 1 are some of the most commonly used



Table 1. Collective communication algorithms

|| Collective Communications ‘ Algorithms ||

Broadcast Sequential, Chain, Binary and Binomial
Scatter Sequential, Chain and Binary
Gather Sequential, Chain and Binary
Reduce Gather followed by operation, Chain, Binary, Binomial
and Rabenseifner
Allreduce Reduce followed by broadcast, Allgather followed by
operation, Chain, Binary, Binomial and Rabenseifner
Allgather Gather followed by broadcast
Allgather Circular
Barrier Extended ring, Distributed binomial and tournament

algorithms. For algorithms that involve more than one collective communication
(e.g., reduce followed by broadcast in allreduce), the optimized versions of the
collective communications were used. The segmentation of messages was imple-
mented for sequential, chain, binary and binomial algorithms for all the collective
communication operations.

2.1 Results For Broadcast

The experiments consist of many phases.

Phase 1: Determining the best segment size for a given {collective operation,
number of processors, message size, algorithm} tuple. The segment sizes are
powers of 2, multiples of the basic data type and less than the message size.

Phase 2: Determining the best algorithm for a given {collective operation,
number of processors} tuple for each message size. Message sizes from the size
of the basic data type to 1MB were evaluated.

Phase 3: Repeating phase 1 and phase 2 for different {number of processors,
collective operation} combinations. The number of processors will be power of
2 and less than the available number of processors.

Our current effort is in reducing the search space involved in each of the
above phases and still be able to get valid conclusions.

The experiments were conducted on four different classes of systems, includ-
ing Sparc clusters and Pentium workstations and two different types of PowerPC
based IBM SP2 nodes.

Fig. 1 shows the results for a tuned MPI broadcast on an IBM SP2 using
“thin” nodes that are interconnected by a high performance switch with a peak
bandwidth of 150 MB/s verses the IBM optimized vendor MPI implementation.

Similar encouraging results were obtained for other systems as detailed in [12]
& [13].



Fig. 1. Broadcast Results (IBM thin nodes)
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3 Reducing the Number of Experiments

In the experimental method mentioned in the previous section, about 13000
individual experiments have to be conducted. Even though this only needs to
occur once, the time taken for all these experiments was considerable and was
approximately equal to 50 hours.

The experiments conducted consist of two stages, the primary set of steps is
dependent on message size, number of processors and MPI collective operation,
i.e. the tuple {message size, processors, operation}. For example 64KBytes of
data, 8 process broadcast. The secondary set of tests is an optimization at these
parameters for the correct method (topology-algorithm pair) and segmentation
size, i.e. the tuple {method, segment size}.

Reducing the time needed for running the actual experiments can be achieved
at three different levels:

1. reducing the primary tests

2. reducing the secondary tests and

3. reducing the time for a single experiment, i.e. for a single {message size,
processors, operation, method, segment size} instance.

3.1 Reducing the Primary Tests

Currently the primary tests are conducted on a fixed set of parameters, in effect
making a discrete 3D grid of points. For example, varying the message size in



powers of two from 8 bytes to 1 MByte, processors from 2 to 32 and the MPI
operations from Broadcast to AlI2AIl etc.

This produces an extensive set of results from which accurate decisions will be
made at run-time. This however makes the initial experiments time consuming
and also leads to large lookup tables that have to be referenced at run time,
although simple caching techniques can alleviate this particular problem.

Currently we are examining three techniques to reduce this primary set of
experimental points.

1. Reduced number of grid points with interpolation. For example reducing the
message size tests from {8, 16, 32, 64.. IMB} to {8, 1024, 8192.. IMB}.

2. Using instrumented application runs to build a table of only those collective
operations that are required, i.e. not tuning operations that will never be
called, or are called infrequently.

3. Using combinatorial optimizers with a reduced set of experiments, so that
complex non-linear relationships between points can be correctly predicted.

3.2 Reducing the Secondary Tests

The secondary set of tests for each {message size, processors, operation} tuple
are where we have to optimize the time taken, by changing the method used
(algorithm /topology) and the segmentation size (used to increase the bi-sectional
bandwidth utilization of links), i.e. {method, segment size}. Fig. 2 shows the
performance of four different methods for solving an 8 processor MPI Scatter of
128KBytes of data on a Sparc cluster. Several important points can be observed.
Firstly, all the methods have the same basic shape that follows the form of an
exponential slope followed by a plateau. Secondly, the results have multiple local
optima, and that the final result (segment size equal to message size) is not
usually the optimal but is close in magnitude to the optimal.

The time taken per iteration for each method is not constant, thus many of
the commonly used optimization techniques cannot be used without modifica-
tion. For example in Fig. 2, a test near the largest segment size is in the order
of hundreds of microseconds whereas a single test near the smallest segment size
can be in the order of a 100 seconds, or two to three orders of magnitude larger.

For this reason we have developed two methods that reduce the search space
to tests close to the optimal values, and a third that runs a full set of segment-size
tests on only a partial set of nodes.

The first two methods use a number of different hill descent algorithms known
as the Modified Gradient Descent MGD and the Scanning Modified Gradient De-
scent (SMGD) that are explained in [13]. They primarily reduce the search times
by searching the least expensive (in time) search spaces first while performing
various look ahead algorithms to avoid non optimal minima. Using these two
methods the time to find the optimal segment size for the scatter shown in Fig.
2 is reduced from 12613 seconds to just 39 seconds or a speed up of 318.

The number of segment sizes to explore can also be reduced by considering
certain characteristics of the architecture. For example, in some architectures,



Fig. 2. Segment size verse time for various communication methods
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the size of the packets used in communications is known beforehand. Hence the
optimum segment size in these architectures will be within a certain range near
the packet size used for communications.

The third method used to reduce tests is based on the relationship between
some performance metrics of a collective that utilizes a tree topology and those
of a pipeline that is based only on the longest edge of the tree as shown in
Fig. 3. In particular the authors found that the pipeline can be used to find the
optimal segmentation size at greatly reduced time as only a few nodes need to be
tested as opposed to the whole tree structure. For the 128 KB 8 process scatter
discussed above, an optimal segment size was found in around 1.6 seconds per
class of communication method (such as tree, sequential or ring). i.e. 6.4 seconds
verses 39 seconds for the gradient descent methods on the complete topologies
or 12613 seconds for the complete exhaustive search.

3.3 Reducing the single-experiment time

Running the actual experiments to determine the optimized parameters for col-
lective communications is time-consuming due to the overheads associated with
the startup of different processes, setting up of the actual data buffers, communi-
cation of messages between different processes etc.. We are building experimental
models that simulate the collective algorithms but incur less time to execute than
the actual experiments. Since the collective communication algorithms are based
on the MPI point to point sends and receives and do not use any lower level com-
munications, the models for collective communications do not take into account



Fig. 3. The Pipeline Model
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the raw hardware characteristics like the link bandwidth, latency, topology etc.
Instead they take into account times for MPI point to point communications like
the send overhead, receive overhead etc. As part of this approach, we discuss the
modeling experiments for broadcast in the following sub sections.

General Overview All the broadcast algorithms are based on a common
methodology. The root in the broadcast tree continuously does non-blocking
sends of MPI, MPI_Isends, to send individual message buffers to its children.
The other nodes post all their non-blocking receives of MPI, MPI_Irecvs, ini-
tially. The nodes between the root node and the leaf nodes in the broadcast
tree, send a segment to their children as soon as the segment is received.

After determining the times for individual Isends and the times for message
receptions, a broadcast schedule as illustrated by Fig. 4 can be used to predict
the total completion time for the broadcast.

A broadcast schedule such as the one shown in Fig. 4 can be used to accu-
rately model the overlap in communications, a feature that was lacking in the
parameterized LogP model [1].

Measurement of Point to Point Communications As observed in the
previous section, accurate measurements of the time for Isends and the time for
the reception of the messages are necessary for efficient modeling of broadcast
operations. Previous communications models [3], [1], do not efficiently take into
account the different types of Isends. Also, these models overlook the fact that
the performance of an Isend can vary depending on the number of Isends posted
previously. Thus the parameters, the send overhead, os(m), the receive overhead,
or(m), the gap value, g(m), for a given message size m, that were discussed in
the parameterized LogP model can vary from a particular point in execution to
another depending on the number of pending Isends and the type of the Isend.

MPI implementations employ different types of Isends depending on the size
of the message transmitted. The popular modes of Isends are blocking, immediate
and rendezvous and are illustrated by Fig. 5



Fig. 4. Illustration of Broadcast Schedule
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The parameters associated with the different modes of Isends can vary de-
pending on the number of Isends posted earlier. Hence, for example, in the case
of immediate mode, the Isends can lead to overflow of buffer space in the receive
end, which will eventually result in larger g(m) and os(m).

Model Based on Communication Schedules In this section, we describe
a simple model that we have built to calculate the performance of collective
communications. The model is based on point-point communication times and
uses communication schedules for collective operations similar to the broadcast
schedule shown in Fig. 4.

The model uses the data for sender overhead, os(m), receiver overhead, or(m)
and gap value, g(m) for the different types of Isends show in Fig. 5. The send
overhead, os(m) is determined for different message sizes by observing the time



taken for the corresponding Isends. The time for Isends, os(m), increases as the
message size is increased up to a certain message size beyond which, os(m), falls
to a small value. At this message size, the Isend switches from the blocking to
immediate mode. or(m) for blocking mode is determined by allowing the receiver
to post a blocking receive after making sure the message has been transmitted
over the network to the receiver end and determining the time taken for the
blocking receive. In the immediate mode, the sender has to wait for g(m) before
transmitting the next message. This time is determined by posting an Isend and
determining the time taken for the subsequent Wait. In the immediate mode,
or(m) is calculated by calculating or(m)+g(m). or(m)+g(m) is calculated by
determining the time for a ping-pong transmission between a sender and a re-
ceiver and subtracting 2*os(m) from the ping-pong time. For each of the above
experiments, 10 different runs were made and averages were calculated. The ex-
periments were repeated at different points in time on shared machines and the
standard deviation was found to be as low as 40.

The following results illustrate the prediction accuracy of the models. While
the experiments were conducted only on a Sparc cluster, similar experiments
will be conducted on other systems to validate the predication accuracy on other
systems.

Fig. 6 compares the actual and predicted broadcast times for a flat tree
broadcast sending a 128K byte message using 8 processors on a Sparc cluster.

Fig. 6. Flat Tree broadcast
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We can observe that the predicted times are close to the actual broadcast
times. According to the predicted results, the optimum segment size for the flat
tree broadcast for 128KB message size is 4KB, whereas, according to the actual
times, the optimum segment size is 16KB. But the ratio between the actual time
at 4KB and the actual time at 16KB is found to be just 1.12.

Fig. 7 compares the actual and predicted broadcast times for a binary tree
broadcast and Fig. 8 compares the actual and predicted broadcast times for a
binomial tree broadcast. In these cases, the ratios between the actual times for
predicted and actual optimum segment sizes were found to be 1.09 and 1.01
respectively.

Fig. 7. Binary Tree broadcast
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Fig. 9 shows the actual and predicted values of the various broadcast algo-
rithms for 128K byte message size. Comparison of the relative performance of
the broadcast algorithms using actual and predicted results leads to the same
conclusions for broadcast, i.e., flat tree gives the worst performance and binary
tree gives optimum performance. Thus we find that the model is able to predict
both optimum segment sizes within a single algorithm and optimum algorithms
when comparing different algorithms.

While models for other important collective communications like scatter and
gather are not implemented, modeling the other collective communications is
similar to modeling broadcast with few additional issues.

A scatter operation is similar to broadcast operation except that the sender
has to make strides in the send buffer to send the next element to its next



Fig. 8. Binomial Tree broadcast
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Fig. 9. Comparison of algorithms - Measured vs Predicted times
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child. For small buffer sizes, the entire buffer is brought inside the cache and
our broadcast model should be applicable to scatter as well. For large buffer
sizes, additional complexity is introduced due to frequent cache misses. In that



case our model needs to take into account the time needed for bringing data
from memory to cache and compare this time with the gap time for the previous
Isend.

Modeling gather is more challenging than modeling broadcast or scatter since
three different scenarios have to be considered. For small buffer sizes, the time
for receive of a segment by the root assuming the children have already posted
their sends have to be modeled and techniques used in modeling broadcast and
scatter can be used. For large buffer sizes, issues regarding movement of data
from memory to cache also apply to gather and the corresponding techniques
used for scatter can be used. For large number of segments, the children of the
root will be posting large number of Isends to the same destination, i.e. the root.
In this case, the storage of pending communications will get exhausted, and the
performance of Isends will deteriorate. Some benchmark tests can be performed
before hand to determine the point when the performance of Isends degrades
and can be plugged into the model.

Models for other collective communications like allreduce, allgather etc. can
be built based on the experience of modeling broadcast, scatter and gather.

Although the models are primarily used to reduce the single-experiment time,
they can also be used to reduce the number of segment sizes to explore. For
example, in architectures where fixed size packets are used for communications,
the send and receive overheads for large message sizes will be approximately
multiples of the overhead times associated with the message of size equal to
the packet size. Hence simulation experiments can only be conducted for those
segment sizes close to the packet size.

4 Dynamic Reordering of Topologies

Most systems rely on all processes in a communicator or process group entering
the collective communication call synchronously for good performance, i.e. all
processes can start the operation without forcing others later in the topology to
be delayed. There are some obvious cases where this is not the case:

1. The application is executed upon heterogeneous computing platforms where
the raw CPU power varies (or load balancing is not optimal).

2. The computational cycle time of the application can be non-deterministic
as is the case in many of the newer iterative solvers that may converge at
different rates continuously.

Even when the application executes in a regular pattern, the physical network
characteristics can cause problems with the simple LogP model, such as when
running between dispersed clusters. This problem becomes even more acute when
the system latency is so low, that any buffering, while waiting for slower nodes,
drastically changes performance characteristics as is the case with BIP-MPI [8].



4.1 Dynamic Methodology

This method is a modification of the previous tuned method, where we use the
tuned topology as a starting point, but the behavior of the method is varied
between actual uses of the collective operations at run-time. The method forces
all the non-root nodes to send a small start-acknowledge (SACK) message to
the root node, which the root uses to build a mapping from communicator rank
to logical address within the chosen topology dynamically. Each process, after
having sent its SACK, then receives its own topology information via the root
directly or by piggy backing the information on a user data message depending on
the MPI operation being performed. This information can be split into multiple
messages such as from whom do they receive from, and whom do they send to,
as the information becomes available. i.e. a process might not be a leaf node in
the tree topology but still receives all its data before knowing whom to send to.

Fig. 10 demonstrates this methodology. Case 1 is where all processes within
the tree are ready to run immediately and thus performance is optimal. In Case
2, both processes B and C are delayed and initially the root A can only send to
D. As B and C become available, they are added to the topology. At this point
we have to choose whether to add the nodes depth first as in Case 2a or breadth
first as in Case 2b. Currently depth first has given us the best results. Also note
that in CASE 1, if process B is not ready to receive, it affects not only its own
sub-tree, but depending on the message/segment size, it is possible that it would
block any other messages that A might send, such as to D’s sub-tree etc. Faster
network protocols might not implement non-blocking sends in a manner that
could overcome this limitation without effecting the synchronous static optimal
case, and thus blocking sends are often used instead.

Currently we are testing the cost of overhead incurred in using this technique
for different network infrastructures. We are also exploring the conditions needed
for the automatic use of this technique during the course of the computation.
Initial results have been promising, especially for large messages and network
interfaces with very low latency, that rely on the receivers to have already posted
receives to allow DMA message transfers. Worst case results have been equivalent
to the overhead for n-1 small message send /receives. Best case has been within a
few percent of optimal where no re-ordering on the same example has produced
multiples of the optimal wall clock times, although this varies with the operation,
number of processors, data size and level of initial synchronization.

The re-ordering of topologies was tested using an 8 processor 1 MByte broad-
cast where several of the processes were delayed on entering the collective op-
eration by 200, 300 and 400 milliseconds. The time for a non-delayed broadcast
was around 425 milliseconds. The uncorrected broadcast took 896 milliseconds.
The corrected topologies took 702 milliseconds for breadth first and 673 mil-
liseconds for the depth first, representing a 22% and 25% improvement over the
uncorrected topology.



Fig. 10. Reordering a tree topology
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5 Conclusion

Modeling the collective communications to determine the optimum parameters
of the collective communications is a challenging task, involving complex scenar-
ios. A single simplified model will not be able to take into account the complexi-
ties associated with the communications. A multi-dimensional approach towards
modeling, where various tools for modeling are provided to the user to accurately
model the collective communications on his system, is necessary. Our techniques
regarding the reduction of number of experiments are steps towards constructing
the tools for modeling. These techniques have given promising results and have
helped identify the inherent complexities associated with the collective commu-
nications. We have also shown that during application execution, dynamically
altering the mapping between rank and position within a topology can yield
additional benefits in terms of performance.

6 Future Work

While our initial results are promising and provide us some valuable insights
regarding collective communications, much work still has to be done to provide
comprehensive set of techniques for modeling collective communications. Select-
ing the right set of techniques for modeling based on the system dynamics is an
interesting task and will be explored further.
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