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Abstract—Many scientific applications rely on sparse direct
solvers for their numerical robustness. However, performance op-
timization for these solvers remains a challenging task, especially
on GPUs. This is due to workloads of small dense matrices that
are different in size. Matrix decompositions on such irregular
workloads are rarely addressed on GPUs.

This paper addresses irregular workloads of matrix computa-
tions on GPUs, and their application to accelerate sparse direct
solvers. We design an interface for the basic matrix operations
supporting problems of different sizes. The interface enables us to
develop irrLU-GPU, an LU decomposition on matrices of different
sizes. We demonstrate the impact of irrLU-GPU on sparse direct
LU solvers using NVIDIA and AMD GPUs. Experimental results
are shown for a sparse direct solver based on a multifrontal
sparse LU decomposition applied to linear systems arising from
the simulation, using finite element discretization on unstructured
meshes, of a high-frequency indefinite Maxwell problem.

Index Terms—Irregular computational workloads, GPU Com-
puting, LU factorization, multifrontal solvers, sparse direct
solvers

I. INTRODUCTION AND MOTIVATION

Sparse direct solvers are widely used in both academia
and industry for the solution of systems of linear equations.
Direct methods, as based on lower-upper (LU) decomposition,
i.e., Gaussian elimination, or QR decomposition, have the
benefit that they are robust and require relatively little tuning
by the user. This is in contrast to iterative solvers such as
(preconditioned) Krylov methods, and multigrid and domain
decomposition solvers and preconditioners, which require tun-
ing of, e.g., the Krylov subspace size, the stopping criterion,
the smoother, the restriction and prolongation operators, etc.
Whereas iterative methods can have unpredictable conver-
gence, direct methods solve linear systems with a predictable
number of operations and memory usage. However, compared
to most iterative methods, sparse direct solvers can require

asymptotically more memory and floating point operations.
State-of-the-art academic approaches for the solution of large
scale linear systems often rely on a complex composition of
methods, for instance using a direct solver as the sub-domain
solver in a domain decomposition solver, or as coarse grid
correction solver in multigrid. Another benefit of factorization
based methods is that the factorization of the operator can
be reused multiple times for the solution of different linear
systems, with the same operator but different right hand sides,
for instance from multiple source terms.

In this work, we focus on performance-critical components
of a sparse direct solver that is used for the solution of high
frequency wave equations, for which it is well-known that
constructing efficient preconditioners is very challenging, and
which are hence typically solved using direct methods. For
instance the indefinite Maxwell equation with large wavenum-
bers results in highly indefinite linear systems, which are hard
to precondition. The performance of direct solvers on the other
hand is not so sensitive to the spectrum of the operator.

We solve the sparse linear systems resulting from the finite
element discretization of the indefinite Maxwell problem using
a multifrontal [1], [2] sparse LU solver, using a symmetrized
sparsity pattern. In the multifrontal method, rows and columns
with equivalent sparsity structure are grouped together in
so-called supernodes. The solver then constructs a dense
matrix – referred to as a frontal matrix or simply a front
– for each supernode. The sizes of these fronts range from
very small (< 8 × 8) all the way up to the size of the
largest separator of the graph corresponding to the sparsity
pattern of the input matrix. By defining these dense blocks
in the sparse triangular factors, the numerical factorization
can be implemented using higher level BLAS routines, which
greatly improves the performance compared to the scalar
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implementations. For irregular problems, such as those from
the unstructured discretization of partial differential equations
using, for instance, finite elements or finite volumes, the
distribution of the frontal matrix sizes depends on the initial
sparsity structure of the matrix, and on the ordering of the
matrix. A fill-reducing ordering is typically applied to reduce
the total number of nonzero elements in the sparse triangular
factors. This ordering is computed using graph heuristics, often
relying on graph partitioning codes.

One of the performance bottlenecks in sparse direct solvers
is the irregular patterns of relatively small dense matrices for
which an LU or QR decomposition needs to be performed.
This is often called batch computation in the literature. The
importance and the growing community demand for high
performance batch algorithms have driven many vendors of
HPC architectures to provide dedicated kernels for these work-
loads in their numerical software. Libraries like Intel’s Math
Kernel Library (MKL) [3], NVIDIA’s cuBLAS [4] and AMD’s
rocBLAS [5] all provide different types of batch subprograms.
However, most of the efforts from the vendors and the research
community focus on uniform (or semi-uniform) distributions
of the matrix sizes within a batch. Both cuBLAS and rocBLAS
provide interfaces that assume one batch of matrices having the
same dimensions. The Intel MKL library provides a different
interface that assumes groups (or sub-batches) of matrices,
such that matrices belonging to the same group have the same
dimensions. This is the only vendor-supplied interface that
can be used to address irregular sizes. The currently available
interfaces from GPU vendors do not meet the requirements
of the sparse solver described above. The only resort would
be to use concurrent kernel launches using parallel streams,
which often performs very poorly, as we demonstrate later in
the paper.

The pattern of sizes arising from sparse direct solvers
depends on the sparsity pattern of the input matrix, so no
pre-assumptions can be made. In addition, figuring out groups
of uniform sizes, if any, can be challenging, especially if
GPUs are considered. This is why we target a “flat interface”,
assuming one group of matrices of arbitrary sizes. For the
LU decomposition, very few efforts addressed the case for
very small matrices [6], for example up to 32 × 32. This
is a relatively simple case, because all the matrices can be
easily cached (and probably padded) in the shared memory,
and a column-wise decomposition is used. Our application
requires both small (e.g. < 8×8) and large sizes, well beyond
1000 × 1000. To the best of our knowledge, no effort in
the literature addresses the LU decomposition on a batch of
matrices whose sizes are completely arbitrary.

The proposed solution (irrLU-GPU) works on any pattern
of sizes. The sizes can be as small as 1 × 1, and as large as
the GPU memory affords. This is particularly challenging to
achieve on GPUs because of their programming model, which
often favors uniform patterns of computation. One of the main
contributions of irrLU-GPU is an interface concept that is able
to efficiently address generic irregularity, meaning that there
are no assumptions about the range or the distribution of the

sizes. The interface is used to describe the LU decomposi-
tion with respect to the largest matrix in the batch. Since
smaller matrices can be fully factorized at different stages,
we develop a technique called Dynamic Compute-workload
Inference (DCWI), which uses the information passed through
the interface to infer, on the matrix level, the exact amount
of computation to be done. Both the interface and DCWI are
applied to all the computational steps of the LU decomposi-
tion, such as matrix multiply on different sizes (irrGEMM) and
triangular solve (irrTRSM). The latter is another contribution
in the paper that outperforms a similar routine in the MAGMA
library [7], both in performance and numerical accuracy. We
believe that the proposed interface can be applied to a wide
range of numerical algorithms that need to be simultaneously
applied on matrices of different sizes.

A. Summary of Contributions

1) We present a systematic way for designing numerical
software addressing irregular matrix computations on
GPUs. The two main design concepts are 1) an expanded
interface for linear algebra kernels, and 2) the DCWI
layer mentioned before.

2) The two design concepts are used to design irrLU-GPU,
an LU decomposition that supports irregular workloads
of independent matrices. Unlike previous solutions that
presume a certain limited range, irrLU-GPU has no
limitations on the range or the distribution of the sizes
in a given workload.

3) We extend an existing multifrontal sparse direct solver to
take advantage of irrLU-GPU, and show its performance
impact on a representative application based on a high-
frequency indefinite Maxwell problem.

II. RELATED WORK

There exists a number of sparse direct solvers, includ-
ing SuperLU_Dist [8], SuiteSparse (UMFPACK [9] and
Cholmod [10]), PaStiX [11], STRUMPACK [12], [13],
MUMPS [14] and WSMP [15]. Out of these, SuperLU_Dist,
Cholmod (only SPD), PaStiX and STRUMPACK have GPU
support. SuperLU_Dist, PaStiX and Cholmod – supernodal
but not multifrontal methods – have more complicated data
dependencies than the multifrontal solver STRUMPACK. The
multifrontal algorithm lends itself better to the use of batch
routines on GPUs. However, STRUMPACK’s current imple-
mentation uses a naive batch kernel which is restricted to
matrix blocks smaller than 32× 32, still leading to significant
kernel launch overhead.

There is a wide range of applications that often require
matrix computations on independent small problems, such as
astrophysics [16], quantum chemistry [17], and applications
benefiting from sparse direct solvers, which are the main
motivation behind this work. Most of the research and de-
velopment efforts have focused on batches of small matrices
having the same size, since the then-existing interfaces and
programming models can be extended to support uniform pat-
terns relatively easily. Vendors like NVIDIA and AMD provide



batch routines in their cuBLAS [4] and rocBLAS [5] libraries,
respectively. They adopt a flat interface which assumes one
batch of matrices having the same dimensions. Other GPU-
centric libraries like MAGMA [7] adopt a similar interface.
Another interface that gained attention is available in the MKL
library [3], which adds one level of parallelism over the flat
interface, as it assumes groups of uniform batches [18]. This
interface can support completely irregular matrix patterns, if
the extreme case of one matrix per group is used. Libraries
such as Kokkos Kernels and MKL use interleaved data lay-
outs for batch kernels on small matrices, which provides a
performance advantage for SIMD arhchitectures [19]. All of
these interfaces have a common issue, which appears when we
consider an algorithm consisting of a sequence of calls to batch
routines. Arithmetic operations on pointer arrays, especially on
GPUs, can be daunting. In the case of irregular sizes, integer
arithmetic on the sizes is also required.

Few efforts have discussed irregular batches using GPUs.
To the best of our knowledge, no previous contributions have
addressed a standard and systematic way of dealing with
irregular matrices on GPUs, especially matrix decompositions.
While some efforts have focused on fundamental operations
like matrix multiply [20], addressing higher level algorithms
using these building blocks is a different challenge. Previ-
ous contributions focused on a specific range of sizes, e.g.
32× 32 [6], for which a simple design with implicit padding
can be developed. In our design of irrLU-GPU, we have no
limitations on the size distribution. A single batch can have
any range of sizes as long as all matrices fit in the global
memory of the GPU.

The approach of designing a single custom kernel that
works for any size has very slim chances of achieving any
high performance, since it will have to process large matrices
with very little use of cache-blocking techniques on the GPU.
We believe that the factorization must be broken down into
its building blocks, like matrix multiply, triangular solve,
and submatrix (panel) decomposition. These building blocks
must be aware of the size irregularity at run time, and that
some smaller matrices may have been fully decomposed while
other matrices yet have some computational workloads. The
design concepts behind irrLU-GPU address these challenges
on GPUs, and we believe they are also applicable to other
numerical algorithms for dense matrices.

III. ALGORITHMIC BACKGROUND

A. Multifrontal Sparse Direct Solvers

We consider the solution of a sparse linear system Ax = b
with A ∈ CN×N . To achieve this, we compute a decom-
position of A as P (DrADcQ)PT = LU , where P and Q
are permutation matrices, Dr and Dc are diagonal scaling
matrices, and L and U are sparse lower and upper triangular
factors. The permutation P , which aims to reduce the number
of nonzeros in the triangular factors, is computed using the
nested dissection algorithms from the METIS [21] library. The
optional permutation Q, and the scaling factors Dr and Dc are
computed using the MC64 [22] matching code. The goal of

Q is to maximize the product of the diagonal elements, which
are then scaled by Dr and Dc such that all diagonal entries
are 1 and all off-diagonal entries are less than 1 in absolute
value.

One can typically distinguish three separate phases for the
direct solution of sparse linear systems:

1) Reordering and symbolic analysis
2) Numerical factorization
3) Solve using forward and backward substitution

In phase 1, the permutation and scaling vectors are com-
puted, the sparsity pattern is analyzed, and data-structures
are initialized to guide the numerical factorization phase.
After computation of the sparse factorization (computationally
the most expensive phase), a linear system can be solved
efficiently by applying the permutations and scalings, and
performing the sparse triangular solves with the L and U
factors.

To illustrate the numerical factorization phase, we consider
a nested dissection permutation P with only two levels, and a
single vertex separator:

PAPT =

 A1 X1S

A2 X2S

XS1 XS2 S

 . (1)

The lower-right sub-block S corresponds to a separator in
the graph of A, effectively splitting the problem in two
unconnected components, represented by A1 and A2. We can
now construct three frontal matrices

F1 =

[
A1 X̂1S

X̃S1

]
, F2 =

[
A2 X̂2S

X̃S2

]
, F0 = S, (2)

where X̂1S /X̃S1 is the matrix consisting of only the column-
s/rows of X1S /XS1 which contain nonzero elements. These
fronts are put in a binary tree with F0 as the root and F1 and
F2 as the children. The numerical phase of the multifrontal
LU factorization algorithm then traverses this binary tree from
the leaves to the root. At each front Fτ = [F11 F12; F21 F22]
(except the root), the following steps are performed:
• PτLτUτ ← LU(F11)
• F12 ← U−1τ L−1τ PTτ F12

• F22 ← F22 − F21F12

At the root front, only the first of these steps needs to be
performed. The first step computes a dense LU factorization
with partial pivoting. Note that the pivoting is restricted
to the diagonal blocks, but for most problems, especially
when combined with the permutation Q, this is sufficient
to ensure numerical stability, and it greatly simplifies the
implementation. After these operations are applied to front Fτ ,
the Schur complement Fτ ;22 is added into the parent frontal
matrix. However, since the parent front is typically larger than
the Schur complement of it’s child, this requires a scatter
operation.

The described approach can be generalized by recursively
applying the nested dissection heuristic to the subdomains A1

and A2, leading to a binary tree, referred to as the assembly



tree, with O(logN) levels. Going down the tree from the
root to the leaves, subdomains and separators become smaller,
leading to smaller frontal matrices, while the tree becomes
wider. Note that all fronts in a given level can be handled
concurrently. Our GPU implementation traverses the tree level-
by-level, from leaves to root, using batch algorithms for the
dense linear algebra operations (LU, triangular solve and
matrix multiplication) for all fronts on a given level. If the
entire assembly tree does not fit in the device memory, then the
factorization is split in multiple traversals of subtrees that do
fit on the device. Likewise, for the distributed memory parallel
code, the assembly tree is split in multiple subtrees, each of
which is assigned to a single MPI rank and corresponding
GPU, while the top logP levels of the tree are distributed
using a 2D block cyclic layout and then processed using either
ScaLAPACK (CPU-only) or SLATE [23].

B. Lower-upper (LU) Matrix Decomposition

We consider the dense LU decomposition with partial
pivoting (P×L×U = A), which is the standard decomposition
method for solving a linear system of equations. The L/U
matrices are called the triangular factors of A, while P is a
permutation matrix that reflects the necessary row interchanges
to maintain numerical stability. We briefly describe the main
computational steps of the algorithm, which are shown in
Figure 1 for a single iteration. At each iteration, the algorithm
begins with a “panel decomposition” (yellow submatrix),
producing the L/U factors of the panel. The computational
steps of the panel decomposition are discussed in Section IV-E.
The panel undergoes some row exchanges during its decompo-
sition, which must propagate to the submatrices to the left (Al)
and right (Ar1 and Ar2) of the panel. The next step is to solve
a triangular system of equations (Ltr ×X = Ar1), where Ltr
is the triangular part of L, and where the solution X overwrites
the Ar1 matrix. The final step in the iteration is a rank-k update
of the form (Ar2 = Ar2 − Lrect × Ar1), where Lrect is the
lower rectangular part of L. The next iteration starts at the Ar2
submatrix, repeating the same steps. The total operation count
(or floating point operations; FLOPs) of an LU decomposition
on an M × N matrix is MN2 − N3

3 −
N2

2 + 5N
6 . In our

performance measurements, we do not drop the low order
terms of the expression since we are dealing with relatively
small matrices.

C. Batch Matrix Computations

The development of high performance numerical software
for parallel independent problems has been an active topic
of research. The main motivation behind such efforts is two
fold. First, scientific applications such as computer vision,
high order finite element methods (FEM) [24], and sparse
direct solvers [25] often produce computational workloads
that involve independent small matrix computations. Second,
modern hardware architectures are becoming so increasingly
parallel that they can comfortably manage two levels of paral-
lelism, within each problem (fine-grain) and across problems
(coarse-grain). While it is possible for existing programming

L

U
Ar1

Al
Ar2

Fig. 1. The submatrices overwritten by one iteration of an LU decomposition
of a dense matrix.

models to support these workloads, e.g. by utilizing OpenMP,
OpenACC, and concurrent stream execution, dedicated opti-
mizations often reveal that there is room for more performance
on such workloads. This is apparent in many vendor-supplied
numerical libraries that now provide batch algorithms. The
research community also contributed numerous efforts, some
of which are application-driven [26] [25] [27], and some others
targeting generic use [28] and standard interfaces [18].

As mentioned in Section II, most of the research efforts on
GPUs target matrices of the same size [29] [30], although some
few exceptions exist [20]. Consider the cuBLAS interfaces
shown in Figure 2 for the matrix multiply operation (regular
and uniform-batch). By comparing the two interfaces, it is
obvious that the matrix argument is promoted from a single
pointer that is passed by value to an array of pointers that
must exist in the GPU memory before the kernel is launched.
This change has in fact noticeable consequences on developing
algorithms that operate on submatrices. On a single matrix
operation, the scalar pointer arithmetic can be easily inlined
in the kernel launch itself. However, with a batch interface
like Figure 2, the array of pointers must be updated either on
the CPU and sent to the GPU, or on the GPU directly using a
dedicated kernel. Both options have their respective overheads
(CPU-GPU communication or launch overheads).

1) Support for Nonuniform Batch Matrix Computations:
Multifrontal sparse direct solvers often encounter factorization
workloads of matrices having different sizes. The range and
distribution of such sizes depend on the size and the sparsity
pattern of the input sparse matrix. Our target is to design a
solution that supports these workloads without any limitations
on the sizes of the multifrontal matrices. For arbitrary sizes,
blocked decompositions are the only approach. The decom-
position must be broken down into multiple computational
stages (e.g. panel decompositions and updates) that operate
on submatrices of different sizes. Since the CPU coordinates
the kernel launches on the GPU, it needs to pass the necessary
information about these submatrices (pointer, size, and leading
dimension). A natural progression to the batch interface in
Figure 2 would promote the sizes and the leading dimensions



/* regular gemm */
cublas<T>gemm(

cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const T *alpha,
const T *A, int lda,
const T *B, int ldb,
const T *beta,
T *C, int ldc);

/* batch gemm */
cublas<T>gemmBatched(

cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const T *alpha,
const T *Aarray[], int lda,
const T *Barray[], int ldb,
const T *beta,
T *Carray[], int ldc,
int batch_size);

Fig. 2. Example interface of a uniform batch matrix multiply in cuBLAS.
The type T represents the different data types supported by the library.

from scalar integers to arrays that must now reside on the GPU
memory before launch. This extension further complicates
submatrix computations in blocked algorithms, since both
integer and pointer arithmetics are required. For example,
consider that we would like to perform the LU decomposition
on the second column on a group of matrices of different sizes.
The pointer array must be updated to point to entry (1, 1)
on every matrix (assuming c-style indexing). The dimension
vectors must also decrease by one to reflect the size of the
submatrix. Before every computational step (or kernel launch),
the pointers and the sizes must be carefully updated. Such
repetitive setup is undoubtedly daunting and costly. This is
why we carefully study the interface of the building block
operations in this paper. As an example, irrLU-GPU requires
a matrix multiplication kernel that operates on a nonuniform
batch of (sub)matrices. We use the codebase available in the
open source MAGMA library [20] (version 2.6.1), but further
improve the kernel interface to facilitate the development of
a fully functional LU decomposition. The interface design
is applicable to every computational step in the algorithm.
It enables us to avoid numerous calls for auxiliary kernels
performing pointer and integer arithmetics, which is costly
in terms of development, launch overheads, and long-term
software maintenance. The new interface, along with the
proposed kernel semantics (i.e. the DCWI layer), also enables
recursive algorithms on matrices of different sizes, which we
use for the irrTRSM kernel contributed in this work.

IV. ALGORITHMIC ADAPTATION AND DESIGN

A. New Interface and Semantics

One of the main contributions in this work is an expanded
interface that enables the easy development of complex al-
gorithms involving submatrix computations of different sizes.
The interface completely avoids both pointer and integer
arithmetic in the irrLU-GPU algorithm. Figure 3 shows an
example interface of irrGEMM, one of the critical components

in irrLU-GPU, to perform matrix multiply on a nonuniform
set of matrices. The main idea is to embed, in a generic way,
pointer/integer arithmetics in the interface itself. The obvious
cost is the longer interface. However, we believe that the
interface is easily understandable, and its benefit far outweighs
the difficulties of using more BLAS-like interfaces like the one
in [20].

The semantics of the interface and the operation itself are
also different from the legacy BLAS API, and even those
batch routines available in cuBLAS and rocBLAS. In such
interfaces, the dimensions (e.g. m, n, k) represent both the
sizes of the product being performed and the sizes of the
matrices A, B, and C. Each matrix is represented by a scalar
pointer and a leading dimension. The proposed interface has
some differences in this regard. Below is some terminology
that we use to describe the interface.

1) Required Dimension(s): the interface uses a set of scalars
(e.g. m, n, k in Figure 3) to describe the required
operation to be performed on the batch. The required
dimensions should be defined according to the largest
matrix in the batch.

2) Local Dimension(s): These are stored as integer arrays
(m_vec, n_vec, and k_vec) whose individual entries
define the dimensions of the matrices in the batch.
These local dimensions are not changed throughout the
computation.

3) Pointer Offsets: In addition to the local dimensions, each
matrix is characterized by a pointer, a leading dimension,
and a pair of offset scalars (e.g. Ai and Aj) such that
(A[id] = Aarray[id] + Aj×lda_vec[id] +
Ai, id∈[1:batch_size]).

4) Actual Workload: Each developed kernel internally in-
fers the actual sizes defining the local operation accord-
ing to the required sizes, the local dimensions, and the
pointer offsets. We call this step Dynamic Compute-
Workload Inference (DCWI), an integral part of the new
interface.

irr<T>gemm_GPU( /* handle or stream */
trans_t transa, trans_t transb,
int m, int n, int k, int* m_vec, int* n_vec, int* k_vec,
const T alpha,
const T *Aarray[], int Ai, int Aj, int* lda_vec,
const T *Barray[], int Bi, int Bj, int* ldb_vec,
const T *beta,
T *Carray[], int Ci, int Cj, int* ldc_vec,
int batch_size);

Fig. 3. Example of the proposed interface for a nonuniform batch matrix
multiply

Since we propose a new interface, an obvious consequence
would be changing existing user codes in order to take
advantage of this work. However, we emphasize that this is
a relatively new area for GPUs. Apart from the MKL library,
none of the vendors’ numerical libraries (e.g. cuBLAS and
rocBLAS) support non-uniform batch computations. Most of
the existing codes either use custom kernels or use parallel
streams.



B. Dynamic Compute-Workload Inference (DCWI)

DCWI is a lightweight subkernel layer that signifi-
cantly simplifies the description of matrix computations
on independent problems of different sizes. In general,
DCWI requires that an algorithm must be written ac-
cording to the largest computational workload. For an
LU decomposition with partial pivoting, this corresponds
to maxbatch_sizeid=1 min(m_vec[id],n_vec[id]). DCWI
along with the new interface can then detect on-the-fly which
matrices have been fully or partially decomposed. The actual
workload, if any, is computed per matrix. If no workload is
detected, the corresponding GPU threads perform no work
at all. Consider the example shown in Figure 4, where three
matrices of different sizes are factorized. For simplicity, we as-
sume one thread block per matrix. We also assume a “blocked
decomposition” that progresses by five columns at a time. In
the given example, the algorithm would require three iterations
in order to accomodate the largest 15× 15 matrix. The figure
shows the second iteration, where three different types of
workloads are detected (full, partial, and none). Figure 5 shows
the corresponding pseudo code for the DCWI layer. Note
that without the proposed interface, DCWI would be replaced
by multiple kernel calls performing pointer/integer arithmetic.
It would also require additional workspaces to store new
dimensions and pointers for submatrices. DCWI is adopted
by all the computational steps in the LU decomposition.

partial workload full workload no workload
Local Size:  9x9              15x15              4x4
Offsets  : (5,5)             (5,5)             (5,5)
Required : (10,5)           (10,5)            (10,5)
Actual   : (4,4)            (10,5)             (0,0)

5

5

Fig. 4. Dynamic compute-workload inference. The yellow areas represent
the amount of workload per matrix in the second iteration of a blocked
decomposition of three iterations.

The DCWI layer requires a careful implementation in order
to guarantee correctness. Otherwise, memory faults occur and
can be detected using the vendor’s debugging tools. Inferring
partial or no workload is kernel-specific and requires an
understanding of the kernel semantics. As an example, for
an operation like C = A × B, the offsets (Ai, Aj) are
compared against (m, k). However, if the operation is changed
to C = AT × B, they should be compared against (k, m).
A similar situation for triangular solves would be solving
AX = B versus XA = B.

C. Irregular Matrix Multiply on Different Sizes (irrGEMM)

It is well-known that dense matrix decompositions can
achieve relatively high performance if they could utilize dense
matrix multiplication. The developed irrLU-GPU solution

/* input: ( m, n) required panel size, passed by value */
/* input: (Ai, Aj) input offsets, passed by value */

/* read matrix-specific information based on id */
(local_m, local_n, ptrA, lda) =

read_info( id, m_vec, n_vec, Aarray, lda_vec );

ptrA += Aj * lda + Ai // pointer arithmetic

local_m -= Ai; // maximum affordable m after offset
local_n -= Aj; // maximum affordable n after offset

// check for no workload (out of bound offsets)
if( local_m <= 0 || local_n <= 0 ) return;

// calculate actual workload
local_m = min(local_m, m);
local_n = min(local_n, n);

/* end of dcwi, proceed with computation */

Fig. 5. Pseudo code for DCWI

adopts a blocked decomposition for that purpose. We use
the same codebase provided by the MAGMA library (version
2.6.1). While we do not claim any contributions in the design
of this kernel, the code has been augmented with the interface
in Section IV-A, and the DCWI layer in Section IV-B.

D. Irregular Triangular Solves (irrTRSM)

Another key component in the LU algorithm is the triangu-
lar solve, which is required to update the upper factor. Similar
to matrix multiplication, MAGMA-2.6.1 also provides such a
functionality, but it suffers from a number of issues. First, the
numerical behavior for solving TX = B is different from a
standard triangular solve. It computes the explicit inverse of
the diagonal blocks in the triangular matrix T , so that the rest
of the computation is done using matrix multiply. While this is
a good design intuition, it generally produces larger backward
error compared to a standard triangular solve. In addition,
the solve is actually done out-of-place in a workspace, and
then a memory copy is used to overwrite the right hand
sides with the solution vectors. Recall that the standard LU
decomposition requires an in-place solver during the update of
the upper factor. It is clear that there is a noticeable overhead
in performing a data copy for small sizes, plus the overhead of
managing the extra workspace. For these reasons, we propose
a more optimized and more accurate triangular solve routine
(irrTRSM).

We use the same new interface, which enables us to develop
a recursive triangular solve on matrices of different sizes. The
recursive scheme is not new [31], but we claim that its adap-
tation to workloads of irregular sizes is novel. The host CPU
coordinates the solve based on the largest dimensions, which
are the order of the triangular linear system and the maximum
number of right hand sides. The GPU kernels receive these
information from the CPU, and the DCWI layer figures out the
correct dimensions. Note that without the expanded interface,
a recursive implementation is not possible without allocating
workspaces for pointer/integer arithmetic at each level of the
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Fig. 6. Performance (left axis) and backward error (right axis) of irrTRSM
(FP64) versus MAGMA-2.6.1 on the A100 GPU using CUDA-11.6. Each
point represents 1000 triangular solves of different sizes. The orders of the
triangular linear systems are randomly sampled between 1× 1 and 32× 32.

recursion. This would lead to considerable overhead, and also
force a synchronous behavior for the triangular solve.

A comparison for the performance and backward error
between irrTRSM and MAGMA is shown in Figure 6. The
performance is shown in the FLOP rate, with the aggregate
FLOP count estimated as

∑batch_size
i=1 nim

2
i . The backward

error is estimated as the maximum value of ||b−Tx||||T ||.||x|| across all
matrices. The comparison focuses on small triangular systems
while varying the number of right hand sides, which is the
typical use case in the LU decomposition. Through the output
of the NVIDIA profiler, we observe that the MAGMA perfor-
mance is severely impacted by the extra copy and workspace
management. Figure 6 shows an asymptotic performance gain
of 7.6×, while achieving a slightly better accuracy.

E. Block-column (Panel) Decomposition

In order to utilize irrGEMM and irrTRSM, a decomposition
of a block of columns must be performed efficiently on the
GPU. This is often called the panel decomposition, which
proceeds one column at a time. For each column, four steps are
performed, (1) locating a pivot with the maximum magnitude
(irrIAMAX), (2) if the pivot is an off-diagonal element,
a row interchange is performed to bring the pivot on the
diagonal (irrSWAP), (3) a vector scaling on the current column
(irrSCAL), and (4) a rank-one update on the trailing subpanel
(irrGER). Four GPU kernels are developed for these steps.
However, it is sometimes possible to perform all these steps
using a single GPU kernel (irrGETF2), which is the case when
the largest panel can fit in the shared memory of the GPU.
It is costly to calculate the exact size of the largest panel
while the algorithm is progressing (for example, the tallest
panel might not be the widest). We resort to a rough estimate,
which is to assume that all the panels have the same width,
which is a design parameter for irrLU-GPU (say typically
16− 32 columns per iteration). Then the largest panel size is
(16× (Mmax− j)), where j is the global number of columns
processed from the largest matrix. Depending on the shared

memory capacity of the GPU, we either launch the irrGETF2
kernel, or the four separate kernels mentioned above. This is
one example where an architectural feature of the GPU (the
shared memory capacity) has a clear impact on the perfor-
mance. For a GPU with a relatively small shared memory,
the panel decomposition would switch from irrGETF2 to the
slower column-wise approach earlier than on a GPU with a
larger shared memory. The advantage of the irrGETF2 kernel
is clear for relatively short panels, which is saving memory
traffic. Figure 7 shows sample performance results for panels
of different heights but of the same width. The performance
is shown in Gflop/s, where the aggregate operation count is
estimated as

∑batch_size
i=1 min

2
i −

n3
i

3 −
n2
i

2 + 5ni

6 .
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Fig. 7. Performance of irrGETF2 (FP64) versus column-wise block decom-
position on the A100 GPU using CUDA-11.6. Each point represents 1000
panels whose widths are fixed at 32, while the heights are randomly sampled
between 1 and the y-axis value.

F. Optimizing Row Interchanges

One of the key challenges of the LU decomposition is the
row interchanges on the entire width of the matrix following
the panel decomposition step. Following our naming conven-
tion, this step is called (irrLASWP). Figure 8 shows that all
rows adjacent to the upper square part of the panel must
undergo a number of interchanges that reflect the pivoting
steps in the panel decomposition. Note that for irrLASWP,
the widths wl and wr are different for every matrix, and are
calculated using the DCWI layer. A reference implementation
for irrLASWP would be to call irrSWAP inside a loop, once
for every row. However, in a column-major layout, a row
access leads to poor utilization of the memory bandwidth.
Since the pattern of row interchanges is data-dependent, non-
contiguous data access is unavoidable, but there are means of
mitigations that could be done.

We begin by “rehearsing” the row interchanges on auxiliary
matrices containing exactly one column, and equal number of
rows to the actual matrices. These matrices are initialized as
0, 1, 2, · · · ,Mpi, where Mpi is the height of each panel. We
invoke the reference implementation kernel (looped irrSWAP)
on these single-column matrices, which produces significantly
less inefficient memory traffic. At the end of this step, the



entries of each single-column matrix point to the final location
of each row in the corresponding actual matrix. The data to be
exchanged are split into small chunks as shown in Figure 8,
so that the row interchanges can be done in shared memory,
and then written back as one contiguous block.

lw wr

Fig. 8. Row interchanges in irrLU-GPU

While this optimization utilizes the bandwidth much more
efficiently than a looped irrSWAP, it has some minor short-
comings. First, it needs a memory workspace for the auxiliary
matrices, which breaks the asynchronicity of irrLU-GPU if
done on the fly. This can be avoided if the interface of irrLU-
GPU is modified to accept a workspace parameter so that the
user controls where the allocation takes place. Second, corner
cases where the pivots are always (or mostly) found on the
diagonal might lead to worse performance than a looped irr-
SWAP. A looped irrSWAP will entirely skip a row interchange
if the pivot is already on the diagonal. With the new technique,
it is relatively difficult to isolate the rows that stayed in place
from those that need to change location. In other words, the
performance is irrelevant to the pivoting pattern. Since most
realistic test cases require pivoting, the average performance
is higher than a looped irrSWAP. Figure 9 (top) shows the
impact of the two pivoting strategies on the performance of
irrLU-GPU. Figure 9 (bottom) shows the corresponding time
spent in both approaches for the performance test of irrLU-
GPU. Note that the performance gain grows with the average
width of the matrices, since a looped irrSWAP becomes more
impacted by the non-contiguous memory accesses.

V. EXPERIMENTAL RESULTS

A. Performance of irrLU-GPU

This section presents the final performance results of irrLU-
GPU in FP64 arithmetic. Each figure shows two GPU solutions
and one reference CPU solution. The CPU performance results
are obtained by running the getrf_batch routine in MKL
2022.0.0 on a 36-core dual socket Intel CPU (Intel Xeon
Gold 6140 CPU running @ 2.30GHz). For NVIDIA GPUs,
irrLU-GPU is benchmarked using a Tesla A100-SXM4 GPU,
clocked at 1.41 GHz, using CUDA-11.6. For AMD GPUs,
benchmarking is performed using an AMD Instinct MI100
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Fig. 9. Top: Timing of irrLU-GPU (FP64) using irrLASWP versus using
looped irrSWAP on the A100 GPU using CUDA-11.6. Bottom: the corre-
sponding elapsed time of both irrLASWP and looped irrSWAP. Each point
represents 1000 square matrices of different sizes that are randomly sampled
between 1 and the y-axis value.

GPU, clocked at 1.5 GHz, using ROCM-5.0. We also show ref-
erence GPU implementations using cuSOLVER/rocSOLVER
called within 16 concurrent GPU streams. Each testing point
represents one thousand square matrices, whose sizes are
randomly sampled between 1 and the value shown on the
x-axis. The FLOP rate is obtained by dividing the aggregate
operation count by the execution time. The aggregate operation
count is

∑batch_size
i=1

2n3
i

3 −
n2
i

2 + 5ni

6 . The performance at each
point is the arithmetic mean of the FLOP rate across 10 runs.

Figure 10 shows the performance for FP64 arithmetic. It
is obvious that parallel calls to cuSOLVER/rocSOLVER do
not yield any good performance. This is mainly due to the
challenging distribution of sizes inside the batch, for which the
overhead of the call becomes significant. Note that the perfor-
mance numbers for cuSOLVER/rocSOLVER do not include
creating/destroying streams or allocating/freeing workspaces.
The performance of the CPU is quite competitive, especially
against the MI100 GPU. We generally observe a performance
gap between the A100 and the MI100 GPUs. Our speculation
is that the HIP kernel language is not yet mature compared to
CUDA. Another note is that the available shared memory on
the MI100 (64 KB) is much smaller than the A100 GPU (192
KB). This generally limits the occupancy for kernels relying
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Fig. 10. Performance of irrLU-GPU (FP64) on the A100 GPU (top) and the
MI100 GPU (bottom). Results are obtained using CUDA-11.6 and ROCM-
5.0. Each point represents 1000 square matrices of different sizes that are
randomly sampled between 1 and the x-axis value.

on shared memory workspaces (especially in our case, the
irrGETF2 kernel). IrrLU-GPU has a clear advantage on the
A100 GPU, with an asymptotic performance gain of 4.5×
against the CPU. For the MI100 GPU, irrLU-GPU outperforms
the CPU performance only for relatively larger workloads,
scoring up to 2.7× better performance. There is a potential
room for improvement for the A100 GPU if the Tensor Cores
are used for the irrGEMM kernel. A similar approach can
be taken for AMD GPUs with Matrix Engine units for FP64
arithmetic (e.g. the MI250x GPU).

Figure 11 shows another performance comparison for a
small number of matrices that are relatively large in size. This
is a typical case in the sparse solver near the root of the
assembly tree. We empirically tuned the number of streams
for cuSOLVER/rocSOLVER at each test point. We observe a
much smaller gap between irrLU-GPU and cuSOLVER/roc-
SOLVER, which even turns into the favor of the latter for
matrices beyond 5k×5k. This is an expected behavior, as there
will be a crossover point where a design dedicated to batches
of relatively small matrices is outperformed by parallel calls
to a design that targets relatively large sizes.
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Fig. 11. Performance of irrLU-GPU (FP64) on the A100 GPU (top) and the
MI100 GPU (bottom) against cuSOLVER/rocSOLVER with multiple streams.
Results are shown for few, relatively large matrices. The labels of the y-axis
can be read as [Nmin:Nmax] / batch_size.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

24
5

24
6

24
7

24
8

24
9

25
0

25
1

25
2

25
3

25
4

25
5

25
6

25
7

25
8

25
9

26
0

26
1

26
2

26
3

26
4

26
5

26
6

26
7

26
8

26
9

27
0

27
1

27
2

27
3

27
4

27
5

27
6

27
7

27
8

27
9

28
0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3

29
4

29
5

29
6

29
7

29
8

29
9

30
0

30
1

30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

31
3

31
4

31
5

31
6

31
7

31
8

31
9

32
0

32
1

32
2

32
3

32
4

32
5

32
6

32
7

32
8

32
9

33
0

33
1

33
2

33
3

33
4

33
5

33
6

33
7

33
8

33
9

34
0

34
1

34
2

34
3

34
4

34
5

34
6

34
7

34
8

34
9

35
0

35
1

35
2

35
3

35
4

35
5

35
6

35
7

35
8

35
9

36
0

36
1

36
2

36
3

36
4

36
5

36
6

36
7

36
8

36
9

37
0

37
1

37
2

37
3

37
4

37
5

37
6

37
7

37
8

37
9

38
0

38
1

38
2

38
3

38
4

38
5

38
6

38
7

38
8

38
9

39
0

39
1

39
2

39
3

39
4

39
5

39
6

39
7

39
8

39
9

40
0

40
1

40
2

40
3

40
4

40
5

40
6

40
7

40
8

40
9

41
0

41
1

41
2

41
3

41
4

41
5

41
6

41
7

41
8

41
9

42
0

42
1

42
2

42
3

42
4

42
5

42
6

42
7

42
8

42
9

43
0

43
1

43
2

43
3

43
4

43
5

43
6

43
7

43
8

43
9

44
0

44
1

44
2

44
3

44
4

44
5

44
6

44
7

44
8

44
9

45
0

45
1

45
2

45
3

45
4

45
5

45
6

45
7

45
8

45
9

46
0

46
1

46
2

46
3

46
4

46
5

46
6

46
7

46
8

46
9

47
0

47
1

47
2

47
3

47
4

47
5

47
6

47
7

47
8

47
9

48
0

48
1

48
2

48
3

48
4

48
5

48
6

48
7

48
8

48
9

49
0

49
1

49
2

49
3

49
4

49
5

49
6

49
7

49
8

49
9

50
0

50
1

50
2

50
3

50
4

50
5

50
6

50
7

50
8

50
9

51
0

51
1

51
2

51
3

51
4

51
5

51
6

51
7

51
8

51
9

52
0

52
1

52
2

52
3

52
4

52
5

52
6

52
7

52
8

52
9

53
0

53
1

53
2

53
3

53
4

53
5

53
6

53
7

53
8

53
9

54
0

54
1

54
2

54
3

54
4

54
5

54
6

54
7

54
8

54
9

55
0

55
1

55
2

55
3

55
4

55
5

55
6

55
7

55
8

55
9

56
0

56
1

56
2

56
3

56
4

56
5

56
6

56
7

56
8

56
9

57
0

57
1

57
2

57
3

57
4

57
5

57
6

57
7

57
8

57
9

58
0

58
1

58
2

58
3

58
4

58
5

58
6

58
7

58
8

58
9

59
0

59
1

59
2

59
3

59
4

59
5

59
6

59
7

59
8

59
9

60
0

60
1

60
2

60
3

60
4

60
5

60
6

60
7

60
8

60
9

61
0

61
1

61
2

61
3

61
4

61
5

61
6

61
7

61
8

61
9

62
0

62
1

62
2

62
3

62
4

62
5

62
6

62
7

62
8

62
9

63
0

63
1

63
2

63
3

63
4

63
5

63
6

63
7

63
8

63
9

64
0

64
1

64
2

64
3

64
4

64
5

64
6

64
7

64
8

64
9

65
0

65
1

65
2

65
3

65
4

65
5

65
6

65
7

65
8

65
9

66
0

66
1

66
2

66
3

66
4

66
5

66
6

66
7

66
8

66
9

67
0

67
1

67
2

67
3

67
4

67
5

67
6

67
7

67
8

67
9

68
0

68
1

68
2

68
3

68
4

68
5

68
6

68
7

68
8

68
9

69
0

69
1

69
2

69
3

69
4

69
5

69
6

69
7

69
8

69
9

70
0

70
1

70
2

70
3

70
4

70
5

70
6

70
7

70
8

70
9

71
0

71
1

71
2

71
3

71
4

71
5

71
6

71
7

71
8

71
9

72
0

72
1

72
2

72
3

72
4

72
5

72
6

72
7

72
8

72
9

73
0

73
1

73
2

73
3

73
4

73
5

73
6

73
7

73
8

73
9

74
0

74
1

74
2

74
3

74
4

74
5

74
6

74
7

74
8

74
9

75
0

75
1

75
2

75
3

75
4

75
5

75
6

75
7

75
8

75
9

76
0

76
1

76
2

76
3

76
4

76
5

76
6

76
7

76
8

76
9

77
0

77
1

77
2

77
3

77
4

77
5

77
6

77
7

77
8

77
9

78
0

78
1

78
2

78
3

78
4

78
5

78
6

78
7

78
8

78
9

79
0

79
1

79
2

79
3

79
4

79
5

79
6

79
7

79
8

79
9

80
0

80
1

80
2

80
3

80
4

80
5

80
6

80
7

80
8

80
9

81
0

81
1

81
2

81
3

81
4

81
5

81
6

81
7

81
8

81
9

82
0

82
1

82
2

82
3

82
4

82
5

82
6

82
7

82
8

82
9

83
0

83
1

83
2

83
3

83
4

83
5

83
6

83
7

83
8

83
9

84
0

84
1

84
2

84
3

84
4

84
5

84
6

84
7

84
8

84
9

85
0

85
1

85
2

85
3

85
4

85
5

85
6

85
7

85
8

85
9

86
0

86
1

86
2

86
3

86
4

86
5

86
6

86
7

86
8

86
9

87
0

87
1

87
2

87
3

87
4

87
5

87
6

87
7

87
8

87
9

88
0

88
1

88
2

88
3

88
4

88
5

88
6

88
7

88
8

88
9

89
0

89
1

89
2

89
3

89
4

89
5

89
6

89
7

89
8

89
9

90
0

90
1

90
2

90
3

90
4

90
5

90
6

90
7

90
8

90
9

91
0

91
1

91
2

91
3

91
4

91
5

91
6

91
7

91
8

91
9

92
0

92
1

92
2

92
3

92
4

92
5

92
6

92
7

92
8

92
9

93
0

93
1

93
2

93
3

93
4

93
5

93
6

93
7

93
8

93
9

94
0

94
1

94
2

94
3

94
4

94
5

94
6

94
7

94
8

94
9

95
0

95
1

95
2

95
3

95
4

95
5

95
6

95
7

95
8

95
9

96
0

96
1

96
2

96
3

96
4

96
5

96
6

96
7

96
8

96
9

97
0

97
1

97
2

97
3

97
4

97
5

97
6

97
7

97
8

97
9

98
0

98
1

98
2

98
3

98
4

98
5

98
6

98
7

98
8

98
9

99
0

99
1

99
2

99
3

99
4

99
5

99
6

99
7

99
8

99
9

10
00

10
01

10
02

10
03

10
04

10
05

10
06

10
07

10
08

10
09

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

10
22

10
23

10
24

10
25

10
26

10
27

10
28

10
29

10
30

10
31

10
32

10
33

10
34

10
35

10
36

10
37

10
38

10
39

10
40

10
41

10
42

10
43

10
44

10
45

10
46

10
47

10
48

10
49

10
50

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

10
70

10
71

10
72

10
73

10
74

10
75

10
76

10
77

10
78

10
79

10
80

10
81

10
82

10
83

10
84

10
85

10
86

10
87

10
88

10
89

10
90

10
91

10
92

10
93

10
94

10
95

10
96

10
97

10
98

10
99

11
00

11
01

11
02

11
03

11
04

11
05

11
06

11
07

11
08

11
09

11
10

11
11

11
12

11
13

11
14

11
15

11
16

11
17

11
18

11
19

11
20

11
21

11
22

11
23

11
24

11
25

11
26

11
27

11
28

11
29

11
30

11
31

11
32

11
33

11
34

11
35

11
36

11
37

11
38

11
39

11
40

11
41

11
42

11
43

11
44

11
45

11
46

11
47

11
48

11
49

11
50

11
51

11
52

11
53

11
54

11
55

11
56

11
57

11
58

11
59

11
60

11
61

11
62

11
63

11
64

11
65

11
66

11
67

11
68

11
69

11
70

11
71

11
72

11
73

11
74

11
75

11
76

11
77

11
78

11
79

11
80

11
81

11
82

11
83

11
84

11
85

11
86

11
87

11
88

11
89

11
90

11
91

11
92

11
93

11
94

11
95

11
96

11
97

11
98

11
99

12
00

12
01

12
02

12
03

12
04

12
05

12
06

12
07

12
08

12
09

12
10

12
11

12
12

12
13

12
14

12
15

12
16

12
17

12
18

12
19

12
20

12
21

12
22

12
23

12
24

12
25

12
26

12
27

12
28

12
29

12
30

12
31

12
32

12
33

12
34

12
35

12
36

12
37

12
38

12
39

12
40

12
41

12
42

12
43

12
44

12
45

12
46

12
47

12
48

12
49

12
50

12
51

12
52

12
53

12
54

12
55

12
56

12
57

12
58

12
59

12
60

12
61

12
62

12
63

12
64

12
65

12
66

12
67

12
68

12
69

12
70

12
71

12
72

12
73

12
74

12
75

12
76

12
77

12
78

12
79

12
80

12
81

12
82

12
83

12
84

12
85

12
86

12
87

12
88

12
89

12
90

12
91

12
92

12
93

12
94

12
95

12
96

12
97

12
98

12
99

13
00

13
01

13
02

13
03

13
04

13
05

13
06

13
07

13
08

13
09

13
10

13
11

13
12

13
13

13
14

13
15

13
16

13
17

13
18

13
19

13
20

13
21

13
22

13
23

13
24

13
25

13
26

13
27

13
28

13
29

13
30

13
31

13
32

13
33

13
34

13
35

13
36

13
37

13
38

13
39

13
40

13
41

13
42

13
43

13
44

13
45

13
46

13
47

13
48

13
49

13
50

13
51

13
52

13
53

13
54

13
55

13
56

13
57

13
58

13
59

13
60

13
61

13
62

13
63

13
64

13
65

13
66

13
67

13
68

13
69

13
70

13
71

13
72

13
73

13
74

13
75

13
76

13
77

13
78

13
79

13
80

13
81

13
82

13
83

13
84

13
85

13
86

13
87

13
88

13
89

13
90

13
91

13
92

13
93

13
94

13
95

13
96

13
97

13
98

13
99

14
00

14
01

14
02

14
03

14
04

14
05

14
06

14
07

14
08

14
09

14
10

14
11

14
12

14
13

14
14

14
15

14
16

14
17

14
18

14
19

14
20

14
21

14
22

14
23

14
24

14
25

14
26

14
27

14
28

14
29

14
30

14
31

14
32

14
33

14
34

14
35

14
36

14
37

14
38

14
39

14
40

14
41

14
42

14
43

14
44

14
45

14
46

14
47

14
48

14
49

14
50

14
51

14
52

14
53

14
54

14
55

14
56

14
57

14
58

14
59

14
60

14
61

14
62

14
63

14
64

14
65

14
66

14
67

14
68

14
69

14
70

14
71

14
72

14
73

14
74

14
75

14
76

14
77

14
78

14
79

14
80

14
81

14
82

14
83

14
84

14
85

14
86

14
87

14
88

14
89

14
90

14
91

14
92

14
93

14
94

14
95

14
96

14
97

14
98

14
99

15
00

15
01

15
02

15
03

15
04

15
05

15
06

15
07

15
08

15
09

15
10

15
11

15
12

15
13

15
14

15
15

15
16

15
17

15
18

15
19

15
20

15
21

15
22

15
23

15
24

15
25

15
26

15
27

15
28

15
29

15
30

15
31

15
32

15
33

15
34

15
35

15
36

15
37

15
38

15
39

15
40

15
41

15
42

15
43

15
44

15
45

15
46

15
47

15
48

15
49

15
50

15
51

15
52

15
53

15
54

15
55

15
56

15
57

15
58

15
59

15
60

15
61

15
62

15
63

15
64

15
65

15
66

15
67

15
68

15
69

15
70

15
71

15
72

15
73

15
74

15
75

15
76

15
77

15
78

15
79

15
80

15
81

15
82

15
83

15
84

15
85

15
86

15
87

15
88

15
89

15
90

15
91

15
92

15
93

15
94

15
95

15
96

15
97

15
98

15
99

16
00

16
01

16
02

16
03

16
04

16
05

16
06

16
07

16
08

16
09

16
10

16
11

16
12

16
13

16
14

16
15

16
16

16
17

16
18

16
19

16
20

16
21

16
22

16
23

16
24

16
25

16
26

16
27

16
28

16
29

16
30

16
31

16
32

16
33

16
34

16
35

16
36

16
37

16
38

16
39

16
40

16
41

16
42

16
43

16
44

16
45

16
46

16
47

16
48

16
49

16
50

16
51

16
52

16
53

16
54

16
55

16
56

16
57

16
58

16
59

16
60

16
61

16
62

16
63

16
64

16
65

16
66

16
67

16
68

16
69

16
70

16
71

16
72

16
73

16
74

16
75

16
76

16
77

16
78

16
79

16
80

16
81

16
82

16
83

16
84

16
85

16
86

16
87

16
88

16
89

16
90

16
91

16
92

16
93

16
94

16
95

16
96

16
97

16
98

16
99

17
00

17
01

17
02

17
03

17
04

17
05

17
06

17
07

17
08

17
09

17
10

17
11

17
12

17
13

17
14

17
15

17
16

17
17

17
18

17
19

17
20

17
21

17
22

17
23

17
24

17
25

17
26

17
27

17
28

17
29

17
30

17
31

17
32

17
33

17
34

17
35

17
36

17
37

17
38

17
39

17
40

17
41

17
42

17
43

17
44

17
45

17
46

17
47

17
48

17
49

17
50

17
51

17
52

17
53

17
54

17
55

17
56

17
57

17
58

17
59

17
60

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 12. Example solution of the second order Maxwell equation on a toroidal
domain discretized using Nédélec finite elements. The mesh has 614,592
finite element unknowns with approximately 24 points per wavelength and
the corresponding sparse matrix has 19,636,416 nonzeros.

B. Performance of the Sparse Direct Solver for Indefinite
Maxwell Simulations

We solve the electromagnetics problem corresponding to
the second order Maxwell equation, ∇×∇×E− Ω2E = f ,



which is given in the weak formulation as (∇×E,∇×E′)−(
Ω2E,E′

)
= (f ,E′) with a testing function E′. A given tan-

gential field f(x) = (κ2 − Ω2)(sin(κx2), sin(κx3), sin(κx1))
is used as the boundary condition for E. For large wavenumber
Ω, the problem is highly indefinite and hard to precondition,
so typically a direct solver is used. The weak form is dis-
cretized with first order Nédélec elements using the modular
finite element library MFEM [32]. The results for Ω = 16,
κ = Ω/1.05 and a toroidal geometry with hexahedral finite
elements are shown in Figure 12. Results in this section all
use FP64. Note that for these tests, the MC64 static pivoting is
not required, and all sparse solves reach a backward error close
to machine precision after a single step of iterative refinement.
Computing the fill-reducing ordering with METIS takes about
10s and the symbolic analyis about 2s. Note that the costs
for both ordering and symbolic phase can be amortized when
solving multiple consecutive linear systems with the same
sparsity pattern. Figure 13 illustrates the distribution of the
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Fig. 13. Distribution of the matrix sizes within each batch (level of the
assembly tree). d1 are the dimensions of the upper-left block of each front,
i.e., the sizes for the irrLU operation. d2 are the dimensions for the lower-
right part of each front. The irrTRSM operation is applied with m = d1 and
n = d2, and the irrGEMM with m = n = d2 and k = d1. Level 15 has
batchsize 30,727.

matrix sizes, as well as the batchsize, for each batch. As
the assembly tree is traversed from the leaves to the root
(level 0), the average matrix size increases, while the batchsize
decreases.

1) GPU Performance Breakdown: Figure 14 shows the
runtime, on the A100 GPU, for the different operations per-
formed during the numerical factorization of the sparse matrix
corresponding to the discretization of the problem illustrated
in Figure 12. The batch operations are compared with a trivial
implementation calling cuBLAS or cuSOLVER in a loop.
cuBLAS outperforms irrGEMM for large matrix sizes and
small batchcounts, hence we combine irrGEMM for matrix
sizes <= 256 with cuBLAS GEMM in a loop for matrix
sizes > 256. One of the reasons behind this behavior is that
the current irrGEMM implementation does not take advantage
of the Tensor Core units on the A100. Note that irrLU and
irrTRSM outperform the corresponding routines GETRF and

GETRS (2xTRSM + LASWP) for almost all matrix sizes. We
observe a similar performance breakdown on the MI100 GPU,
and so its respective results are not shown.
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Fig. 14. Runtime on A100 for the different batches from the problem
illustrated in Fig. 12. Top: LU decomposition time with irrLU vs. calling
cuSOLVER’s GETRF in a loop vs. irrLU for matrix sizes <= 256 com-
bined with a cuSOLVER loop for matrices > 256. Middle: cuSOLVER
GETRS vs. irrTRSM (lower and upper) and irrLASWP. Bottom: irrGEMM
vs. cuBLAS GEMM in a loop.

2) Solver Comparison: Table I compares the total runtime
for the numerical factorization on the A100 and MI100
with our optimized GPU implementation (relying on irrLU,
irrTRSM and irrGEMM), with the naive cuBLAS/cuSOLVER
loop implementation, with STRUMPACK [13] v6.3.1, and
with SuperLU_Dist [8] v7.2.0. From SuperLU_Dist, the 3D
factorization code pdgssvx3d was used, which offloads more
operations to the GPU, and performs better, compared to



A100 MI100
AMD 7763 (16c) AMD 7662 (16c)

solver time (s) Gflop/s time (s) Gflop/s
G

PU

using irrLU 1.77 1394.7 1.97 1256.1
cuBLAS/SOLVER 5.44 453.5 19.37 127.4

STRUMPACK 1.93 1275.9 13.56 182.0
SuperLU 12.58 190.3 - -

C
PU

STRUMPACK 8.62 286.6 10.16 243.2
SuperLU 17.89 132.8 31.94 74.7

TABLE I
NUMERICAL FACTORIZATION PERFORMANCE ON BOTH NVIDIA A100
AND AMD MI100, AND COMPARISON WITH STRUMPACK [13] AND

SUPERLU_DIST [8].

the earlier implementation in pdgssvx (the 2D algorithm).
We used the default parameters for the STRUMPACK and
SuperLU_Dist solvers. The CPU runs use 16 OpenMP threads
and Cray LibSci for BLAS and LAPACK. On the A100 GPU,
using the NVIDIA Nsight profiler reveals that STRUMPACK
spends 9.1% (.91s) in cudaStreamSynchronize and 6.5% (.65s)
in cudaLaunchKernel. In the optimized batched implementa-
tion both bottlenecks are reduced: .33s for cudaStreamSyn-
chronize and .16s for cudaLaunchKernel.

There are few takeaways that we can extract from Table I.
First, the proposed solution utilizing irrLU-GPU outperforms
all the other solutions mentioned in Table I. Second, the
closest competitor to the proposed solution is STRUMPACK
on the A100 GPU, where a 9% advantage is observed for
irrLU-GPU. Profiling STRUMPACK on the A100 GPU shows
that special kernels are used for small size LU, TRSM and
GEMM operations (see [13]). All blocks larger than 32×32
are handled by cuBLAS/cuSOLVER in STRUMPACK. The
9% improvement in favor of irrLU comes from supporting
all sizes. On the MI100 GPU, the kernel launch overheads
are more significant, which leads to bigger performance gains
(13.56s for STRUMPACK vs 1.97s for irrLU). Third, despite
the clear advantage of irrLU-GPU on the A100 GPU versus
the MI100 GPU in Figure 10, the final solution times in Table I
are close (1.77s for the A100 GPU versus 1.97s for the MI100
GPU). We observe that reducing the kernel launch overhead on
the MI100 GPU has a bigger impact on performance compared
to the A100 GPU. By removing the launch overheads for the
large batches on the lower levels of the assembly tree, the total
runtime of the solver is dominated by nodes at the higher levels
of the assembly tree. More specifically, the runtime is most
impacted by the GEMM performance on the largest nodes.
Since we don’t use the Tensor Cores on the A100 GPU, the
theoretical peak performances for FP64 GEMMs are close (9.7
Tflop/s on the A100 GPU, versus 11.5 Tflop/s on the MI100
GPU).

C. Software Availability

The irrLU, irrGEMM, and irrTRSM routines are available
in the MAGMA library1. The performance of the sparse direct
solver is based on an integration between the STRUMPACK
library2 and MAGMA, and is also planned for the next release

1https://icl.utk.edu/magma/
2https://portal.nersc.gov/project/sparse/strumpack/

of STRUMPACK.

VI. CONCLUSION AND FUTURE WORK

This paper presents a systematic way of addressing ma-
trix computations on GPUs for batches containing matrices
of different sizes. While the proposed approach is generic,
the paper present a case study for the LU decomposition
on irregular set of dense matrices. The developed solution
is called irrLU-GPU, and addresses a performance-critical
component in a multifrontal sparse LU solver, that is used
to simulate a high frequency indefinite Maxwell problem
using finite element discretization on unstructured meshes.
The experimental results show a significant impact on the
performance of the sparse direct solver. The design concepts
of irrLU-GPU, mainly the interface and the dynamic workload
discovery layer, are applicable to other numerical algorithms
operating on irregular sets of relatively small dense matrices.

There are several ways to extend this work going forward.
We plan to seek functional and performance portability to
Intel GPUs. The current implementation of irrGEMM does not
take advantage of the hardware acceleration units for matrix
multiply on NVIDIA or AMD GPUs, which would improve
the performance of both irrGEMM and irrTRSM. This would
require a redesign of the irrGEMM kernel, though, in order to
take advantage of specific architectural features on different
GPUs. There is also a chance of concurrent kernel execution
which can be exploited in the case of performing the right
and left swaps simultaneously. As mentioned in the paper, the
proposed interface and the DCWI layer would work seamlessly
for other decompositions, such as the QR factorization, which
can be used in Sparse QR algorithms. Finally, it is challenging
to find a robust way of auto-tuning the developed kernels. Most
of the tuning techniques that we are aware of take the problem
size as an input (along with other information). In the case of
irrLU-GPU, irrGEMM, and irrTRSM, we have a mix of sizes
that are known only at run time. It is certainly a research
direction to find robust auto-tuning techniques based on the
distributions of sizes in a single batch.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The paper provides two sets of experiments for the final results:

FIRST: Experiments for testing the irrLU routine (Figures
10 and 11):

The proposed solutions were developed inside a private fork of the
MAGMA library (http://icl.utk.edu/magma/). The fork is available
in a docker image that we provide below. The systems used for
these results are:

System 1

(1) One DGX-A100 system equipped with eight A100-SXM4-
80GB GPUs @ 1.41 GHz. Only one GPU is used.

(2) The CPU is AMD EPYC 7742 64-Core Processor @ 2.25 GHz,
but it is not used in the experimental results.

(3) The MAGMA fork is built with CUDA-11.6 and uses MKL
2022.0.0 as a backend. MAGMA host code is compiled using
GCC 7.3.0.

System 2

(1) The same MAGMA setup above is used on another system
with a 36-core dual socket Intel CPU (Intel Xeon Gold 6140
CPU running @ 2.30GHz). This system is used only to test
the MKL getrf_batch routine on the CPU.

System 3

(1) One node of the OLCF Spock system. The experiments use
one AMD Instinct MI100 GPU, clocked at 1.5 GHz, using
ROCM-5.0.

(2) OpenBLAS 0.3.17 is used to provide the CPU backend for
MAGMA.

System 4 (docker image)

(1) The docker image provides the sources and the binaries of
the MAGMA fork. It is compiled using GCC 4.8.5, CUDA-
11.0.221, and uses OpenBLAS 0.3.17 as the CPU backend.

SECOND: Experiments for testing the sparse direct solver
(Figure 14 and Table 1)

The sparse solver is based on a modified version of the
STRUMPACK library that uses the MAGMA fork as a backend.
The modified sparse solver is also available in a con-
tainer image below. The driver application is a modified
MFEM example, which is available in the docker image:
/home/mfem/examples/ex3p_indef.cpp. The systems used for these
experiments are:

System 1

(1) One node of NERSC’s Perlmutter system. The experiments
are conducted on one Ampere A100 GPU that is hosted by an
AMD EPYC 7763 64-Core Processor. The following packages
are used to run the application in Section V.B:

(2) GCC 11.2.0
(3) MFEM 4.4
(4) STRUMPACK batch_LU branch
(5) The MAGMA fork
(6) CUDA Toolkit 11.5
(7) BLAS/LAPACK/ScaLAPACK: cray-libsci/21.08.1.2
(8) SuperLU_Dist 7.2.0
(9) METIS 5.1.0
(10) Only needed as compilation dependencies: hypre 2.24.0,

parmetis 4.0.3, cray-mpich/8.1.13
System 2

(1) One node of the OLCF Spock system. The packages used are
the same as those on Perlmutter, except for ROCm 5.0.2

System 3

(1) Docker image to reproduce results from the application in
Section V.B. The packages used in the docker image are the
same as those on Perlmutter, except for:

(2) GCC 8.5.0
(3) CUDA Toolkit 11.4.0
(4) BLAS/LAPACK: OpenBLAS 0.3.17
(5) ScaLAPACK 2.2.0
(6) mpich 4.0.2

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://bitbucket.org/abdelfattah83/

magma-vlu
Artifact name: Modified fork of MAGMA

Artifact 2
Persistent ID: https://github.com/pghysels/STRUMPACK/

tree/batch_LU
Artifact name: Modified STRUMPACK to use the MAGMA fork

Artifact 3
Persistent ID: https://hub.docker.com/r/abdelfattah83/

irrlu_cuda
Artifact name: Docker image of MAGMA fork

Artifact 4
Persistent ID: https://hub.docker.com/r/pghysels/

irrlu_cuda_11.4.0
Artifact name: Docker image of MFEM example using STRUMPACK

and MAGMA
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Reproduction of the artifact with container: ==> FIRST: docker
image for MAGMA
———————————————

This container image provides the sources and the binaries of the
irrLU-GPU solution. The solution is developed inside a private fork
of the MAGMA library. The image is built for Volta and Ampere
architectures using cuda-11.0. However, reproducing the results in
the paper (Figures 10 and 11) requires access to an A100-SXM4GPU.

docker pull abdelfattah83/irrlu_cuda:latest

To run the image:

docker run -it –entrypoint=bash –privileged –userns=host
abdelfattah83/irrlu_cuda

Then run the test script:
sh test_irrlu.sh

The script runs a test for a batch of 1000 square matrices, whose
sizes are randomly sampled between 1 and 1024. The script can
be edited inside the image using vi. You can change the testing
parameters such as the range of sizes, the batch size, and the
number of parallel streams for testing cusolver.

The top level routine for irrlu is:
/home/irrlu/src/dgetrf_vbatched.cpp
The tester is: /home/irrlu/testing/testing_dgetrf_vbatched.cpp

==> SECOND: docker image for MFEM example using
STRUMPACK and MAGMA
————————————————————————————————
This container image provides the sources and the binaries for a
sparse direct solver utilizing the solutions proposed in the paper
(irrLU, irrGEMM, and irrTRSM). The sparse solver is based on the
STRUMPACK library. The irrLU, irrGEMM, and irrTRSM routines
are developed inside a private fork of the MAGMA library.

The image requires an Ampere A100 GPU, and is built using
CUDA-11.4.0

The image must be run using nvidia-docker2
(https://docs.nvidia.com/datacenter/cloud-native/container-
toolkit/install-guide.html#docker)
sudo docker pull pghysels/irrlu_cuda_11.4.0:latest
sudo docker run -it –gpu all –rm pghysels/irrlu_cuda_11.4.0:latest

The image automatically runs the script that generates the
results in Figure 14 and Table 1 (for the A100 GPU).
The test script is located at: /home/test_mfem.sh

All the source codes are available under the /home/ directory.
The interfacing with MAGMA is located at:
/home/strumpack/src/sparse/fronts/FrontalMatrixGPU.cpp and
/home/strumpack/src/dense/MAGMAWrapper.hpp.
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